CYBER PHYSICAL ENERGY SYSTEMS

Edited By Shrddha Sagar, T. Poongodi, Rajesh Kumar Dhanaraj, and Sanjeevikumar Padmanaban

WILEY

Cyber Physical Energy Systems

Scrivener Publishing

100 Cummings Center, Suite 541J Beverly, MA 01915-6106

Publishers at Scrivener Martin Scrivener (martin@scrivenerpublishing.com) Phillip Carmical (pcarmical@scrivenerpublishing.com)

Cyber Physical Energy Systems

Edited by Shrddha Sagar T. Poongodi Rajesh Kumar Dhanaraj

and

Sanjeevikumar Padmanaban

This edition first published 2025 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA © 2025 Scrivener Publishing LLC

For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

ISBN 978-1-394-17252-8

Front cover images supplied by Pixabay.com Cover design by Russell Richardson

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

Printed in the USA

10 9 8 7 6 5 4 3 2 1

Contents

Pr	reface			xxi
1	Cyber-Physical Systems: A Control and Energy Approach Shaik Mahaboob Basha, Gajanan Shankarrao Patange, V. Arulkumar, J. V. N. Ramesh and A. V. Prabu			
	1.1		duction	2
		1.1.1	Background and Motivation	2
		1.1.2	Testbeds, Revisions, and a Safety Study	
			for Cyber-Physical Energy Systems	4
		1.1.3		4
		1.1.4	Significance and Contributions of Testbed	6
		1.1.5	Testbed Setup	8
		1.1.6	Illustration of Hybrid CPES Testbed Structure	9
	1.2	Studie	es on CPES Safety	10
		1.2.1	Attacks in the CPES System	11
		1.2.2	Evaluation of Attack Impacts on CPES	12
		1.2.3	CPES's Assault Detection Algorithms	13
		1.2.4	CPES's Assault Mitigation and Defense Systems	14
			Dangerous Imagery	15
		1.2.6	Attack Database	17
	1.3	Threa	t Evaluation	18
	1.4	Theor	ry of Cyber-Physical Systems Risk	20
		1.4.1	Challenger Type	20
		1.4.2	Attack Type	20
	1.5	Threa	t Evaluation Methodology	22
		1.5.1	Cyber-System Layer	25
		1.5.2	Physical-System Layer	27
	1.6	Expe	rimental Setup for Cross-Layer Firmware Threats	28
		1.6.1	Risk Model	29
		1.6.2	Threat Evaluation	33
	1.7	Conc	lusion	33
		Refer	ences	35

vi Contents

2	Opt	imizati	ion Techniques for Energy Management in Microgrid	37		
	She	nbaga .	Bharatha Priya A., Indra Singh Bisht,			
	N. I	Balamb	nigai, Sumit Kataria and R. Ramalakshmi			
	2.1 Introduction					
		2.1.1	Microgrid Systems	40		
		2.1.2	e ,	41		
		2.1.3	Energy Management of Distribution System	42		
			Techniques to Take Into Account While			
			Implementing the EMS	43		
		2.1.5	Strategies for Reducing Risk	43		
		2.1.6	Monitoring Power Systems	49		
		2.1.7	Demand Response, Price Strategy, and Demand			
			Side Management	50		
	2.2	Expla	anation Methods for EMS	55		
	2.3	EQN	EMS on an Arithmetic Optimization Basis	57		
	2.4	Heur	istic-Oriented Methods to EMS Problem-Solving	60		
	2.5	EMS	Solution Techniques Using Meta-Heuristics	60		
	2.6	Alter	native EMS Implementation Strategies	62		
		2.6.1	SCADA System	63		
	2.7	Conc	lusion and Viewpoints	67		
		Refer	ences	68		
3	Cyb	er-Phy	vsical Energy Systems for Smart Grid:			
	Reli	iable D	vistribution	71		
			shar, A. Devipriya, R. Lokeshkumar, J.V.N. Ramesh			
			am Pal			
	3.1		duction	72		
		3.1.1	Need for Sustainable and Efficient Power Generation Through Smart Grid Technology and Cyber-Physical			
			Technologies	72		
		3.1.2	0 1 0	73		
		•	r-Physical Energy Systems (CPES)	74		
	3.3		ing Energy Systems	76		
	3.4		gy Efficiency	77		
			CPES Usage on Smart Grids	78		
	3.5		t Grids	79		
	3.6		r-Physical Systems	81		
	3.7		CPS Viewpoint	84		
		3.7.1	Challenges and Solutions for Coordinating Smart			
			Grids and Cyber-Physical Systems	85		
		3.7.2	Techniques of Correspondence	87		

		3.7.3	Data Protection	88
		3.7.4	Data Skill and Engineering	89
		3.7.5	Distributed Computation	90
		3.7.6	Distributed Intellect	91
			Distributed Optimization	92
		3.7.8	Distributed Controller	92
	3.8	Upco	ming Prospects and Contests	93
		3.8.1	Big Data	95
		3.8.2	Cloud Computing	96
		3.8.3		97
			Network Science	98
			Regulation and Guidelines	99
	3.9	Conc		100
		Refer	ences	101
4	Evo	lution	of AI in CPS: Enhancing Technical Capabilities	
			In Interactions	103
	Nan	nya Mi	ısthafa, P. Suresh and Yazid Musthafa	
	4.1	-	duction to Cyber-Physical System	104
	4.2		Cyber-Physical Systems Architecture	105
		4.2.1	5C Architecture or CPS	106
			4.2.1.1 Connection	107
			4.2.1.2 Conversion	107
			4.2.1.3 Cyber	107
			4.2.1.4 Knowledge	108
			4.2.1.5 Configuration	108
	4.3	Cyber	r-Physical Systems as Real-Time Applications	109
			Robotics Distributed	109
			Manufacturing	110
		4.3.3	Distribution of Water	110
			Smart Greenhouses	111
		4.3.5	Healthcare	111
			Transportation	112
	4.4	-	ct of AI on Cyber-Physical Systems	114
	4.5	Polici	es	116
	4.6	Expe	cted Benefits and Core Promises	117
	4.7	Unint	tended Consequences and Implications for Policy	118
		4.7.1	Negative Social Impacts	119
		4.7.2	Cybersecurity Risks	119
		4.7.3	Impact on the Environment	120
		4.7.4	Ethical Issues	121

		4.7.5	Policy Implications	122
	4.8		byment and Delegation of Tasks	123
	4.9		, Responsibility, and Liability	123
			cy Concerns	124
			Data Collection and Use	124
		4.10.2	Data Security	125
			Data Sharing	125
			Bias and Discrimination	126
		4.10.5	User Empowerment	126
	4.11		Relations	127
		4.11.1	Cyber-Physical Systems and Transport	127
		4.11.2	Trade of Dual-Use Technology	128
			Civil Liberties (Data Protection, Privacy, etc.)	128
		4.11.4	Safety (Such as Risk Analysis, Product Safety, etc.)	129
		4.11.5	Healthcare (Medical Devices, Clinical Trials,	
			and E-Health Devices)	131
		4.11.6	Energy and Environment	132
		4.11.7	Horizontal Legal Issues (Cross-Committee	
			Considerations)	133
	4.12	Econo	omic Study on CPS	133
		4.12.1	Better Resource Allocation	134
		4.12.2	Enhanced Marketability	135
		4.12.3	Robustness and Resilience	135
		4.12.4	Regulatory Compliance	136
		4.12.5	Making Decisions in Real-Time	136
	4.13	Case S	Studies	137
		4.13.1	The Daily Lives of Older Persons and Disabled	
			Individuals with CPS	138
		4.13.2	CPS in Healthcare	140
			CPS for Security and Safety	142
	4.14	Concl	usion	143
		Refere	ences	143
5	ЮТ	Techno	blogy Enables Sophisticated Energy Management	
U		mart Fa		147
			Rastogi, Prashant Johri, Swati Verma, Vanita Garg	/
			sh Kumar	
			luction	148
	5.2		Dverview	151
		5.2.1	The Evolution of the Internet	152
		5.2.2	IoT Sensing	153

	5.2.3 IOT Data Protocol and Architecture	154
5.3	IOT Enabling Technology	156
	5.3.1 Application Domain	157
	5.3.2 Middleware Domain	158
	5.3.3 Network Domain	159
	5.3.4 Object Domain	160
5.4	IOT in Energy Sector	160
	5.4.1 Internet of Things and Energy Generation	161
5.5	Challenges of Applying IOT	164
5.6	Reference Architecture for IoT-Based Smart Factory	164
5.7	Characteristics of Smart Factory	168
5.8	Challenges for IoT-Based Smart Industry	169
5.9	How IoT Will Support Energy Management	
	in Smart Factory	170
5.10	IoT Energy Management Architecture	
	for Industrial Applications	171
	5.10.1 IoT-Based Energy Management Technology	172
	5.10.2 Energy Harvesting	174
5.11	Case Study: Smart Factory	174
	5.11.1 Supply Side	175
	5.11.2 Photovoltaic Power Generation	175
	5.11.3 Smart Micro-Grid	176
	5.11.4 Demand Side	177
	5.11.5 Virtualization	177
5.12	Conclusion	177
	References	178
IOT	-Based Advanced Energy Management in Smart Factories	183
	Nalini, Dhanashree Varadharajan, Nithyashree Natarajan	
	Yogabhuvaneswari Umasankar	
6.1	Introduction	184
6.2	Smart Factory Benefits of IOT-Based Advanced Energy	
	Management	185
6.3	Role of IOT Technology in Energy Management	186
6.4	Developing an IOT Information Model for Energy Efficiency	186
6.5	Integrating Intelligent Energy Systems (IES)	
	and Demand Response (DR)	187
6.6	How to Accurately Measure and Manage Your Energy Usage	187
6.7	Introduction to Energy Efficiency Measures	188
6.8	Identifying Opportunities to Reduce Energy Use	188
6.9	Monitoring and Measuring Energy Usage	189

6

x Contents

7

6.10) Establishing Accounting and Incentives	190
6.11	1 Sustaining the Long-Term Benefits of Optimized Energy	
	Usage	190
6.12	2 Role of Cyber Security When Implementing	
	IoT-Based Advanced Energy Solutions	191
6.13	3 Materials Required in Smart Factories	192
6.14	4 Methods in IoT-Based Smart Factory Implementation	197
6.15	5 Steps for Developing an IoT-Based Energy Management	
	System	204
	6.15.1 Assess Current Energy Usage	204
	6.15.2 Develop an Energy Conservation Plan	204
	6.15.3 Implement IoT Technology	204
	6.15.4 Monitor Results	204
6.16	5 Challenges For Adopting IoT-Based Energy Management	
	Systems	205
	6.16.1 Big Data and Analytics	205
	6.16.2 Connectivity Constraints	205
	6.16.3 Data Security and Privacy Issues	205
	6.16.4 Device Troubleshooting	205
6.17	7 Recommendations for Overcoming the Challenges	
	With Implementing IoT-Based Advanced Energy Solution	206
	6.17.1 IoT-Enabled Automation	207
	6.17.2 Smart Sensors	207
	6.17.3 Predictive Analytics	207
6.18	3 Case Studies	207
	6.18.1 Automated Demand Response (ADR)	207
	6.18.2 Automated Maintenance	208
	6.18.3 Predictive Analytics	208
	9 Case Studies for Successful Implementation	208
6.20) Applications	208
6.21	1 Different Techniques for Monitoring and Control	
	of IoT Devices	212
	2 Literature Survey	212
6.23	3 Conclusion	215
	References	215
Ch	allenges in Ensuring Security for Smart Energy	
	nagement Systems Based on CPS	217
	M. Meera and K. P. Arjun	
7.1	Introduction	218
	7.1.1 Brief Overview of Smart Energy Management	
	Systems and Cyber-Physical Systems	218

		7.1.2	Importance of Security in CPS-Based Smart Energy			
			Management	219		
	7.2	•	r-Physical Systems and Smart Energy Management	220		
		7.2.1	1	220		
		7.2.2	71 07 0			
			Systems	223		
		7.2.3	Common Communication Protocols Used			
			in CPS-Based Smart Energy Management	228		
		7.2.4	Cyber Security Threats in CPS-Based Systems	232		
	7.3		rity Challenges in CPS-Based Smart Energy			
		Mana	agement	235		
		7.3.1	Cyber Security Threats to CPS-Based Smart Energy			
			Management Systems	237		
		7.3.2	Vulnerabilities of Communication Protocols Used			
			in Smart Energy Management	241		
		7.3.3	Attack Vectors for Compromising CPS-Based Smart			
			Energy Management Systems	243		
	7.4					
		for Sr	nart Energy Management	247		
		7.4.1	Cyber Security Incidents in Smart Energy			
			Management	251		
	7.5		lusion	252		
		Refer	ences	253		
8	Secu	urity C	hallenges in CPS-Based Smart Energy Management	255		
	Luci	ia Agn	es Beena T., Vinolyn Vijaykumar and Mercy P.			
	8.1	Intro	duction	256		
	8.2	CPS A	Architecture	257		
	8.3	The I	Driving Forces for CPS	262		
		8.3.1	Big Data	262		
		8.3.2	Cloud	262		
		8.3.3	Machine-to-Machine Communication and Wireless			
			Sensor Networks	263		
		8.3.4	Mechatronics	263		
		8.3.5	Cybernetics	264		
		8.3.6	Systems of Systems	264		
	8.4	Adva	nces in Cyber-Physical Systems	265		
		8.4.1	Application Domains of CPS	265		
			8.4.1.1 Industrial Transformation	265		
			8.4.1.2 Smart Grid	266		
			8.4.1.3 Healthcare	267		

			8.4.1.4	Smart Parking System	268	
			8.4.1.5	Household CPS	269	
			8.4.1.6	Aerospace	269	
				Agriculture	270	
			8.4.1.8	Construction	270	
	8.5	Energ	y Manage	ment through CPS	271	
		8.5.1	Energy N	Aanagement of CPS for Smart Grid	272	
		8.5.2	Energy N	Ianagement of CPS for Smart Building		
			Structure		273	
		8.5.3	Energy N	Ianagement of CPS for Autonomous		
			Electric V	Vehicles in Smart Transportation	274	
		8.5.4	Energy N	Ianagement of CPS for Smart Industry	275	
		8.5.5		Anagement of CPS for Home Automation	276	
	8.6	Secur	ity Issues i	n CPS	277	
		8.6.1	Threats		278	
				Cyber Threats	278	
				Physical Threats	279	
				nerabilities	280	
		8.6.3	CPS Atta	cks	280	
			CPS Failu		280	
				ntification and Management	281	
			Protectin		281	
			•	Solutions for CPS	282	
	8.7	-	•	es and Future Directions	283	
		8.7.1	Open Ch	0	284	
				Infrastructure Challenges	284	
				Network Communication Challenges	284	
				Control Operational and Computational		
				Challenges	285	
				CPS Deployment Challenges	285	
		8.7.2	Future D	irections	285	
	8.8		lusion		286	
		Refer	ences		287	
9	Blockchain-Based Energy Transmission System: Design,					
				Data-Driven Modeling	291	
			~	nit Kumar Das, Vijay Kumar Burugari,		
	Gan			, Kanmani P. and Anupama Namburu		
	9.1		duction		292	
	9.2		ture Revie		294	
		9.2.1	Essential	Parts of a Blockchain Include	296	

	9.2.2	Blockch	ain and Smart Agreements	300	
		9.2.2.1	Blockchain 3.0 Scalability		
			and Interoperability	301	
				302	
		9.2.2.3	Blockchain 4.0 Scalability	302	
				303	
		9.2.2.5	Possible Solutions	303	
9.3	Case S	tudy and	l Application	304	
	9.3.1	Energy 7	Transmission Monitoring with Advanced		
		Metering	g Infrastructure	311	
	9.3.2	Energy (Optimization with Home Automation	312	
			0	312	
	9.3.4	Blockch	ain for Electric Vehicles	314	
9.4	Conclu	ision		317	
	Refere	nces		317	
Expl	lainable	AI Tech	nology in E-CPS: Policy Design.		
				325	
			····· · · · · · · · · · · · · · · · ·	326	
			inology	326	
Nom			07	326	
10.2	E-CP	S Arrang	gement	327	
				328	
10.3	Case	Study: M	lethod Depiction	329	
	10.3.1	Fixing	g Constraints	330	
	10.3.2	l Infori	mation Preparation	330	
				331	
	10.3.4	Conti	rolling Approach	332	
	10.3.5	6 Resul	t Analysis	334	
	10.3.6	o Overv	view	334	
10.4	Trans	formatic	on of the Power Infrastructure	335	
	10.4.1	Cyber	r-Physical System	336	
	10.4.2	Powe	r Effectiveness—Cumulative Power Efficacy	339	
10.5	Powe	r Manag	ing Structures	341	
	10 5 1				
	10.5.1		wing that are Some Notable Instances		
		of Ho	w CPS Affects Power Sources	343	
	10.5.2	of Ho Data	w CPS Affects Power Sources Analysis	343 346	
		of Ho Data Utilis	w CPS Affects Power Sources		
	 9.4 Expl Econ That Rena 10.1 Nom 10.2 10.3 10.4 	9.3 Case S 9.3.1 9.3.2 9.3.3 9.3.4 9.4 Conclu Referent Explainable Economic F Thangaraja Renuka Des 10.1 Introd 10.1 Introd 10.2 E-CP 10.2.1 10.3 Case 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5 10.4 Trans 10.4.1 10.4.2	9.2.2.1 9.2.2.2 9.2.2.3 9.2.2.4 9.2.2.5 9.3 Case Study and 9.3.1 Energy $^{\prime\prime}$ Meterin 9.3.2 Energy $^{\prime\prime}$ 9.3.3 Renewal 9.3.4 Blockch 9.4 Conclusion References Explainable AI Tecl Economic Research Thangaraja Arumug Renuka Deshmukh 10.1 Introduction 10.1.1 Term Nomenclature 10.2 E-CPS Arrang 10.2.1 E-CP 10.3 Case Study: M 10.3.1 Fixing 10.3.2 Infort 10.3.3 Predi 10.3.4 Contu 10.3.5 Resul 10.3.6 Over 10.4 Transformatio 10.4.1 Cybe 10.4.2 Powe 10.5 Power Manag	and Interoperability 9.2.2.2 Interoperability 9.2.2.3 Blockchain 4.0 Scalability 9.2.2.4 Energy Efficiency 9.2.2.5 Possible Solutions 9.3 Case Study and Application 9.3.1 Energy Transmission Monitoring with Advanced Metering Infrastructure 9.3.2 Energy Optimization with Home Automation 9.3.3 Renewable Microgrids 9.3.4 Blockchain for Electric Vehicles 9.4 Conclusion References Explainable AI Technology in E-CPS: Policy Design, Economic Research, and Case Studies <i>Thangaraja Arumugam, Saritha Bantu, Yeligeti Raju,</i> <i>Renuka Deshmukh and B. Raja Mannar</i> 10.1 Introduction 10.1.1 Terminology Nomenclature 10.2 E-CPS Arrangement 10.2.1 E-CPS Framework 10.3 Case Study: Method Depiction 10.3.1 Fixing Constraints 10.3.2 Information Preparation 10.3.3 Prediction Framework 10.3.4 Controlling Approach 10.3.5 Result Analysis 10.3.6 Overview 10.4 Transformation of the Power Infrastructure 10.4.1 Cyber-Physical System 10.4.2 Power Effectiveness—Cumulative Power Efficacy 10.5 Power Managing Structures	

xiv Contents

	10.5.4	Enhancing Compatibility and Utilization of e-CP	'S
		Components for Improved Administration	
		of Commercial Structures	347
	10.5.5		348
	10.5.6	÷	349
10.6	Protect	tion Policies	350
10.7	Urgent	Need for Effective Governance of AI and e-CPS	351
10.8	Conclu	isions	352
	Referen	nces	354
11 Infra	structu	ral Data Visualization and Improved User	
Inter	faces of	Energy Consumption in Smart Cities	357
		raj, Kanmani P., T.Y.J. Naga Malleswari,	
Vijay		Burugari and S. Sudheer Mangalampalli	
11.1	Introdu		358
	11.1.1	8	360
	11.1.2	0	360
	11.1.3	1 0	361
		11.1.3.1 Infrastructure in Smart City	361
		11.1.3.2 Types of Smart Infrastructure	362
	11.1.4	Issues with Smart City Infrastructure	363
		11.1.4.1 Organizational Issues	363
		11.1.4.2 Data Quality and Collection Issues	363
		11.1.4.3 Governance and Privacy Issues	364
		11.1.4.4 Maintenance and Durability	364
11.2		ure Review	364
11.3		ization Tools and Interfaces Used in Smart Cities	
	Using 1		367
11.4	۰.	Representation Frameworks	368
11.5		als and Methods	369
	11.5.1	Smart Cities and Energy Consumption	369
		11.5.1.1 Active Approach	371
	1150	11.5.1.2 Passive Approach	371
	11.5.2	Importance of Energy-Efficient in Sustainable	271
	11 5 2	Buildings	371
	11.5.3	Energy Consumption and Management	275
	11 E A	in Smart Cities Materials and Strategies	375
	11.5.4	Materials and Strategies	379 379
		11.5.4.1 Requirements and Work Processes	
		11.5.4.2 Data Collection	380

		11.5.5	Visual Er	ncoding and Communication Plan	381
			11.5.5.1	Map and Local Area Wayfarer	381
			11.5.5.2	Scatterplot and Examination Diagram	382
	11.6	Case St	udy and A	pplications	384
		11.6.1	•	alities of the Energy Hub Platform	384
			11.6.1.1	Mechanisms of the Energy Conservation	n
				for Smart Cities	385
			11.6.1.2	Smart Electricity Grids for Smart Cities	385
			11.6.1.3	Data Visualization and Its Importance	
				in Smart Cities	387
			11.6.1.4	Security Challenges in Smart City	387
			11.6.1.5	Smart Transportation and Smart Traffic	
				Management	388
			11.6.1.6	Domestic Renewable Energy System	
				Integration in Cities	389
	11.7	Factors	for the In	provement of Energy Efficacy	
		in Sma	rt Cites		389
		11.7.1	Predictio	n of Electrical Consumption	
			in Smart	Cities	389
	11.8			Future Scope	391
		Referer	nces		391
12	Powe	r Manag	ement in	Intelligent Buildings Based on Daily	
		and Pree	-	internigent Dununge Duotu on Duny	399
				mani, D. Shyam, A. Sangari,	011
				and Divina Julia	
	12.1	Introdu			399
		12.1.1		y from Introduction	401
	12.2			gement System Block Diagram	401
	12.3			Power Management System	405
	12.4			l of Power Management System	406
	12.5			nentation of Power Management System	408
	12.6		-	s in Smart Building Implementation	411
	12.7	Conclu		0 1	412
		Referer	nces		413
13	Schor	necand	Socurity	Attacks on the Integrity	
15				ems in Energy Systems	415
	•	•	•	ieet Singh, Yeligeti Raju, Pratap Patil	115
		. Sarav		icer omzn, ienzen Auju, i rump i ulli	
	13.1				416
	10.1	mout			110

	13.1.1	CPS Protection Purposes	416
	13.1.2	Confidentiality	417
	13.1.3	Authenticity	418
	13.1.4	Accessibility	418
	13.1.5	Resilience	419
	13.1.6	Trustworthiness	419
13.2	CPS Saf	fety Methodologies	420
	13.2.1	Threat Categorisation	420
	13.2.2	Spying	420
	13.2.3	Sneaky Deceit Assault	421
	13.2.4	Attack Using a Vulnerable Key	421
	13.2.5	Assault on the Centre Spy	421
	13.2.6	Jamming Assault	421
	13.2.7	Replay Attack	421
	13.2.8	Refusal of Package Assault	421
	13.2.9	Assault Demonstrating	422
	13.2.10	Assault Sensing	422
		Safety Resolutions	423
	13.2.12	Construction and Designing for Protection	423
	13.2.13	Safety in Definite CPS	424
	13.2.14	Energy System Safety	424
	13.2.15	Medicinal CPS Safety	424
	13.2.16	Portable CPS Safety	425
		Motorised CPS Safety	426
13.3	Shieldir	ng in Contradiction of Information Safety Assaults	426
	13.3.1	Enhancing Data Security in the Electricity System	
		Through a Markov Decision Process (MDP)	427
	13.3.2	Evaluating the Effectiveness of a Determination	
		Method for Data Security Assaults in Power	
		Systems	428
13.4		Variants	428
		Assault Variant	430
13.5		sed Learning in Depth	431
		DQND Scheme	432
	13.5.2	Assault Situations	432
	13.5.3	Markov Resolution Concepts	434
	13.5.4	Assessment Spatial and Sliding Windows	
		Measurements	436
	13.5.5	DQND Scheme	436
	13.5.6	System Education	437
	13.5.7	Efficiency Assessment	438

		13.5.8	Algorithm 1: Education Phase of DQND	439			
		13.5.9	÷	440			
		13.5.10	Assessment Metrics	440			
		13.5.11	Standards	441			
	13.6	Discus	sion	441			
	13.7	Conclusion					
		Referen	nces	443			
14	Adaptive Power System Resource Management						
	in Cyber-Physical Energy Systems						
		Virendra Singh Kushwah, Indra Singh Bisht, Charanjeet Singh,					
	K. Gu	ırnadha	Gupta and K. Suresh				
	14.1	Introdu	action	446			
		14.1.1	Modelling and Simulation of CPES for Integrating				
			Data Networks with Electricity Networks	447			
		14.1.2	Actual-Period Energy Network Modelling				
			and Simulation using RTLAB and OPNET				
			Modeller with SITL Integration	447			
		14.1.3					
			Incident Overview and Implications for Critical				
			Infrastructure Security	448			
		14.1.4	1				
			Virtualized CP Linkages	449			
	14.2		Structures	450			
			Diversified	451			
			Self Determination	451			
			Actual Period	451			
			Reconstitute	452			
			Consistency	452			
			Intensely Encapsulated	452			
	14.3		pment of CPES Structures	452			
		14.3.1		454			
			CPES Difficulties	454			
		14.3.3	0	455			
		14.3.4	Computer Estimation of the Variability				
			of the Network	455			
	14.4		ce Management in Socio-CPS	456			
	14.5		ated Study	456			
		14.5.1	Assessment of CP Multilateral Implications	457			
	14.6		egrated Modelling Platform for the CPES	458			
		14.6.1	Nodal Junction	459			

		14.6.2	PP Linkages	459			
		14.6.3	Nodal Junctions	459			
		14.6.4	CP Linkage	460			
	14.7	7 Assault from Without and Compounding Collapse					
		14.7.1	Procedure for Appropriate Load Diminishment	462			
	14.8	The Co	ombination of Assault and Defence	463			
		14.8.1	Issues with Bi-Level Computing	463			
		14.8.2	Defence of Resource Allocation	464			
		14.8.3	Methodology for Security Testing	467			
	14.9 Case Studies			467			
	14.10	4.10 Conclusions and Future Work					
		Referen	nces	474			
15	Cybe	r-Physic	al Energy Systems for Electric Vehicles	477			
	ShaikMahaboob Basha, Akilandeswari P., Suguna M.,						
	Praka	ish D., E	Biruntha S. and Vivekanandan P.				
	15.1	Introdu	action	478			
		15.1.1	Smart-Use CPESs of Emerging Technologies				
			for Sustainable Energy Solutions	478			
		15.1.2	Technology for Power Storage and Fuel Cells				
			for CPES in EVS	479			
		15.1.3					
			Problems and Implications	480			
		15.1.4		481			
		15.1.5		481			
		15.1.6	Dispersed Managing Batteries	482			
	15.2	Suggested Type		482			
		15.2.1	Activity Tracking Technique Deployment				
			in CPES Using Electro-Mechanical Connections	483			
		15.2.2	MPSSU uses Ultra-Capacitors for Higher Energy				
		-	Distribution and Rapid Power Outages	488			
	15.3		nes from Experiments and Simulations	489			
		15.3.1	Modeling the DC Bus Network for SCPEDS				
			Using the Port-Hamiltonian Approach	489			
		15.3.2	Electric Vehicle Energy Conversion and Inversion				
			Simulation using the PSIM Program	491			
		15.3.3	Additional Energy Management Techniques	100			
		D.	Explored in Studies	493			
	15.4	Discus		495			
		15.4.1	Power-Controlling and Autonomous Vehicle	105			
			Diagnosis Using Genetic Algorithms (GAs)	495			

	15.5	Conclu Referen		497 498			
16	Design and Implementation of IoT-Based Advanced Energy Management System for Smart Factory S. Jayanthi, N. Suresh Kumar, Zafar Ali Khan N.,						
	S. Sreenatha Reddy, R. Santhosh and Pachipala Yellamma						
	16.1	Introduction					
		16.1.1	Driving Factors	503			
		16.1.2	Industry 5.0	504			
		16.1.3	Smart Metres	505			
	16.2	Challenges Faced by Factories Today		506			
		16.2.1	How Do Businesses Try to Get Over the Obstacles				
			That Exist in Their Manufacturing Plants?	506			
		16.2.2	Prospects of Industrial IoT	507			
		16.2.3	Impact of IoT on Smart Factories	507			
	16.3	Home Energy Management Systems (HEMSs)					
	16.4	Micro (Grid for Integration of Several Sources and Storage	510			
		16.4.1	Deming Cycle	512			
		16.4.2	Setbacks of Effective Smart Energy Systems	514			
		16.4.3	8 8 8	514			
		16.4.4	8	516			
		16.4.5	Reasons Why Industries Need to Fully Utilise				
			IoT's Benefits	518			
	16.5	Proposed Robust Energy Management System for Smart					
		Factories		521 523			
		Conclusion					
	16.7 Future Trends			524			
		Referen	nces	525			
Inc	lex			529			

Preface

The rapid evolution of technology has steered in an era where the integration of cyber-physical systems (CPS) with energy management is redefining how we approach energy consumption and distribution. As cities grow smarter and industries become increasingly interconnected, the need for efficient, reliable, and secure energy systems has never been more critical. This book explores the multifaceted landscape of energy management in cyber-physical environments, focusing on the interplay between control systems, smart grids, and the Internet of Things (IoT). The rise of explainable AI technology further enhances these systems by providing transparency in decision-making processes, making it easier for stakeholders to understand and trust AI-driven recommendations. Through a comprehensive analysis of these topics, we aim to provide readers with a deeper understanding of how cyber-physical systems can transform energy management practices. From the implementation of adaptive power system resource management to the exploration of user interfaces in smart cities, our goal is to highlight the innovative approaches shaping the future of energy consumption. In summary, this book serves as a guide for researchers, practitioners, and policymakers eager to navigate the complexities of energy management in cyber-physical systems. By embracing the synergy between technology and energy, we can forge a sustainable future that prioritizes efficiency, reliability, and security.

Cyber-Physical Systems: A Control and Energy Approach

Shaik Mahaboob Basha¹, Gajanan Shankarrao Patange², V. Arulkumar^{3*}, J. V. N. Ramesh⁴ and A. V. Prabu⁵

¹Electronics and Communication Engineering, N.B.K.R. Institute of Science and Technology, Vidyanagar, Tirupati, Andhra Pradesh, India ²Mechanical Engineering, CSPIT–Chrusat, Charotar University of Science and Technology, Charusat Campus Changa, Anand, Gujarat, India ³School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India ⁴Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India ⁵Department of ECE, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India

Abstract

Cyber-physical systems (CPS) combine analogue and digital components to interact with the real world and are crucial to business and industry, including infrastructure like energy systems. Due to their critical nature, CPS is vulnerable to cyber-attacks, particularly phishing software that can impair their functionality. Attacks on CPS, especially on mission-critical components like energy distribution networks, can have severe consequences. To improve CPS protection, a technology demonstrator can replicate CPS behavior and identify vulnerabilities and protection mechanisms. A scenario modeling technique can accurately depict CPS components, relationships, attackers, access points, and network attacks. Risk modeling can outline the necessary resources to replicate CPS and generate large representations to assess network efficiency. The methodology includes evaluating the network using specific indicators, prioritizing cyber-attack prevention based on their impact on system function, and analyzing and preventing attacks using four example patterns that targeted CPES. This article aims to provide a staged

^{*}Corresponding author: arulkumar.v@vit.ac.in

Shrddha Sagar, T. Poongodi, Rajesh Kumar Dhanaraj and Sanjeevikumar Padmanaban (eds.) Cyber Physical Energy Systems (1–36) © 2025 Scrivener Publishing LLC

process for conducting in-depth security evaluations that result in a safer and more durable CPS.

Keywords: Cyber-physical systems, energy systems, technology, CPES, network's efficiency and risk analysis

1.1 Introduction

1.1.1 Background and Motivation

Energy systems have transitioned over the last few years from a singledirectional production and dissemination system to an amplified distributed structure that supports both conventional sources of energy and distributed generation in the form of centralized generation, like wind and solar power, and distributed storage, like energy storage devices and energy storage systems by thermal means. The advancement of communications and information technologies, electronic control networks, environment monitoring, and integrated industrialized IoT technologies has largely made it possible for EPS to be transformed into CPES. The National Institute of Standards and Technology recognizes "designs that include electronic, analog, and hardware elements." The characteristics of the network and the rules that govern its functioning define these parameters. By smoothly merging material objects with social, electronic, and connectivity elements meant to function via integrative physics and analytical reasoning, CPES are powerful complex systems revolutionizing the way conventional EPS functions. As a result, CPES contributes significantly to the transformation of EPS by enabling effective organization, more adaptable oversight, cyber-secure operational processes, framework efficiency, reconfigurable power generation (TES), and advancements in voltage stability, reliability enhancements, toughness, interconnectivity, and relatively clean energy production. Controlling and retaining protected access to critical framework resources and functions (for CPES: gen console deposits, recurrence consistency restrictions, power cable safeguards, and so on) as well as maintaining the confidentiality, ease of access, and truthfulness of the information being presented (for example, regulating the sequence of oversight monitoring and data procurement) pose significant challenges to CPES stability. As a huge development network of systems, CPS uses a variety of computer elements, including smart electronic devices, programmable controllers, and remote terminal modules, many of which were not created with safety in mind. Such gadgets' architecture, firmware, and networking technology are often created using commercially available parts. As a result, flaws in such elements may be transferred to the CPS environment, potentially opening the door for nefarious adversaries seeking to disrupt CPS operations. In April 2019, a notification of a suspicious occurrence involving hostile conduct directed toward CPS operations was made.

The assailants used a recognized CPES weakness, specifically a web application firewall gap, to access one of the developed countries' grid structures and launch a cognitive dissonance assault. The assault led to a communication issue here between the system for energy management and the facility's generating units, which briefly disrupted operations. There is an increase in unauthorized access via hacking, with attackers exploiting current and reported flaws to breach CPS. In 2020, "98% of the holes accessed are known to safety specialists, while not a day's worth of faults constitute just 0.5% of the responsibility exposed throughout the last decades," according to international security. This statistic provides proof of this. The assailants may be persuaded to violate these networks in order to gain monetary or political gain because of the significance of CPS and CPES, specifically for productivity expansion and population health at the global, regional, and micro levels.

Therefore, it is crucial to assess the CPES' stability and resistance to assaults in actual settings. In addition, since EPS-also known as the "biggest networked mechanism on the ground" [1]-integrates the impact of cyber across all sectors and sizes, the assessment of cyber threats becomes increasingly complicated and difficult. Sincerely, EPS activities might be understood by simulating certain unusual activities (such as failures, unbalanced voltage situations, frequency variations, etc.). To capture the nonlinear response of these standardization processes, increasingly precise descriptions and depictions are needed given the recent advancements toward smart and linked CPES. The improvement of CPES integrity and dependability necessitates the ongoing exploration of possible vulnerabilities [2]. The concept of security must take into account the CPES structure's characteristics in extensive testing settings that permit the interface of hardware components that are intended to function in the "actual" network. Equipment (HIL) hardware platforms are useful in this situation because they provide testing procedures for determining how well physical and digital components are working together in limited circumstances.

In order to conduct cyber resilience and assess the consequences, recognize security weaknesses across numerous levels (e.g., memory modules, system software, applications, procedures, and methods), incorporate detection mechanisms and preventative measures algorithms, and evaluate the effectiveness of countermeasures without posing an undue financial burden or safety risks, protection HIL configurations are essential [3]. This article's main goal is to provide a methodology that integrates conceptual and framework protection research studies, assessing CPS system behavior using testing ground settings and ultimately resulting in much more secure CPES designs. Assessment and experimentation research projects must be characterized and modeled, taking into account both the virtual and physical domains, in order to enable functional prototypes to accurately represent the features of the malware context. The research papers must provide thorough explanations of the tools and indicators that will be used to assess the effectiveness, dependability, and durability of the CPES. The evaluation configuration should also record the opponent's vulnerability assessment attributes and the assault strategy. Threat modeling attributes for a possible enemy include antagonistic information, finances, the system's access, and precision. Risk evaluation features for the attacking approach comprise offensive incidence, repeatability, and search capabilities, points in different targeted resources, attacker tactics, and foundation. Experts and interested parties may completely evaluate and identify potential threats present in the CPES under assessment by performing this task in a comprehensive and methodical manner.

1.1.2 Testbeds, Revisions, and a Safety Study for Cyber-Physical Energy Systems

This section describes the many CPES test chambers created by various research organizations and lists the tools used to carry out their research purposes.

We outline various types of CPES development studies seen in the field and discuss well-known examples from each. Additionally, we examine how vulnerability definition, prevention, and mitigation approaches may assist vulnerability analyses by identifying, avoiding, and reducing threats.

1.1.3 CPES Test Chamber

EPS have been built and modeled over the years using transversal topologies in which electricity is generated at massive mass energy plants and then transferred to users via various transmitting and circular delivery networks. The integration of renewable energies (RES) with distributed generation resources (DERs) required little effort [4]. Nevertheless, as RES and DER adoption rise and the grid is modernized using ICT, the intricacy of EPS also increases. In contrast, RES and DERs can be applied to supply dependable, reasonably priced, and environmentally friendly power to

meet client demands. On the other hand, hackers may covertly implant their assaults on weak systems and equipment by making use of the fact that these capabilities are not generally regulated and are instead ultimately controlled by providers [5, 6]. Due to the complexity of the current EPS and the reliance of all these systems on ICT for inter-system interaction, there are several potential points of assault. Even if there is a clear need for safe and robust EPS, the problem is made worse by our lack of expertise working with and organizing such complex infrastructures. We lack the tools necessary to identify and lessen the effects of unforeseen unfavorable occurrences on the functioning of the power grid. The organization's reliance on CPES interconnectedness, the layout of its electricity monitoring system, regulation, and prediction techniques, which are highly secure, heavily depends on the presence of reflective structures where future security features and methods can be evolved and analyzed. In-depth system assessments may be carried out in a perfect setting on CPES functional prototypes without affecting the true power system. When transferring particular processes to the real system, test chambers are used to minimize the risk and eliminate any possible negative effects. The verification and influence assessment of new EPS hardware (such as the assimilation of PV centres, infrastructure for EV recharging, etc.), updated tactics (such as the prioritization of electricity conveyance among RES, DER, or other sources of energy generation), as well as remediation techniques for unforeseen events (such as flaws, mechanical failures, cyber threats, etc.) are a few examples of these processes. Figure 1.1 shows the primary design components of such computer network testbeds. The following is a list of potential protection activities that might be carried out on CPES testbeds:

- Teach partners and clients in a replicated or modeled CPES scenario.
- Assess the functionality of process standardization comprehensively, that is, from the smallest operating levels (such as sensors, controllers, processes, etc.) to the top levels, such as remote monitoring and control.
- Create and evaluate cyber-physical measurements and assess the security of the system.
- Test new security technologies, including data encryption, access control, and systems that detect and prevent intrusions (IDS/IPS).
- Assess the effect of assaults on the EPS's physical and virtual realms.

6 Cyber Physical Energy Systems

Figure 1.1 Cyber-physical test chamber constituents for the EPS study.

• Analyze the success of preventive tactics for negative cyber-physical occurrences.

1.1.4 Significance and Contributions of Testbed

Numerous institutions and established labs have created internal testbeds for study as well as for education and instruction due to the significance of vulnerability investigations for CPS and vital CPES facilities [7]. Various testbeds have been created and put into use based upon the request area with study purpose. The true modeling CPS testbeds that are now accessible are listed in Table 1.1 besides their unique capabilities. Our classification of technological testbeds takes into account factors such as structure, cost, and dependability. We also provide a thorough breakdown of the variations among intrusion detection and prevention and software-aided test environments. Equipment-oriented trial runs are intended to formally examine CPS and often include a number of real-world physical elementsfor instance, CPES equipment-oriented testbeds include actual hardware like generators, switches, switchgear, ESS, photovoltaic systems, wind generators, etc. These testbeds enable contributors to (i) make decisions based on pragmatic experiments rather than theoretical assessments, (ii) analyze CPS behavior under abnormal conditions to demonstrate the potential without interfering with the proper machine's procedure, and (iii) predict cyberattacks or malfunction remediation and statistically control. However, device-oriented testbeds have three major drawbacks, namely: (i) they are not inexpensive because the testbed elements must match the actual hardware used on the ground, (ii) after the device and testbed setups are set up, any change or augmentation of the network infrastructure can either take a significant amount of time or be virtually and financially impractical,