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By the kindness of heaven,

O lovely faced one,

You stand before me,

The darkness of delusion dispelled,
By recollection of that which was lost.

Verse 7.22 of Kalidasa’s Sakuntala,
4th century A.D.



Preface

This is the second of approximately four volumes that the authors plan to
write in their examination of all the claims made by S. Ramanujan in The Lost
Notebook and Other Unpublished Papers. This volume, published by Narosa
in 1988, contains the “Lost Notebook,” which was discovered by the first
author in the spring of 1976 at the library of Trinity College, Cambridge.
Also included in this publication are other partial manuscripts, fragments,
and letters that Ramanujan wrote to G.H. Hardy from nursing homes during
1917-1919. The authors have attempted to organize this disparate material
in chapters. This second volume contains 16 chapters comprising 314 entries,
including some duplications and examples, with chapter totals ranging from
a high of fifty-four entries in Chapter 1 to a low of two entries in Chapter 12.
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Introduction

This volume is the second of approximately four volumes that the authors plan
to write on Ramanujan’s lost notebook. We broadly interpret “lost notebook”
to include all material published with Ramanujan’s original lost notebook by
Narosa in 1988 [244]. Thus, when we write that a certain entry is found in
the lost notebook, it may not actually be located in the original lost notebook
discovered by the first author in the spring of 1976 at Trinity College Library,
Cambridge, but instead may be in a manuscript, fragment, or a letter of
Ramanujan to G.H. Hardy published in [244]. We are attempting to arrange
all this disparate material into chapters for each of the proposed volumes. For
a history and general description of Ramanujan’s lost notebook, readers are
advised to read the introduction to our first book [31].

The Organization of Entries

With the statement of each entry from Ramanujan’s lost notebook, we pro-
vide the page number(s) in the lost notebook on which the entry can be
found. All of Ramanujan’s claims are given the designation “Entry.” Results
in this volume named theorems, corollaries, and lemmas are (unless other-
wise stated) not due to Ramanujan. We emphasize that Ramanujan’s claims
always have page numbers from the lost notebook attached to them. We re-
mark that in Chapter 9, which is devoted to establishing Ramanujan’s values
for an analogue A, of the classical Ramanujan—Weber class invariant G,,, we
have followed a slightly different convention. Indeed, we have listed all of Ra-
manujan’s values for A, in Entry 9.1.1 with the page number indicated. Later,
we establish these values as corollaries of theorems that we prove, and so we
record Ramanujan’s values of A, again, listing them as corollaries with page
numbers in the lost notebook attached to emphasize that these corollaries are
due to Ramanujan.

In view of the subject mentioned in the preceding paragraph, it may be
prudent to make a remark here about Ramanujan’s methods. As many read-

G.E. Andrews, B.C. Berndt, Ramanujan’s Lost Notebook: Part II,
DOI 10.1007/978-0-387-77766-5-1, (© Springer Science+Business Media, LLC 2009



2 Introduction

ers are aware from the work of the authors and others who have attempted
to prove Ramanujan’s theorems, we frequently have few or no clues about
Ramanujan’s methods. Many of the proofs of the values for G,, that are given
in [57] are almost certainly not those found by Ramanujan, for he would have
needed knowledge of certain portions of mathematics that he likely did not
know or that had not been discovered yet. Similar remarks can be made about
our calculations of A,, in Chapter 9. In the last half of the chapter, we employ
ideas that Ramanujan would not have known.

So that readers can more readily find where a certain entry from the lost
notebook is discussed, we place at the conclusion of each volume a Location
Guide indicating where entries can be found in that particular volume. Thus,
for example, if a reader wants to know whether a certain identity on page 1729
of the Narosa edition [244] can be found in a particular volume, she can turn
to this index and determine where in that volume identities on page 1729 are
discussed.

Following the Location Guide, we provide a Provenance indicating the
sources from which we have drawn in preparing significant portions of the
given chapters. We emphasize that in the Provenance we do not list all papers
in which results from a given chapter are established. For example, in Chapter
3, Ramanujan’s famous 111 summation theorem, which is found in more than
one version in the lost notebook, is discussed, but we do not refer to all papers
on the 171 summation formula in the Location Guide, although in Chapter 3
itself, we have attempted to cite all relevant proofs of this celebrated formula.
On the other hand, most chapters contain previously unpublished material.
For example, each of the first four chapters contains previously unpublished
proofs.

This Volume on the Lost Notebook

Two primary themes permeate our second volume on the lost notebook,
namely, g-series and Eisenstein series. The first seven chapters are devoted to
g-series identities from the core of the original lost notebook. These chapters
are followed by three chapters on identities for the classical theta functions or
related functions. The last six chapters feature Eisenstein series, with much
of the material originating in letters to Hardy that Ramanujan wrote from
Fitzroy House and Matlock House during his last two years in England. We
now briefly describe the contents of the sixteen chapters in this volume.
Heine’s transformations have long been central to the theory of basic hy-
pergeometric series. In Chapter 1, we examine several entries from the lost
notebook that have their roots in Heine’s first transformation or generaliza-
tions thereof. The Sears—Thomae transformation is also a staple in the theory
of basic hypergeometric series, and consequences of it form the content of
Chapter 2. In Chapter 3, we consider identities arising from certain bilateral
series identities, in particular the renowned 117 summation of Ramanujan and
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well-known identities due to W.N. Bailey. We have also placed in Chapter 3
some identities dependent upon the quintuple product identity. Watson’s ¢-
analogue of Whipple’s theorem and two additional theorems of Bailey are the
main ingredients for the proofs in Chapter 4 on well-poised series. Bailey’s
lemma is utilized to prove some identities in Chapter 5. Chapter 6, on partial
theta functions, is one of the more difficult chapters in this volume. Chapter
7 contains entries from the lost notebook that are even more difficult to prove
than those in Chapter 6. The entries in this chapter do not fall into any par-
ticular categories and bear further study, because several of them likely have
yet-to-be discovered ramifications.

Theta functions frequently appear in identities in the first seven chapters.
However, in Chapters 8-10, theta functions are the focus. Chapter 8 is devoted
to theta function identities. Chapter 9 focuses on one page in the lost notebook
on values of an analogue of the classical Ramanujan—Weber class invariants.
The identities in Chapter 10 do not fit in any of the previous chapters and
are among the most unusual identities we have seen in Ramanujan’s work.

As remarked above, the last six chapters in this volume feature Eisen-
stein series. Perhaps the most important chapter is Chapter 11, which con-
tains proofs of results sent to Hardy from nursing homes, probably in 1918.
In these letters, Ramanujan offered formulas for the coefficients of certain
quotients of Eisenstein series that are analogous to the Hardy—Ramanujan—
Rademacher series representation for the partition function p(n). The claims
in these letters continue the work found in Hardy and Ramanujan’s last joint
paper [177], [242, pp. 310-321]. Chapter 12 relates technical material on the
number of terms that one needs to take from the aforementioned series in
order to determine these coefficients precisely. In Chapter 13, the focus shifts
to identities for Eisenstein series involving the Dedekind eta function. Chap-
ter 14 gives formulas for certain series associated with the pentagonal number
theorem in terms of Ramanujan’s Eisenstein series P, @), and R. These results
are found on two pages of the lost notebook, and, although not deep, have
recently generated several further papers. Chapter 15 is devoted primarily to
a single page in the lost notebook demonstrating how Ramanujan employed
Eisenstein series to approximate 7. Three series for 1/7 found in Ramanujan’s
epic paper [239], [242, pp. 23-39] are also found on page 370 of [244], and so
it seems appropriate to prove them in this chapter, especially since, perhaps
more so than other authors, we follow Ramanujan’s hint in [239] and use
Eisenstein series to establish these series representations for 1 /7. This volume
concludes with a few miscellaneous results on Eisenstein series in Chapter 16.
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The Heine Transformation

1.1 Introduction

E. Heine [178], [179, pp. 97-125] was the first to generalize Gauss’s hyperge-
ometric series to g-hypergeometric series by defining, for |¢| < 1,

201 (a;b;q,t) = Wt”, (1.1.1)

¢ n(cQ)n

n=0

where |t| < 1 and where, for each nonnegative integer n,

(@)n = (a;9)n == (1 = a)(1 —aq)--- (1 — ag" "), (1.1.2)

with the convention that (a)g = (a;q)o := 1. If an entry and its proof involve
only the base ¢ and no confusion would arise, we use the notation at the left in
(1.1.2) and (1.1.4) below. If more than one base occurs in an entry and/or its
proof, e.g., both ¢ and ¢ appear, then we use the second notation in (1.1.2)
and (1.1.4). Ramanujan’s central theorem is a transformation for this series,
now known as the Heine transformation, namely [179, p. 106, equation (50)],

(¢50)00 ()0

where [, [b] < 1 and where
(@)oo = (a; @)oo = nlingo(a;q)n, lg] < 1. (1.1.4)

His method of proof was surely known to Ramanujan, who recorded an equiv-
alent formulation of (1.1.3) in Entry 6 of Chapter 16 in his second notebook
[243], [54, p. 15]. Furthermore, numerous related identities can be proved using
Heine’s original idea.

In Section 1.2, we prove several basic formulas based on Heine’s method.
In the remainder of the chapter we deduce 53 formulas found in the lost

G.E. Andrews, B.C. Berndt, Ramanujan’s Lost Notebook: Part II,
DOI 10.1007/978-0-387-77766-5-2, (© Springer Science+Business Media, LLC 2009



6 1 The Heine Transformation

notebook. In some instances, we call upon a result not listed in Section 1.2,
but each identity that we prove relies primarily on results in Section 1.2.

In order to keep our proofs to manageable lengths, we invoke certain stan-
dard simplifications (usually without mentioning them explicitly), such as

1

(@) = T (1.1.5)

(a;0)n(—a;q)n = (@ ¢%)n,  0<n<oo, (1.1.6)
o (@9 e e

(a;q)n = ) <n < oo. (1.1.7)

The identity (1.1.5) is a famous theorem of Euler, which we invoke numerous
times in this book. Identity (1.1.7) can be regarded as the definition of (a; q)s,
when n is a negative integer.

1.2 Heine’s Method

In [6], Heine’s method was encapsulated in a fundamental formula containing
ten independent variables and a nontrivial root of unity. As a result, it is an
almost unreadable formula. Consequently, we prove only special cases of this
result here. In light of the fact that many of these results are not easily written
in the notation (1.1.1) of g-hypergeometric series, we record all our results in
terms of infinite series. For further work connected with that of Andrews in
[6], see Z. Cao’s thesis [97] and a paper by W. Chu and W. Zhang [131].

We begin with a slightly generalized version of Heine’s transformation [6],
[7].

Theorem 1.2.1. If h is a positive integer, then, for |t|,|b| < 1,

i aq bq)hmtm:(bq atq OOZ c/bq q")m
0 C q)hm ( ) 7n at q )’H'L
(1.2.1)

Proof. We need the ¢-binomial theorem given by [54, p. 14, Entry 2], [18,
p. 17, Theorem 2.1]

S (Cl,/b; Q)m mo_ (GQQ)OO
Z (@ @)m b= (0;0) o0’ (1.2.2)

where |b] < 1. Since we frequently need two special cases in the sequel, we
state them here. If a = 0 in (1.2.2), then [18, p. 19, equation (2.2.5)]

m=0

oo

b 1
> — S CT (1.2.3)

a CH)E

Letting b — 0 in (1.2.2), we find that [18, p. 19, equation (2.2.6)]
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s m m(m 1)/2

Z o = (4:¢)so- (1.2.4)

=0

Upon two applications of (1.2.2), we see that

h”;q)ootn

i ((a; 0")n (b @) i i

)so x= (a;¢")n (cq
— (¢":4")n(c; )nn ) 2

oo = (0":¢")n (04" @)oo

)oo > (a;qh)n n S (C/b’q)m m _hmn
e 2 g 2 (q;q>m_” 4

m=0

(

(

(

(

7(b, )oo C/qum aq

e 2 @ 2 g,
(b;q)

(c;q)

(

m=0

oo i (c/ b; q)m - (atq’””, qh)
= (@m0

b: @)oo (at; ¢") oo (c/b
Q> tqh Z /Q> q")m

math)

which is (1.2.1). O

Heine’s transformation is the case h = 1 of Theorem 1.2.1, and Theorem
Aj of [6] is the case h = 2. The complete result appears in [7, Lemma 1].

The next result is more intricate, but it is based again on Heine’s idea; it
is Theorem A; of [6].

Theorem 1.2.2. For [t|,|b] < 1,

i (@:0")n (b D _ (big at,q > Z (e/b; @)an(t; 4°)n 20 (1.2.5)

— (% ¢)n( ) (cq (¢:9)2n(at; ¢*)n

(b q atqv oo Z C/b q 2n+1 tq,q )nb2n+1
(¢;9)o0(tg; g2 @)2n+1(atq; ¢*)n

Proof. Using (1.2.2) twice, we find that

i (03 ¢*)n (b D _ (b; q)oo i (4:¢%)n (4" D)oo

(% ¢*)n(c;@)n (¢ @) = (6%50%)n (04" @)oo
- (C» )oo Z mz::O @ ¢
_ ) ¢ (a;qg)n n ) X (/0 D2m 5 0m 2mn
N (C;q)oo,;(q2;q2)nt {mz_:o @ Dm

L Z (¢/b;q)am11 b2m+1q(2m+l)n}

(Q;Q)2m+1
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baQooi C/qum 2 - (a;qz)n 2
bmz—(tq m)n
m=

(¢;9) o0 2m (qz;qz)n

C, oo 2m+1

b, o0 Z C/b q 2mt1 g om1 Z (a; q 2’m+1)n

_ (b

(5

300 i (C/b7 q)2m b2m (atq 54 )oo

oo 5=t (@3 9)2m (te*™; ¢%) o

S e

Qoo = (€/5;D)2mt1 ,9mi1 (@tq? ¢ oo
bm
) 2

@)oo S (6 @)2m+1 (tg*™ 5 ¢%) oo

(
i
7(b;q)oo(atq . (c/b;@)2m (6% m , 2m
B (C;Q)oo Z qQ2matQ) b

(b; @)oo (alq; ¢*) oo Z (¢/b; Q)am+1(tq; q )mb2m+1
(¢;9)o0(tq; ¢%) (@ @)2m+1(atq; ¢%)m

O

In addition to Theorems 1.2.1 and 1.2.2, we require two corollaries of
Theorem 1.2.1. The first is also given in [7, equation (I5)].

Corollary 1.2.1. For |t| < 1,

o0

b q 2n n __ tb q 00 n
Z 12 Z tb o t (1.2.6)

n*O

Proof. By (1.2.1) with h =2, a = ¢ = 0, and ¢ replaced by ¢, we see that

i ((bQ;.Q)an on — _(Bi0)eo i (tg;. @)y

= (0% ¢%)n (t%:0%)o0 2= (:0)n

) = D (=)0,
- (tQ;q2)oonz;) (q;q)n ’

(b: @)oo (tig tb D)oo "
= t
(1% ¢%)oo Z tb Dn
by (1.2.1) with ¢ = b and then h = 1, a = —t, b = ¢, and ¢ = 0. Upon
simplification above, we deduce (1.2.6). O

The next result can be found in [7, equation (I6)].

Corollary 1.2.2. For |b| < 1,

(6% ,,  (btg;q? (t: ¢
b = b, 1.2.7
2 (@5 Q)n (ba; ¢2) Z (42%:4®)n( btq 4*)n (1-2.7)
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Proof. By (1.2.1) with h = 2 and a = ¢ = 0, we see that

(0 D)oo ~= t6)n 0 = (Bi@)2n
t:¢%) oo 7;) (45 @)n =2 @)’

n=0

_ i (043 4*)n (b %) 1
= (@)

(b5 ¢%) o btq, )oo L q
— b,
(t:q Z qg,q In btq, D

where we applied (1.2.1) with ¢ replaced by ¢?, h = 1, a = bg, and ¢ = 0.
Upon simplification, we complete the proof. O

Our next result comes from [9, Theorem 7].
Corollary 1.2.3. For |t| <1,

i ((a§q)n(b;q22n g (088%)oo (0 6o Z (@ q n (b3 ¢%)n (ta)".

< (¢; )n(abl; ¢*)n (t54%)oo abt ;q%) In( bt @*)n
(1.2.8)

Proof. In (1.2.1), set h = 2, interchange ¢ with b, replace a by at, and then
replace ¢ by at. Upon simplification, we find that

OO . . q2
Z (G,Q)n(b,q gn - (at (1 oo Z at q t q 2n H
= (q;q)n(abt;q )n (@)oo abt )

a't Q)Qn

(at; @)oo (5 4%) oo tq tqQ)
— bn
abtq Z

T (59)o n(atq; ¢?)n
_ (at9)oo(b1%) (tq~q btq o §0 @b
= {6:0) o (abl: ¢2) o (atg:47) Z )

where we invoked (1.2.1) with A = 1, ¢ replaced by ¢?, and the variables a,
b, ¢, and t replaced by t, tq, atq, and b, respectively. Upon simplifying above,
we deduce (1.2.8) to complete the proof. O

We also require the direct iteration of (1.2.1) with h =1 [9, Theorem 8§].
This is often called the second Heine transformation.

Corollary 1.2.4. For |t|,|c/b] < 1,

Z (a)n(b)ntn _ (¢/b) oo (bt) oo Z (abt/c)n(b)n (C>n (1.2.9)

(@)n(C)n (€)oo (t) oo "0 (@)n(bt)n b
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Proof. By two applications of Theorem 1.2.1 with h = 1, the second with a,
b, ¢, and t replaced by t, ¢/b, at, and b, respectively, we find that

o0

@)n(0)n (D)oo at = c/b
DI r A o o DY P
_ (b)oo ( ) (c / (bt) oo (abt/c)n(b)y [
B (€)oo (t)oo (at)w(b)oo nzzo (@)n(bt)n (b> '
which is the desired result. O

Finally, we need one more iteration of (1.2.1) with h =1 [18, p. 39, equa-
tion (3.3.13)]. This is often called the g-analogue of Euler’s transformation.

Corollary 1.2.5. For |t], |abt/c| < 1,

S (a)n(b)n n __ (&bt/c)oo > (C/a)n<0/b)n th n
,;)(Q)n(c)nt (e T;) (@)n(C)n (c> . (1.2.10)

n

Proof. Apply (1.2.1) with h = 1 and a, b, ¢, and ¢ replaced by b, abt/c, bt,
and ¢/b, respectively. Consequently,

L (abt/)n(b)n 7\ abt/c) oo (€)oo In( nabn
> o () =G Z G () - aa

n=0 o0

Substituting the right-hand side of (1.2.11) for the sum on the right-hand side
of (1.2.9) and simplifying yields (1.2.10). O

1.3 Ramanujan’s Proof of the g-Gauss Summation
Theorem

On pages 268-269 in his lost notebook, Ramanujan sketches his proof of the
¢-Gauss summation theorem, normally given in the form

(@) b n o (c/a)oo(c/b)oo
g (ab) = O (c/(@b))n (1.3.1)

This theorem was first discovered in 1847 by Heine [178], whose proof, which
is the most frequently encountered proof in the literature, is based on Heine’s
transformation, Theorem 1.2.1, with & = 1. This proof can be found in the
texts of Andrews [18, p. 20, Corollary 2.4], Andrews, R. Askey, and R. Roy
[30, p. 522], and G. Gasper and M. Rahman [151, p. 10]. A second proof
employs the g-analogue of Saalschiitz’s theorem and can be read in the texts
of W.N. Bailey [44, p. 68] and L.J. Slater [263, p. 97]. Ramanujan’s proof
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is different from these two proofs and was first published in full in a paper
by Berndt and A.J. Yee [79]. Ramanujan’s proof encompasses Lemma 1.3.1,
Lemma 1.3.2, and Entry 1.3.1 below. After giving Ramanujan’s proof, we
prove a corollary of (1.3.1), which is found on page 370 in Ramanujan’s lost
notebook.

Before providing Ramanujan’s argument, we derive the g-analogue of the
Chu—Vandermonde theorem and record a special case that will be used in
Chapter 6. If we set b = ¢V, where N is a nonnegative integer, in (1.3.1)
and simplify, we find that

(c/a)n

()N

261(a, ¢ N5 ¢¢,¢4™ Ja) = : (1.3.2)
which is the g-analogue of the Chu—Vandermonde theorem. If we reverse the
order of summation on the left-hand side of (1.3.2), we deduce an alternative
form of the g-Chu—Vandermonde theorem, namely,

_ c/a)nN

2¢1(a,qV5¢q,9) = Ui)aN (1.3.3)
()

Setting @ = ¢™ and ¢ = ¢ MV, where M is a nonnegative integer, in

(1.3.3) yields

-N -M -N
— — —M— q N q Mm\q N _
261(q M, N;q M N;q’q)i ( ) MN:( ) ( ) MN

a (q_M_N)Nq (M=N)pan
(q M( ) —M(M+1)/2—N(N+1)/2

)
(@) o vg™ (MAN)MAN+1) /2 I
)

(CIM()

(Q)M+N ’

(1.3.4)

In this chapter, we are providing analytic proofs of many of Ramanujan’s
theorems on basic hypergeometric series. Another approach uses combinato-
rial arguments. In [78], Berndt and Yee provided partition-theoretic proofs of
several identities in the lost notebook arising from the Rogers—Fine identity;
a few of these proofs were reproduced in [31, Chapter 12]. In [79], the same
authors gave a combinatorial proof of the ¢-Gauss summation theorem. Other
combinatorial proofs of this theorem based on overpartitions have been given
by S. Corteel and J. Lovejoy [144], Corteel [143], and Yee [285].

Lemma 1.3.1. If n is any nonnegative integer, then
n n+1—k)

a). — _ele k o(k=1)/2

Lemma 1.3.1 is a restatement of the g-binomial theorem (1.2.2) and can
be found in [54, p. 24, Lemma 12.1] or [18, p. 36, Theorem 3.3]. We now
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use Lemma 1.3.1 to establish Lemma 1.3.2 below along the lines indicated
by Ramanujan. Alternatively, Lemma 1.3.2 can be deduced from [151, p. 11,
equation (1.5.3)] by setting ¢ = 0 and replacing ¢ by 1/q there.

Lemma 1.3.2. If ¢ # 0 and n is any nonnegative integer, then

n

ZC 1/C @) (1.3.6)

J

j=0

Proof. Denote the right side of (1.3.6) by g(c) and apply (1.3.5) with a = 1/¢
and n = j in the definition of g(c) to find that

9=3 30

o s (@) (@)

+1—k)k(qn+1—

)i g0 2 00—k Za’“

The coefficient of ¢",0 < r < n, above is

ap = g(—l)k(qﬁl)kq()q;:( ; ) LR ghE=D/2, (137)
k=0 '

and
(qn+1fr7k) n+1frfk) (

k qn+1fr)

r+k = (q
Using these last two equalities in (1.3.7), we find that

re.

a, = (@' 77), n_r(_l)k ("M k(k—1)/2
(Q)r k—0 (Q)k
_ (q”*l”‘)r(l) L ifr=mn,
(o) "7 010, otherwise,
by (1.3.5). This therefore completes our proof of Lemma 1.3.2. O

Entry 1.3.1 (pp. 268269, ¢-Gauss Summation Theorem). If |abc| < 1
and be # 0, then

(ac) oo )oo )n(
= be)™. 1.3.8
(abe) oo ab Z Y ( (a °) ( )

In Entry 4 of Chapter 16 in his second notebook [243], [54, p. 14], Ra-
manujan states the ¢-Gauss summation theorem in precisely the same form
as that given in (1.3.8).
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Proof. We rewrite the right side of (1.3.8) in the form

. (ag)oo (1/0);(1/C); , 1 )
> (ab)os (9); (ote) e

and examine the coefficient of @™, n > 0, on each side of (1.3.8). From (1.2.2),
with b replaced by ab and a replaced by ag?, we find that

((c;qu))oo -3 (Q(Jq/) i)k (ab)*. (1.3.10)
o0 k=0

Jj=0

The coefficient of @™~/ in (1.3.10) is

(@ /O)nj
(q)n—j b ’

and so the coefficient of a™ in (1.3.9) equals

S AU s g

= (@) (@D)n—j
(1/b)nb"™ <=~ I(1/0)i(q" ), (1/b),b"
_ - ", (1.3.11
T Dy @, ¢ A
by Lemma 1.3.2. But by (1.2.2), with b replaced by abc and a replaced by ac,
(ac)o S (1/b)n
= abe)”. 1.3.12
b~ 2= (g ) (1:312)

So, the coefficient of a™ in (1.3.12) is precisely that on the right side of (1.3.11).
Hence, (1.3.8) immediately follows, since the coefficients of a™, n > 0, on both
sides of (1.3.8) are equal. The proof of Entry 1.3.1 is therefore complete. O

Entry 1.3.2 (p. 370). For any complex numbers a and b,
(_aq)oo B i (_b/a)nanqn(n+1)/2

= 1.3.13
b 2= (@nlba)n (1:3.13)
Proof. In (1.3.8), replace a by bq, ¢ by —a/b, and b by ¢ to find that

(@)oo (—aqt)oe (@D)n(bq)n

If we let t — 0 in (1.3.14), we immediately arrive at (1.3.13) to complete the
proof. a

n=0

A combinatorial proof of Entry 1.3.2 in the case b = 1 has been given by
S. Corteel and J. Lovejoy [145], but it can easily be extended to give a proof
of Entry 1.3.2 in full generality. Another combinatorial proof can be found in
a paper by Berndt, B. Kim, and A.J. Yee [73].
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1.4 Corollaries of (1.2.1) and (1.2.5)

Entry 1.4.1 (p. 3). For 0 < |aq|,|k| <1,

aq: ca: g > 2. .2 _ a:

(—bq;q)oo(qu;qQ)oon — (@ *)n+1(G @)n

_ Z cq/k q n(ag; @)2n Eg2n. (1.4.1)
bq7 )2n+1

Proof. In (1.2.1), set h = 2 and t = kq?, and replace ¢ by —bq?, a by cq/k,
and b by ag. The resulting identity is equivalent to (1.4.1). O

We note that no generality has been lost by the substitutions above; so
Ramanujan had (1.2.1) in full generality for h = 2. Padmavathamma [225]
has also given a proof of (1.4.1).

Entry 1.4.2 (p. 3). For |bg| < 1,

(4:0%)00(00: 4o Y (q(;?z(z)fiq% "

n=0

= (—bq; q)oo i qun.

n=0 (=bg; @)2n+1

Proof. In (1.2.1), set h =2, b= q, and t = ¢, and replace a by aq and ¢ by
—bg?. The result then reduces to the identity above upon simplification. O

Entry 1.4.3 (p. 12). For |ag|, |b| < 1,

i a"q" 1 i (—1)" (ag; g)2nb"g"™
(@G D)n (b %) (ag;9)0e (04 ¢*)oc = (4% ¢°)n

Proof. In (1.2.1), set h = 2, ¢ = 0, and ¢t = 7, and replace a by bg/T and b
by aq. Then let 7 — 0. The result easily simplifies to the identity above. O

Entry 1.4.4 (p. 12). For |a|,|b] < 1,

oo n _2n oo

3 a"q _ Z " (ag? ,q 2)nb"
2 42)n(bg; @)2n 2 bq 7)o (¢ Q)n

— (a*q (ag®: ¢?) —

qn(n+1)/2

Proof. In (1.2.1), set h = 2 and a = 0, let b — 0, and then replace t by ag?
and ¢ by bq. a

The previous two entries were also established by Padmavathamma [225].
The next result is a corrected version of Ramanujan’s claim.
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Entry 1.4.5 (p. 15, corrected). For any complex number a,

oo oo n
—aq; Q)n(—q;9)nq 4 Q) (—aq; q T4
;( )n( )n ( Z —ag; q 2n+1

Proof. In (1.2.1),set h =2,a=0,b=q, c = —ag?, and t = ¢>. Simplification
yields Ramanujan’s assertion. O

The next two entries specialize to instances of identities for fifth-order
mock theta functions, as we shall see in our fourth volume on the lost notebook
[33]. The first is a corrected version of Ramanujan’s claim.

Entry 1.4.6 (p. 16, corrected). For any complex number a,

(—ag; @)oo = (ag; Q) g™
(@) = (¢% q)

a22

Z 1)) ™ ai (a*¢*;q
—~ (g% q")n —~ (

Proof. The proof of this result is rather more intricate than the proofs of the
previous entries in this section. In (1.2.5), replace ¢ by —¢/a and let a — oo
to deduce that

= (biq)ng” _ (s q c/b o on
2 (@ ¢®)n(c@)n Z ’

vt )oo (=@ ¢*)n

2)n71(—q)"(”+1)/2
—4;—@)n-1

(b§ Q)oo 7(] Z C/b 2n+1 p2ntl

+
(¢ 9) o0 — (¢; @)2nt+1(—¢% )

Now set ¢ = 0 and b = aq. If we multiply both sides of the resulting identity
by (—ag; q)oc/(—¢; @)oc, we arrive at

(—aq; @)oo = (ag; ) g™ _aqqooz a?" g
(= Doe = (@%¢%)n (¢ @)2n (=4 ¢*)n
((12(]2;(] )oo el a2n+1q2n+1
(0% 0 = (¢ D2n+1(—0%¢*)n
n=0

Next, in (1.2.1) with h = 2, replace ¢ by ¢2, set a = ¢?/t, b = a®¢?, and
¢ =0, and let t — 0. Noting that (—¢?;¢%)ec = 1/(¢%;¢*)se, we deduce that

2

e -1 a 22n2n
lez( )(4q 4")2nq

T ’(]’4)n (1.4.3)
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Finally, in (1.2.1), set h =2, a = 0, and ¢ = —¢?, and let b — 0. Then set
t = a?q? and multiply both sides of the resulting equality by 1/(1 + ¢). We
therefore find that

> 2n 2n 1

Z = . 242, ¢2) Z(aq;q?n

G D2nt1 (D0 (07¢%¢%)s0 = (4 @)n

qn(n+3)/2

Upon multiplying both sides of this last identity by aq(—¢; ¢)eo(a?¢%; ¢%) oo
and noting that (—¢;q)ec = 1/(¢;¢*)s0, We obtain, after replacing ¢ by —¢
and replacing n by n — 1 on the right-hand side,

:_az 0 (-

(=g —q)n 1

)n(n+1)/2
(1.4.4)

If we substitute (1.4.3) and (1.4.4) into (1.4.2), we obtain our desired
identity to complete the proof. a

Entry 1.4.7 (p. 16). If a is any complex number, then

2. .2\ (_ \n(n+1)/2
anOoZ aqq 10°)n(—q)
n=0

(=¢:—)n

o2n?44n+1

Oo_lna22;2n
+CLZ( )" (6*6%; 4%)2nq

(g% q*)n

Proof. In (1.2.5), let t = —¢?/a and ¢ = 0. After letting a — oo, set b = aq.
Multiplying both sides of the resulting identity by (—aq;¢)eo/(—4; ¢)o0, We
find that

(n+1)
aqqooz aqq q" _
n=0

CL q q [e'e} Z
(a q ;q2)oo i (ag)®"*!

(=% 6®)oc = (@ @)2n11(—03 ¢*)nt1
=: 51+ S2. (1.4.5)

(¢ @)2n(—a% Q)

Now in (1.2.1) with A = 2, set a = 0 and ¢ = —¢, and let b tend to 0. Then
set t = a?¢?. The result, after replacing ¢ by —¢ and simplifying, is given by

i (@®¢% ¢*)n(=g)" D2 (a ¢’ q 0 Z .
= (=@ —@)n (¢ 9)2n(—4% ¢*)n
(1.4.6)
Next, in (1.2.1), set h = 2, replace ¢ by ¢2, and then set b = a?¢?, t = ¢%/a,
and ¢ = 0. After letting a« — oo and substantially simplifying, we find that
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on? +4n+1

GZ "(a?q* q%)ang

(g% ¢*)n
2n+1

; Joc Z = Ss. (1.4.7)

q q 2n+1 —4q;9 )n+1

If we substitute (1.4.7) and (1.4.6) into (1.4.5), we obtain the desired
identity for this entry. O

Entry 1.4.8 (p. 16). For arbitrary complex numbers a and b,

2
n

1 i (ag; @)nb"q

(ag)*"
(0 Q)os = (4%50%)n Jan (=

= (—bg;¢%) oo
( ) ;(q,q bq; %)

+(=b0% *)oe Y GO

(@ @Q)2n+1(—=ba% ¢%)n

n=0

Proof. This entry is a further special case of (1.2.5); replace a by —bq/t, set
c=0and b= agq, and let t — 0. g

In her thesis [225], Padmavathamma also proved Entry 1.4.8. For a com-
binatorial proof of Entry 1.4.8, see the paper by Berndt, Kim, and Yee [73].

The next entry is the first of several identities in this chapter that provide
representations of theta functions or quotients of theta functions by basic
hypergeometric series. We therefore review here Ramanujan’s notations for
theta functions and some basic facts about theta functions.

Recall that the Jacobi triple product identity [18, p. 21, Theorem 2.8], [54,
p. 35, Entry 19] is given, for |ab| < 1, by

f(a,b) Z a™ M HD/2pn (=2 — (s b oo (—b; ab)so (ab; ab)oo.  (1.4.8)

n—=—oo

Deducible from (1.4.8) are the product representations of the classical theta
functions [18, p. 23, Corollary 2.10], [54, pp. 36-37, Entry 22, equation (22.4)],

p(—a) = f—a,—a) = Y (—1)"q" = ((_q;;;, (1.4.9)
- 3y - n(n+1)/2 _ (q27q2)oo

b(g) == f(a:q”) ;::Oq I (1.4.10)

f=q) = f(—q,—*) = > (-1)"¢"®" "V = (g:¢)oc, (1.4.11)

where we have employed the notation used by Ramanujan throughout his
notebooks. The last equality in (1.4.11) is known as Euler’s pentagonal number
theorem. We also need the elementary result [54, p. 34, Entry 18(iii)]
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f(=1,a) =0, (1.4.12)

for any complex number @ with |a| < 1. Later, we need the fundamental
property [54, p. 34]: For |ab] < 1 and each integer n,

fla,b) = a™ D 2p(=D/2 £ (q(ab)™, b(ab) ") . (1.4.13)
Entry 1.4.9 (p. 10). Let p(—q) be defined by (1.4.9) above. Then
n(n+1)/2 0 ( 1)nqn(n+1)/2

g _
,;, a ,; (4% ¢%)n

First Proof of Entry 1.4.9. In (1.2.1), weset h=1,a = —q/7,b=1T, c =q,
and t = 7. Letting 7 tend to 0, we find that

(1.4.14)

n(n+1)/ n n(n+1)/

f: g G5 Z . (1.4.15)

'r’L

The desired result follows once we invoke the well-known product representa-
tion for ¢(—gq) in (1.4.9). a

Second Proof of Entry 1.4.9. Our second proof is taken from the paper [73]
by Berndt, Kim, and Yee.

Multiplying both sides of (1.4.15) by (¢)co, We obtain the equivalent iden-
tity

0 qn(n+1)/2 0 n n(n+1)/2

O Z (=" @)oor  (1.4.16)
n=0 n —

since (¢%;¢%)o0 = (=4;9)00(¢; @)oo~ The left side of (1.4.16) is a generating
function for the pair of partitions (), where 7 is a partition into n distinct
parts and v is a partition into distinct parts that are strictly larger than n and
where the exponent of (—1) is the number of parts in v. For a given partition
pair (7, v) generated by the left side of (1.4.16), let k& be the number of parts
in v. Detach n from the each part of v and attach k£ to each part of w. Then
we obtain partition pairs (o, \), such that o is a partition into k distinct parts
and A is a partition into distinct parts that are strictly larger than k, and the
exponent of (—1) is the number of parts in 0. These partitions are generated
by the right side of (1.4.16). Since this process is easily reversible, our proof
is complete. a

The series on the left-hand sides of (1.4.14) and (1.4.18) below are the
generating functions for the enumeration of gradual stacks with summits and
stacks with summits, respectively [23]. Another generating function for grad-
ual stacks with summits was found by Watson [279, p. 59], [75, p. 328], who
showed that
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n(n+1) /2 n(2n+1)

i q (1.4.17)

which is implicit in the work of Ramanujan in his lost notebook [244]. An
elegant generalization of the concept of gradual stacks with summits has been
devised by Yee, with her generating function generalizing that on the right-
hand side of (1.4.17) [286, Theorem 5.2]. See Entry 6.3.1 for a significant
generalization of Entry 1.4.10 involving two additional parameters.

Entry 1.4.10 (p. 10).

iq

n=0

oo oo

Z Z g t/2, (1.4.18)

= O(Q) o

Tl

Proof. In (1.2.1),set h=1,t = ¢ =g, and a = 0, and then let b — 0. Entry
1.4.10 follows immediately. O

Entry 1.4.11 (p. 10).

Z (22)712 _ (q; (1 n 22(_1)nqn(n+1)/2> . (1.4.19)

Proof. In (1.2.1),set h =1, a = 0, ¢ = ¢, and t = ¢°. Now let b — 0 to
deduce that

e 2n e n+1
q 1 l—q (n+1)/2
= (1-q) ) (-1)'———q"
,;) (@7 (0% HZ:O l—gq
1 o0 o0
— (q)Q (Z(_l)nqn(7z+l)/2 + Z(_l)n+1q(n+1)(n+2)/2>
o0 n=0 —

- L (HZZ v )
a

Observe that the sum on the right sides in Entries 1.4.10 and 1.4.11 is a
false theta function in the sense of L.J. Rogers. Several other entries in the
lost notebook involve this false theta function; see [31, pp. 227-232] for some
of these entries. In providing a combinatorial proof of Entry 1.4.11, Kim [189)]
was led to a generalization for which he supplied a combinatorial proof.

The following entry has been combinatorially proved by Berndt, Kim, and
Yee [73].

Entry 1.4.12 (p. 10). For|a|,|b] < 1 and any positive integer n,
m(m-+1)/2 e bmqnm(m+1)/2

(=bq"10")o0 Y (q7a) q( b g~ () >

m=0 m=0

(@™ q™)m(—aq; Q)nm
(1.4.20)
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Proof. In (1.2.1), set h =n and let b tend to 0. Then set ¢ = —bg™/a and let
a tend to co. Finally, replace ¢ by —agq. a

Entry 1.4.13 (p. 11). For |a| < 1,

i (aq)n B 1 e (aq;qQ)nb2nq2n2+n
= (@ Pnbgq)n (ag;0%) oo (b4: @)oo 2= (43 0)2n
o0 2
B 1 Z (aq2;q2)nb2n+1q2n +3n+1
(0% ¢%) o (043 @)oo 2= (¢; @)2n+1
Proof. In (1.2.5), let @ = 0 and let b — 0. Then replace ¢ by aq and ¢ by
bq. O

In her doctoral dissertation [225], Padmavathamma gave another proof of
Entry 1.4.13, and gave proofs of the following two entries as well.

Entry 1.4.14 (p. 11). For any complex number a,

o o0 2
(an;qQ)nqn(nJrl)ﬂ 44 (an;q4)nq4”
(¢*; ") = (ag*; q") e
‘X’; (¢:9)n 007;) (4% 6)2n

> 4. 4
Z aq-;q° )nq
+ (aq2;q4)oo ( )

(@%54%)2n+1

An?4+4n+1

n=0

Proof. In Entry 1.4.13, replace ¢ by ¢* and set b = —1/q. This yields

i anq2n - 1 i (an;q4)nq4n
(@06 (060N eo(—0: %) 7= (6736%)2n

an’+4n+1

1 = (ag*; q*)ng
2 Z 2 2

+
(a0*:10Y) oo (=0 0%)oe 2 (4%50%)2n41

Consequently, in order to prove the desired result, we must show that

o n . 2n
aq
(a4%; 4" oo (=45 4 oo (aq™; ¢*) oo
;0 (@*¢")n (=4 @*)n
0 2. .2 n(n+1)/2
2. 4 (ag* ¢*)ng
=059 ) , 1.4.21
(50 ,LZ::O (¢ Dn ( )
and this follows from (1.2.1). More precisely, let h = 2, ¢ = —¢, and a = 0,
and let b tend to 0. Then put ¢ = ag? and simplify. a
Entry 1.4.15 (p. 11). If a is any complex number, then
o (n+1)(n+2)/2 o 2. 4\ 4n’4dntl
aq q nq aq=;4q" )nq
(@*q )0 Y = (ag*q" ) Y ( )

2. 42
(4 0)n — (4% ¢%)2n

(o]

(ag*; q
(ag* ¢")oc D
n=0

n=0
4n +8n+4

2n+1



