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Foreword

The conquest of space is a major adventure in the history of mankind.
In the 17th century, Newton discovered the laws governing the motion of celestial bodies,

thus founding classical mechanics, notably the theory of universal gravitation. Although
mathematically simple, these laws conceal an immense wealth of possible dynamics.
The Newtonian gravitational field possesses a host of remarkable properties, discovered over
the centuries through the development of increasingly sophisticated mathematics, which
are of great interest to space agencies. For example, the existence of periodic orbits, points of
equilibrium, invariant manifolds, and other sometimes unexpected properties make possible
space missions that are awe-inspiring.

In this remarkable book, in his inimitably clear style, Max Cerf reveals all the secrets of
space dynamics and mission design. Senior engineer at ArianeGroup, expert in mission anal-
ysis and optimization, Max Cerf is a master of mission design and space vehicle control.
In addition to being an accomplished and renowned engineer and researcher, he is also an
exceptional teacher, as the reader will appreciate from the pleasant and fascinating reading of
this book. From rocket launch and orbiting, through problems of atmospheric reentry, orbital
transfer, and space debris clean-up, to interplanetary missions, Max Cerf provides all the keys
you need to quickly master all aspects and implementation.

This book will appeal to students, researchers, and engineers looking for a global view of
trajectory design problems in astrodynamics, and to acquire the main techniques, particu-
larly in the fields of optimization and optimal control. After reading this book, all you want
to do is take part in this amazing adventure!

Emmanuel Trélat
Sorbonne Université, Paris
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Introduction

Space trajectories is a field at the crossroads of mechanics and mathematics. Its development
can be divided into two periods.

The first period followed the discovery of Kepler’s laws and their demonstration by Newton
who laid the foundations of classical mechanics. During this period spanning the 18th and
the 19th centuries, research focused on celestial mechanics with the goal of predicting the
motion of planets as precisely as possible.

The second period began with the invention of rocket propulsion at the beginning of
the 20th century. The possibility of sending maneuvering vehicles in space stimulated the
development of optimal control theory, which was originally mainly oriented toward space
applications.

This book is aimed at students, researchers, and engineers interested in space applications
and who wish to gain an overview of the field. It recalls the essential concepts of orbital
mechanics and also presents advanced space applications involving trajectory optimization.

The content is divided into three parts, each of which composed of five chapters.

● The first part deals with free orbital motion with the following topics: Keplerian motion,
perturbed motion, three-body problem, orbit determination, and collision risks in orbit.

● The second part deals with controlled orbital motion with the following topics: impulsive
transfer, orbital rendezvous, thrust level optimization, low-thrust transfer, and space debris
cleaning.

● The third part deals with ascent and reentry with the following topics: launch into
orbit, launcher staging, analytical solutions in flat Earth, interplanetary mission, and
atmospheric reentry.

These topics have been selected for their practical relevance to space applications. Each
chapter covers the necessary concepts, so that it can be read independently of the rest of
the book.
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Part I

Free Orbital Motion
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1

Two-Body Problem

1.1 Introduction

The two-body problem is the fundamental model of orbital mechanics. It describes the
motion of two bodies in pure gravitational interaction to the exclusion of all other forces. In
the restricted two-body problem, the mass of one body is assumed to be negligible, while
the other is considered as point-like. This modeling is appropriate to the motion of artificial
satellites around a celestial body.

The two-body problem has an analytical solution called Keplerian motion. The trajecto-
ries are conics, satisfying properties of conservation of energy and angular momentum. The
conic nature (circle, ellipse, parabola, or hyperbola) depends only on the initial conditions
of position and velocity and the motion time law is determined by Kepler’s equation. The
Keplerian orbit of a satellite around the attracting body is represented geometrically by its
orbital parameters, which are analytically related to the position and velocity.

The first section presents the dynamic model and derives the main prime integrals of the
Keplerian motion, namely those of angular momentum, eccentricity vector, and energy. The
conic shape is then determined from the initial conditions of position and velocity.

The second section deals with the time law of the motion. Position and time are linked by
Kepler’s equation, which is transcendental. Kepler’s equation takes different forms depend-
ing on the conic nature. It can also be expressed in a universal form valid for any kind of
orbit. The solution of Kepler’s equation requires a numerical iterative method.

The third section defines the orbital parameters locating the orbit in space and establishes
their relation to position and velocity. The classical orbital parameters have singularities
for circular or equatorial orbits, which motivates the definition of the equinoctial parame-
ters, devoid of such singularities. An overview of Earth’s orbits is finally presented, with a
focus on Earth’s coordinate systems and on specific properties such as geo-synchronism or
sun-synchronism.

1.2 Keplerian Motion

The two-body problem, or Kepler’s problem, concerns the relative motion of two particles
exerting between them the force of gravitational attraction. The resulting dynamics, called
Keplerian motion, is presented in this section.

Space Trajectories: Basic and Advanced Topics, First Edition. Max Cerf.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.



4 1 Two-Body Problem

1.2.1 Dynamic Model

The two-body problem is formulated in a Galilean (or inertial) reference frame.
Both bodies are considered as material points of masses m1 and m2 and positions r⃗1 and r⃗2,

respectively. The gravitational force exerted by the second body on the first body is

F⃗2→1 = G
m1m2

r3 r⃗ (1.1)

The constant G is the universal gravitational constant and r⃗ = r⃗2 − r⃗1 denotes the position
of body 2 relative to body 1. Newton’s third law (action and reaction) implies that body 1
exerts an opposite force on body 2: F⃗1→2 = −F⃗2→1.

Universal Gravitational Constant

The accurate knowledge of the value of G is of considerable importance, both for the com-
putation of space trajectories and for the confirmation of theories such as general relativity.

The first reliable measurement of G was made in 1798 by Henry Cavendish, using a
torsion pendulum. The possibility of on-board experiments carried out by satellites has
greatly improved the accuracy. The reference value adopted in the international system is:
G≈ 6.674 08 • 10−11 m3 kg−1 s−2.

Newton’s second law (also called fundamental relation of dynamics) applied to each body
in the inertial frame yields the two differential equations⎧⎪⎪⎨⎪⎪⎩

d2r⃗1

dt2 =
F⃗2→1

m1
= G

m2

r3 r⃗

d2r⃗2

dt2 =
F⃗1→2

m2
= −G

m1

r3 r⃗

(1.2)

After subtracting the first equality from the second, we obtain the differential equation for
the motion of body 2 relative to body 1.

d2r⃗
dt2 = −

μ
r3 r⃗ (1.3)

where μ = G(m1 +m2) is called the gravitational constant of the two-body system.
In the restricted two-body problem, the mass of body 2 is negligible compared with that of

body 1 (main attracting body). The constant μ =Gm1 is then called the gravitational constant
of the main attracting body. This model is well suited to practical applications studying the
motion of artificial satellites.

The values of μ for Earth, Moon, and Sun are (in m3/s2):

μEarth ≈ 3.986 005 ⋅ 1014, μMoon ≈ 4.902 835 ⋅ 1012, μSun ≈ 1.327 23 ⋅ 1020

The solution to the two-body problem is called Keplerian motion, after Johann Kepler,
who first set out the laws of motion.

Kepler’s Laws

The laws of planetary motion around the Sun were set out empirically by Johann Kepler
(1571–1630) in Astronomia Nova, published in 1609.

The three laws of Kepler are as follows:

● the planets describe ellipses with the Sun as one of their foci;
● the radius vector sweeps equal areas in equal times;
● the square of the period of revolution is proportional to the cube of the semi-major axis.
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Kepler had guessed these three laws from the collection of observations made by the
Danish astronomer Tycho Brahé (1456–1601) on the motion of the planets.

Their demonstration came much later owing to Isaac Newton (1642–1727).
In Philosophiae Naturalis Principia Mathematica, published in 1687, Newton postulated the

laws of motion (inertia, force, and reaction) and the law of gravitation, from which he rig-
orously established the solution to the two-body problem.

These fundamental results form the basis of orbital and celestial mechanics since the
18th century.

1.2.2 Prime Integrals

A prime integral of a dynamic system is a quantity that remains constant over time.
Knowledge of prime integrals helps to delimit the system evolution, even when no analytical
solution exists. The two-body problem admits several prime integrals, such as those of
angular momentum, energy, and eccentricity vector.

1.2.2.1 Angular Momentum
The angular momentum per unit mass is h⃗ = r⃗ ∧ v⃗, where v⃗ = dr⃗

dt
is the velocity of body 2

relative to body 1. Calculating the derivative of h⃗ with the assumption of a central acceleration
given by (1.3) yields

dh⃗
dt

= dr⃗
dt
∧ v⃗ + r⃗ ∧ dv⃗

dt
= v⃗ ∧ v⃗ + r⃗ ∧

(
−
μ
r3 r⃗

)
= 0⃗ (1.4)

The angular momentum vector h⃗ is therefore constant throughout the motion.
If r⃗ and v⃗ are collinear, then h⃗ = 0⃗ and the motion takes place along a straight line. Such a

trajectory is said to be degenerate. Unless otherwise specified, we assume in the sequel that
h⃗ ≠ 0⃗.

As the position and the velocity are constantly perpendicular to h⃗, the motion takes place
in a plane called the orbital plane.

Taking body 1 as origin O and a reference axis Ox in this plane (Figure 1.1):

● the position of body 2 is defined by the polar angle θ and the radius vector r;
● the velocity of body 2 has radial and orthoradial components ṙ and rθ̇ (where ẋ denotes the

time derivative of x).

O

θ
x r·

rθ·

v→r→

h
→

Figure 1.1 Orbital plane.
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The modulus of the angular momentum is

h = ||r⃗ ∧ v⃗|| = r2θ̇ (1.5)

In an infinitesimal time dt, the radius vector sweeps the area dS of the triangle with sides
r⃗ and v⃗dt. This area is

dS = 1
2
||r⃗ ∧ v⃗dt|| = 1

2
hdt (1.6)

The areal velocity (area swept per unit time) is therefore constant, just as the angular
momentum. This establishes Kepler’s second law or law of areas.

1.2.2.2 Energy
The mechanical energy per unit mass noted w is the sum of the kinetic energy v2

2
and the

potential energy −μ
r
, from which the gravitational force − μ

r3 r⃗ derives.

w = v2

2
−
μ
r

(1.7)

Taking the scalar product of each member of (1.3) with v⃗ and using r⃗ ⋅ v⃗ = rṙ (Figure 1.1),
we obtain

dv⃗
dt

⋅ v⃗ = −
μ
r3 r⃗ ⋅ v⃗ = −

μ
r3 rṙ = −μ ṙ

r2 ⇒
d
dt

(
v2

2

)
= d

dt

(μ
r

)
(1.8)

Instantaneous variations in kinetic and potential energy cancel each other out. This state-
ment is in fact true for any force deriving from a potential.

The mechanical energy w = v2

2
− μ

r
is therefore constant throughout the motion.

The accessible domain depends on the energy sign. To escape the main attracting body, the
energy must be zero or positive (kinetic energy≥ potential energy).

In this case, the escape velocity vesc associated with zero energy (w = 0) and the residual
velocity at infinity v∞ (for r→∞) are respectively given by

w = v2

2
−
μ
r
= 0 (for escape) ⇒ vesc =

√
2μ
r

w = v2

2
−
μ
r
=

v2
∞

2
(for r → ∞) ⇒ v∞ =

√
2w (1.9)

1.2.2.3 Eccentricity Vector
The eccentricity vector e⃗ (also called Laplace vector) is defined as:

e⃗ = v⃗ ∧ h⃗
μ

− r⃗
r

(1.10)

To calculate the derivative of e⃗, we observe that the radial unit vector u⃗r =
r⃗
r
, which lies

in the orbital plane, rotates around the fixed axis u⃗h =
h⃗
h

with an angular velocity θ̇ (see
Figure 1.1).

Its derivative is therefore orthoradial and it can be expressed as:

du⃗r

dt
= θ̇ u⃗h ∧ u⃗r (1.11)

Using (1.5) to substitute θ̇, then (1.3) to make v⃗ appear, we obtain

du⃗r

dt
= h

r2 u⃗h ∧ u⃗r = h⃗ ∧ r⃗
r3 = −

1
μ

h⃗ ∧ d2r⃗
dt2 = −

1
μ

h⃗ ∧ dv⃗
dt

(1.12)


