

Mastering
OpenTelemetry™ and
Observability

Enhancing Application and
Infrastructure Performance and
Avoiding Outages

Steve Flanders

Copyright © 2025 by John Wiley & Sons, Inc. All rights, including for text and data mining, AI training, and similar technologies, are
reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada and the United Kingdom.

ISBNs: 9781394253128 (paperback), 9781394253142 (ePDF), 9781394253135 (ePub)

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copy-
right Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per‐ copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750‐ 8400, fax (978) 750‐ 4470, or on the web at www
.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,
111 River Street, Hoboken, NJ 07030, (201) 748‐ 6011, fax (201) 748‐ 6008, or online at www.wiley.com/go/permission.

Trademarks: WILEY and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the
United States and other countries, and may not be used without written permission. OpenTelemetry is a trademark of The Linux Foundation.
All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor
mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no
representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied
warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or writ-
ten sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional
where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this
work was written and when it is read. Neither the publisher nor author shall be liable for any loss of profit or any other commercial dam-
ages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services, please contact our Customer Care Department within the United States at (800)
762‐ 2974, outside the United States at (317) 572‐ 3993. For product technical support, you can find answers to frequently asked questions or
reach us via live chat at https://support.wiley.com.

If you believe you’ve found a mistake in this book, please bring it to our attention by emailing our Reader Support team at wileysupport@
wiley.com with the subject line “Possible Book Errata Submission.”

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic
formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Control Number: 2024944897

Cover image: © CSA Images/Getty Images
Cover design: Wiley

http://www.copyright.com
http://www.copyright.com
http://www.wiley.com/go/permission
https://support.wiley.com
mailto:wileysupport@wiley.com
mailto:wileysupport@wiley.com
http://www.wiley.com

To my kids, Haven and Addison Flanders— May you
always have the courage to chase your dreams with
unwavering determination. Never let anyone dim
the light of your aspirations or tell you what you can
or cannot achieve. Believe in yourself, follow your
heart, and remember that your potential is limitless.
Your dreams are your own; only you can bring them
to life.

Steve Flanders is a founding member of the OpenCensus and OpenTelemetry projects and has
over a decade of hands‐ on experience in the monitoring and observability space. As a Senior
Director of Engineering at Splunk, a Cisco company, he oversees the Splunk Observability Cloud
Platform, including the metrics engine and analytics capabilities. Steve also spearheads Splunk’s
OpenTelemetry contributions. He was previously instrumental in building what is now the
Splunk APM product at Omnition and the Log Insight product at VMware. A sought‐ after
speaker and blogger, Steve frequently shares his insights at prominent conferences like KubeCon
and on his blog at https://sflanders.net. He holds an MBA from MIT, underscoring his
blend of technical acumen, strategic vision, and entrepreneurial spirit.

About the Author

https://sflanders.net

Writing this book has been a labor of love, a journey marked by both immense challenges and
profound rewards. The countless hours spent researching, writing, and revising have culminated
in a work that I hope will provide valuable insights and guidance to everyone, regardless of
background or experience. It was not easy to distill a complex topic like observability, but it was
worth the effort. This book would not have been possible without the support and encourage-
ment of many remarkable individuals and teams.

First and foremost, I would like to express my deepest gratitude to my partner, Lily Wang, for
her unwavering support and understanding during the long hours and late nights dedicated to
this project. Your patience and encouragement kept me going even when the task seemed
daunting.

I am profoundly thankful to my colleagues, collaborators, and friends whose expertise and
insights have greatly enriched this book. Your willingness to share your knowledge and feedback
while engaging in stimulating discussions has been invaluable. Thank you, Fabrizio Ferri‐
Benedetti, for always providing timely feedback and suggestions. It is because of you the idea of
Riley was created! Thank you, Jason Plumb, Pablo Collins, and Antoine Toulme, for reading early
drafts and providing valuable initial feedback. Thank you, Alpesh Sheth, for supporting me in
writing this book.

I also want to express my sincere gratitude to the technical reviewers who provided meticu-
lous and constructive feedback on short notice. Your attention to detail and commitment to
accuracy have been instrumental in shaping the contents of this book. Thank you, Tigran
Najaryan and Morgan McLean, for providing an extensive review of the material on short notice.
Thank you, Tyler Yahn, for providing a thorough review both technically and grammatically
across multiple chapters, especially Chapters 1, 2, and 4. Thank you, Dmitrii Anoshin and Siim
Kallas, for your thorough technical review of Chapters 5 and 6, respectively.

To the illustrator, publishers, and editorial team, thank you for your guidance and support
throughout the publication process. Your professionalism and dedication ensured that this book
reached its highest potential. Special thanks to Kenyon Brown for the opportunity to write this
book, Tom Dinse for all the editing and formatting suggestions, and Navin Vijayakumar for
keeping me on track. Also, a special thanks to Emily Griffin for bringing Riley, Jupiterian, and
Watchwhale to life through relatable illustrations.

To the OpenTelemetry community, thank you for your innovative work and commitment to
excellence, which continues to inspire and push the boundaries of what is possible. Being the
second‐ most active project in the Cloud Native Computing Foundation is an amazing accom-
plishment and speaks to the need for an open standard and framework for telemetry data. To all
the previous, current, and future authors, bloggers, and speakers on the topic of OpenTelemetry
and observability, thank you for creating relevant information and sharing your knowledge. For
anyone considering contributing to the project or sharing your experience, please do! The
OpenTelemetry community is friendly and welcoming. We need your help to make the project
even better. In the spirit of giving back, you will find a list of issues and pull requests (PRs) I
submitted when writing this book in the appendix of this book.

Finally, I want to acknowledge all the readers and practitioners in the field of observability.
Your passion for continuous improvement and innovation drives the evolution of this domain. It
is my hope that this book serves as a valuable resource in your ongoing journey to master
OpenTelemetry and achieve excellence in observability.

Thank you all for being part of this rewarding journey.

Acknowledgments

Contents
Foreword .xiii

Introduction .xiv
The Mastering Series . xvi

Chapter 1 • What Is Observability? .1
Definition . 1
Background . 4

Cloud Native Era . 4
Monitoring Compared to Observability . 5

Metadata . 8
Dimensionality . 9
Cardinality . 9
Semantic Conventions . 10
Data Sensitivity . 10

Signals . 10
Metrics . 10
Logs . 13
Traces . 14
Other Signals . 20

Collecting Signals . 20
Instrumentation . 21
Push Versus Pull Collection . 22
Data Collection . 23
Sampling Signals . 26

Observability . 27
Platforms . 27
Application Performance Monitoring . 28

The Bottom Line . 28
Notes . 30

Chapter 2 • Introducing OpenTelemetry! . 31
Background . 31

Observability Pain Points . 31
The Rise of Open Source Software . 34
Introducing OpenTelemetry . 35

OpenTelemetry Components . 37
OpenTelemetry Concepts . 48

Roadmap . 50
The Bottom Line . 50
Notes . 51

Contents | vII

Chapter 3 • Getting Started with the Astronomy Shop 53
Background . 53

Architecture . 54
Prerequisites . 54

Getting Started . 55
Accessing the Astronomy Shop . 57
Accessing Telemetry Data . 57

Beyond the Basics . 58
Configuring Load Generation . 58
Configuring Feature Flags . 59
Configuring Tests Built from Traces . 60
Configuring the OTel Collector . 60
Configuring OTel Instrumentation . 62
Troubleshooting Astronomy Shop . 62

Astronomy Shop Scenarios . 63
Troubleshooting Errors . 63
Troubleshooting Availability . 69
Troubleshooting Performance . 70
Troubleshooting Telemetry . 74

The Bottom Line . 75
Notes . 76

Chapter 4 • Understanding the OpenTelemetry Specification 77
Background . 77
API Specification . 79

API Definition . 80
API Context . 80
API Signals . 81
API Implementation . 82

SDK Specification . 82
SDK Definition . 83
SDK Signals . 83
SDK Implementation . 84

Data Specification . 84
Data Models . 86
Data Protocols . 88
Data Semantic Conventions . 88
Data Compatibility . 89

General Specification . 90
The Bottom Line . 91
Notes . 92

Chapter 5 • Managing the OpenTelemetry Collector 93
Background . 94
Deployment Modes . 95

Agent Mode . 96
Gateway Mode . 98
Reference Architectures . 100

vIII | Contents

The Basics . 101
The Binary . 103
Sizing . 103
Components . 104

Configuration . 106
Receivers and Exporters . 115
Processors . 116
Extensions . 126
Connectors . 127

Observing . 128
Relevant Metrics . 128
Health Check Extension . 131
zPages Extension . 131

Troubleshooting . 134
Out of Memory Crashes . 134
Data Not Being Received or Exported . 134
Performance Issues . 135

Beyond the Basics . 135
Distributions . 135
Securing . 137
Management . 138

The Bottom Line . 140
Notes . 141

Chapter 6 • Leveraging OpenTelemetry Instrumentation 143
Environment Setup . 144
Python Trace Instrumentation . 149

Automatic Instrumentation . 150
Manual Instrumentation . 157
Programmatic Instrumentation . 163
Mixing Automatic and Manual Trace Instrumentation . 166

Python Metrics Instrumentation . 167
Automatic Instrumentation . 168
Manual Instrumentation . 169
Programmatic Instrumentation . 174
Mixing Automatic and Manual Metric Instrumentation . 176

Python Log Instrumentation . 178
Manual Metadata Enrichment . 179
Trace Correlation . 181

Language Considerations . 183
 .NET . 184
Java . 184
Go . 184
Node .js . 185
Deployment Models . 185

Distributions . 185
The Bottom Line . 186
Notes . 187

Contents | Ix

Chapter 7 • Adopting OpenTelemetry . 189
The Basics . 189

Why OTel and Why Now? . 190
Where to Start? . 191

General Process . 192
Data Collection . 193
Instrumentation . 195
Production Readiness . 196
Maturity Framework . 197

Brownfield Deployment . 198
Data Collection . 198
Instrumentation . 200
Dashboards and Alerts . 202

Greenfield Deployment . 204
Data Collection . 204
Instrumentation . 208

Other Considerations . 208
Administration and Maintenance . 208
Environments . 211
Semantic Conventions . 212
The Future . 213

The Bottom Line .213
Notes . 214

Chapter 8 • The Power of Context and Correlation 215
Background . 215
Context . 217

OTel Context . 219
Trace Context . 221
Resource Context . 223
Logic Context . 224

Correlation . 225
Time Correlation . 225
Context Correlation . 226
Trace Correlation . 228
Metric Correlation . 230

The Bottom Line . 230
Notes . 231

Chapter 9 • Choosing an Observability Platform . 233
Primary Considerations . 233

Platform Capabilities . 235
Marketing Versus Reality . 237
Price, Cost, and Value . 238
Observability Fragmentation . 241

Primary Factors . 242
Build, Buy, or Manage . 242

x | Contents

Licensing, Operations, and Deployment . 244
OTel Compatibility and Vendor Lock-In . 244
Stakeholders and Company Culture . 245

Implementation Basics . 246
Administration . 247
Usage . 248
Maturity Framework . 248

The Bottom Line . 250
Notes . 250

Chapter 10 • Observability Antipatterns and Pitfalls 251
Telemetry Data Missteps . 251

Mixing Instrumentation Libraries Scenario . 253
Automatic Instrumentation Scenario . 253
Custom Instrumentation Scenario . 254
Component Configuration Scenario . 255
Performance Overhead Scenario . 255
Resource Allocation Scenario . 256
Security Considerations Scenario . 256
Monitoring and Maintenance Scenario . 257

Observability Platform Missteps . 258
Vendor Lock-in Scenario . 260
Fragmented Tooling Scenario . 260
Tool Fatigue Scenario . 261
Inadequate Scalability Scenario . 261
Data Overload Scenario . 262

Company Culture Implications . 264
Lack of Leadership Support Scenario . 265
Resistance to Change Scenario . 266
Collaboration and Alignment Scenario . 266
Goals and Success Criteria Scenario . 267
Standardization and Consistency Scenario . 268
Incentives and Recognition Scenario . 268
Feedback and Improvement Scenario . 269

Prioritization Framework . 270
The Bottom Line . 272
Notes . 273

Chapter 11 • Observability at Scale . 275
Understanding the Challenges . 275

Volume and Velocity of Telemetry Data . 276
Distributed System Complexity . 278
Observability Platform Complexity . 281
Infrastructure and Resource Constraints . 281

Strategies for Scaling Observability . 282
Elasticity, Elasticity, Elasticity! . 282

Contents | xI

Leverage Cloud Native Technologies . 284
Filter, Sample, and Aggregate . 286
Anomaly Detection and Predictive Analytics . 290
Emerging Technologies and Methodologies . 291

Best Practices for Managing Scale . 292
General Recommendations . 292
Instrumentation and Data Collection . 293
Observability Platform . 293

The Bottom Line . 294
Notes . 295

Chapter 12 • The Future of Observability . 297
Challenges and Opportunities . 297

Cost . 297
Complexity . 299
Compliance . 300
Code . 301

Emerging Trends and Innovations . 302
Artificial Intelligence . 303
Observability as Code . 304
Service Mesh . 305
eBPF . 306

The Future of OpenTelemetry . 307
Stabilization and Expansion . 308
Expanded Signal Support . 308
Unified Query Language . 310
Community-driven Innovation . 310

The Bottom Line . 311
Notes . 311

Appendix A • The Bottom Line . 313
Chapter 1: What Is Observability? . 313
Chapter 2: Introducing OpenTelemetry! . 315
Chapter 3: Getting Started with the Astronomy Shop . 316
Chapter 4: Understanding the OpenTelemetry Specification . 317
Chapter 5: Managing the OpenTelemetry Collector . 318
Chapter 6: Leveraging OpenTelemetry Instrumentation . 320
Chapter 7: Adopting OpenTelemetry . 321
Chapter 8: The Power of Context and Correlation . 323
Chapter 9: Choosing an Observability Platform . 324
Chapter 10: Observability Antipatterns and Pitfalls . 326
Chapter 11: Observability at Scale . 327
Chapter 12: The Future of Observability . 328

xII | Contents

Appendix B • Introduction . 329
Chapter 2: Introducing OpenTelemetry! . 330

OpenTelemetry Concepts > Roadmap . 330
Chapter 3: Getting Started with the Astronomy Shop . 330

Background > Architecture . 330
Chapter 5: Managing the OpenTelemetry Collector . 332

Background . 332
The Basics > Components . 332

Chapter 12: The Future of Observability . 340
Challenges and Opportunities > Code . 340

Notes . 341

Index . 343

Foreword
To build and operate any complex system, whether it be inventory in warehouses, money in
bank accounts, or large computer systems, you need to be able to understand what you have
built and how it is currently operating. The observability tools that we rely on today have a long
history; in one way or another, they have existed since the beginning of the computing industry.
As relatively high‐ scale (for their era) computing services started to come about in the 1980s and
early 1990s, commercial tools that analyzed their performance also became available. As the
dot‐ com boom of the late 1990s and then the proliferation of easily accessible cloud infrastructure
drove more and more firms to build high‐ scale web services, the market and capabilities of what
we now call observability tools increased dramatically.

Throughout this period, one of the biggest challenges that these tools faced was how to get the
right data into them. This is harder than it seems, as early solutions would capture some combi-
nation of logs and metrics, requiring integrations with a handful of operating systems and
known technologies like databases and message queues. Getting visibility into a modern
microservices environment requires distributed traces, application metrics, profiles, and other
types of data that must be captured from every web framework, RPC system, database client,
and so forth, each of which are different for each programming language. Each of these integra-
tions must be maintained to ensure that it does not break when the data source gets updated; this
is extremely expensive for vendors to build and for customers to set up, leading to poor coverage
and for customers to be semipermanently locked in to their vendors.

We created OpenTelemetry to break this logjam. By providing a single set of APIs, agents, and
a protocol, we allowed software developers to both emit and capture distributed traces, metrics,
profiles, and logs easily and with the strong semantic conventions needed to gain valuable
insights from analyzing it. This has fundamentally changed people’s relationships with observ-
ability tools. Thanks to OpenTelemetry, they are more accessible and widely used than ever
before— and of higher quality, as vendors and open source solutions have redirected the effort
that they used to spend on data collection to providing better solutions. Both end users and those
who want to emit data from shared code are no longer locked in to vendor‐ specific interfaces, and
anyone can take control of creating custom telemetry, filtering their data, and sending it wher-
ever they would like. OpenTelemetry now has over 1,200 developers contributing to it every
month, making it one of the largest open source projects in the world— a testament to its utility
and how much it has changed things.

That being said, tools are only as good as one’s ability to properly use them, and
OpenTelemetry is no exception. OpenTelemetry is now an essential part of building and operat-
ing services of any scale, and this book will guide you through the problems that it can be used
to solve (and those that it should not), OpenTelemetry’s various components, best practices and
examples of using OpenTelemetry successfully, and how to apply it to your codebase and
organization to achieve your goals.

— Morgan McLean, Senior Director of Product Management, Splunk

Introduction

Welcome to Mastering OpenTelemetry and Observability, a comprehensive guide designed to help
you navigate the complex and ever- evolving landscape of observability. As organizations
increasingly rely on distributed systems and microservices architectures, the need for robust
observability solutions has never been greater. OpenTelemetry, or OTel as it is called, is an open
source and vendor- agnostic observability framework. It has emerged as a critical technology in
this field, providing standardized tools for collecting and analyzing telemetry data across various
platforms and technologies. In addition, OTel is extensible, with the ability to handle the telem-
etry needs and observability platforms of today and the observability landscape of the future.

This book aims to equip you with the knowledge and skills necessary to harness the full
potential of OTel and build a solid observability foundation. Whether you are a developer,
DevOps engineer, site reliability engineer (SRE), sales engineer, support engineer, information
technology (IT) manager, engineering manager (EM), product manager (PM), C- level executive,
or really any role that involves software or infrastructure, the insights and practical guidance
offered in this book will empower you to observe, diagnose, and optimize your systems
effectively.

You will begin by exploring the fundamental concepts of observability, tracing its evolution
from traditional monitoring practices to modern, holistic approaches. You will gain a deep
understanding of the three pillars of observability— metrics, logs, and traces— and how they
interrelate to provide a comprehensive view of system health and performance. The core of this
book delves into OpenTelemetry, starting with its architecture and components, including the
specification, instrumentation, and the Collector. Next, the OTel demo environment, known as
the Astronomy Shop, is explored so you can experience the power of OTel firsthand. Deep dives
on all the major components, including step- by- step instructions, are provided on how to
instrument your applications and collect, process, and send your telemetry data using OTel. You
will also learn about important topics such as context propagation, distributions, and integrating
OTel with popular observability platforms like Prometheus and Jaeger.

With a solid foundation in observability and OTel, you will move on to adopting and scaling
observability in large and complex environments. From obtaining stakeholder buy-in to handling
high volumes of telemetry data to ensuring performance and reliability, you will discover
practical solutions to common challenges faced by organizations today. This is followed by
considerations for observability platforms, whether existing or new.

INTRODUCTION | xv

Beyond technical guidance, this book also addresses the human and organizational aspects of
observability. This is because building a culture of observability within your team and organiza-
tion is crucial for success. This book discusses strategies for fostering collaboration, continuous
improvement, and proactive incident response, ensuring that observability becomes an integral
part of your operational practices. Finally, this book explores emerging trends and innovations in
observability, including the role of artificial intelligence (AI) and machine learning (ML) in
predictive analytics, the evolution of observability standards, and the potential impact of new
technologies on the industry.

Mastering OpenTelemetry and Observability is more than just a technical manual; it is a journey
into the heart of modern system monitoring and optimization. By the end of this book, you will
have the knowledge and confidence to implement robust observability solutions that enhance
your system’s reliability, performance, and overall user experience.

Before you begin reading, there are a few things to know:

 ◆ This book has been written in a way that tries to make it approachable to the largest audi-
ence possible. Examples of this include:

 ◆ The book does not use contractions to make it easier for non- native English speakers.

 ◆ Every abbreviation used in every chapter is defined first.

 ◆ Relatable examples and metaphors will be found throughout the book.

 ◆ Hyperlinks to additional information are provided throughout the book so you can
learn more about the topics being discussed.

 ◆ A fictitious but likely relatable story is embedded into every chapter. Through it, you will
learn how an enterprise company migrating to the cloud was struggling to achieve ob-
servability. With each challenge experienced, you will see how a determined site reliability
engineer (SRE) helps her company embrace OTel and improve observability.

 ◆ Some terminology is used throughout this book that you should be aware of, including:

 ◆ Back end: The data access layer of an application, which often includes processing and
persistence of data.

 ◆ Framework: A structure on which other things are built. For example, OTel is a
telemetry framework that can be extended to support various use cases.

 ◆ Front end: The presentation layer of an application, which is often a user interface (UI)
or user- facing way to interact with an application.

 ◆ Instrumentation: Software added to an application to generate telemetry data. Various
forms of instrumentation are available, including automatic, which is injected at
runtime, manual, which is added with the existing code, and programmatic, which is a
particular form of manual instrumentation where specific libraries or frameworks
have already been instrumented (also called instrumentation libraries).

 ◆ Platform: An environment in which software is executed. An observability or monitor-
ing platform typically consists of one or more back end and front end components.

xvI | INTRODUCTION

 ◆ Telemetry: Data used to determine the health, performance, and usage of applications.
Examples of telemetry include metrics, logs, and traces. This data is typically sent to a
platform or back end.

 ◆ The OTel project is constantly evolving, and changes are frequently released. The exam-
ples provided in this book were tested against specific versions of OTel. Where possible,
they were created in a generic way that should work as the project advances. With that
said, it is possible that changes have been made that will result in differences from what
is documented. If this occurs, checking the GitHub repository associated with this book
(covered next) and reading the latest OTel documentation and release notes is recom-
mended. The minimal recommended and maximum tested versions of OTel components
for this book are as follows:

 ◆ OTel Demo, also known as the Astronomy Shop, version 1.11 is the minimum sup-
ported version. This is to get OpenSearch support. Up to version 1.11.1 has been tested.

 ◆ Collector (core and contrib) version 0.95.0 is the minimum supported version. This is
to get JSON encoding for the OTLP receiver and exporter. Up to version 0.109.0 has
been tested.

 ◆ Python instrumentation version 1.23.0/0.44b0 is the minimum supported version. This
is to get support for Flask and Werkzeug 3.0 or higher. Up to version 1.27.0/0.48b0 has
been tested.

 ◆ This book is accompanied by a GitHub repository, which can be found at https://
github.com/flands/mastering- otel- book and will be updated at least annually.
If you notice any issues with the information presented in this book, please open a GitHub
issue. The contents of this repository include:

 ◆ All code examples provided in the book

 ◆ Status information about OTel components

 ◆ Post- production modifications

 ◆ Changes to support the latest OTel advancements

The Mastering Series
The Mastering series from Sybex provides outstanding instruction for readers with intermediate
and advanced skills, in the form of top- notch training and development for those already
working in their field and clear, serious education for those aspiring to become pros. Every
Mastering book includes:

 ◆ Real- World Scenarios, ranging from case studies to interviews, that show how the tool,
technique, or knowledge presented is applied in actual practice

 ◆ Skill- based instruction, with chapters organized around real tasks rather than abstract
concepts or subjects

 ◆ Self- review test questions, so you can be certain you’re equipped to do the job right

https://github.com/flands/mastering-otel-book
https://github.com/flands/mastering-otel-book

Chapter 1

In modern software development and operations, observability has emerged as a fundamental
concept essential for maintaining and improving the performance, reliability, and scalability of
complex systems. But what exactly is observability? At its core, observability is the practice of
gaining insights into the internal states and behaviors of systems through the collection, analysis,
and visualization of telemetry data. Unlike traditional monitoring, which primarily focuses on
predefined metrics and thresholds, observability offers a more comprehensive and dynamic
approach, enabling teams to proactively detect, diagnose, and resolve issues.

This chapter will explore the principles and components of observability, highlighting its
significance in today’s distributed and microservices- based architectures. Through a deep dive
into the three pillars of observability— metrics, logs, and traces— you will understand the
groundwork for how observability can transform the way resilient systems are built and
managed.

IN THIS CHAPTER, YOU WILL LEARN TO:

 ◆ Differentiate between monitoring and observability

 ◆ Explain the importance of metadata

 ◆ Identify the differences between telemetry signals

 ◆ Distinguish between instrumentation and data collection

 ◆ Analyze the requirements for choosing an observability platform

Definition
So, what is observability in the realm of modern software development and operations? While
many definitions exist, they all generally refer to observability providing the ability to quickly
identify availability and performance problems, regardless of whether they have been experi-
enced before, and help perform problem isolation, root cause analysis, and remediation. Because
observability is about making it easier to understand complex systems and address unperceived
issues, often referred to in the software industry as unknown unknowns,1 the data collected must
be correlated across different telemetry types and be rich enough and immediately accessible to
answer questions during a live incident.

What Is Observability?

2 | CHAPTER 1 What Is ObservabIlIty?

The Cloud Native Computing Foundation (CNCF), described more fully later in this chapter,
provides a definition for the term observability:2

Observability is a system property that defines the degree to which the system can generate
actionable insights. It allows users to understand a system’s state from these external outputs and
take (corrective) action.

Computer systems are measured by observing low- level signals such as CPU time, memory, disk
space, and higher- level and business signals, including API response times, errors, transactions per
second, etc. These observable systems are observed (or monitored) through specialized tools,
so- called observability tools. A list of these tools can be viewed in the Cloud Native Landscape’s
observability section.3

Observable systems yield meaningful, actionable data to their operators, allowing them to achieve
favorable outcomes (faster incident response, increased developer productivity) and less toil
and downtime.

Consequently, the observability of a system will significantly impact its operating and develop-
ment costs.

While the CNCF’s definition is good, it is missing a few critical aspects:

 ◆ The goal of observability should be where a system’s state can be fully understood from its
external output without the need to ship code. This means you should be able to ask novel
questions about your observability data, especially questions you had not thought of
beforehand.

 ◆ Observability is not just about collecting data but about collecting meaningful data, such as
data with context and correlated across different sources, and storing it on a platform that
offers rich analytics and query capabilities across signals.

 ◆ A system is truly observable when you can troubleshoot without prior knowledge of
the system.

The OpenTelemetry project, which will be introduced in Chapter 2, “Introducing
OpenTelemetry!,” provides a definition of observability that is worth highlighting:

Observability lets you understand a system from the outside, by letting us ask questions about that
system without knowing its inner workings. Furthermore, it allows you to easily troubleshoot and
handle novel problems— that is, “unknown unknowns.” It also helps you answer the question,
“Why is this happening?”

To ask those questions about your system, your application must be properly instrumented. That is,
the application code must emit signals such as traces, metrics, and logs. An application is properly
instrumented when developers don’t need to add more instrumentation to troubleshoot an issue,
because they have all of the information they need.4

In short, observability is about collecting critical telemetry data with relevant context and
using that data to quickly determine your systems’ behavior and health. Observability goes
beyond mere monitoring by enabling a proactive and comprehensive understanding of system
behavior, facilitating quicker detection, diagnosis, and resolution of issues. This capability is
crucial in today’s fast- paced, microservices- driven, distributed environments, where the

DefInItIOn | 3

complexity and dynamic nature of systems demand robust and flexible observability solutions.
Through the lens of the CNCF and OpenTelemetry, you can see observability is not just defined
as a set of tools and practices but as a fundamental shift toward more resilient, reliable, and
efficient system management.

Riley Joins Jupiterian

riley (she/her) is an experienced site reliability engineer (sre) with deep observability and opera-
tions experience. she recently joined Jupiterian to address their observability problems and work
with a new vendor. riley joined Jupiterian from a large private equity (Pe) advertising company,
where she was the technical lead of the sre team and was responsible for a large- scale, globally
distributed, cloud native architecture. before that, she was the founding member of a growth
startup where she developed observability practices and culture while helping scale the business to
over three million dollars in annual recurring revenue (arr). riley was excited about the challenge
and opportunity of building observability practices from the ground up at a public enterprise com-
pany transitioning to the cloud.

Jupiterian is an e- commerce company that has been around for more than two decades. Over the
last five years, the company has seen a massive influx of customers and has been on a journey to
modernize its tech stack to keep up with demand and the competition. as part of these changes, it
has been migrating from its on- premises monolithic application to a microservices- based architec-
ture running on Kubernetes (K8s) and deployed in the cloud. recently, outages have been plaguing
the new architecture— a problem threatening the company and one that needed to be resolved
before the annual peak traffic expected during the upcoming holiday season.

for the original architecture, the company had been using Zabbix, an open source monitoring solu-
tion to monitor the environment. the It team was beginning to learn about DevOps practices and
had set up Prometheus for the new architecture. Given organizational constraints and priorities,
they did not have the time to develop the skill set to manage it and the ever- increasing number of
collected metrics. In short, a critical piece of the new architecture was without ownership. On top of
this, engineering teams continued to add data, dashboards, and alerts without defined standards or
processes. not surprisingly, this resulted in the company having difficulty proactively identifying
availability and performance issues. It also resulted in various observability issues, including
Prometheus availability, blind spots, and alert storms. In terms of observability, the company fre-
quently experienced infrastructure issues and could not tell if it was because of an architecture limi-
tation or an improper use of the new infrastructure. as a result, engineers feared going on- call, and
innovation velocity was significantly below average.

the Jupiterian engineering team had been pushing management to invest more in observability
and sre. Instead, head count remained flat, and the product roadmaps, driven primarily by the
sales team, continued to take priority. With the service missing its service- level agreement (sla)
target for the last three months, leadership demanded a focus on resiliency. to address the prob-
lem, the Chief technology Officer (CtO) signed a three- year deal with Watchwhale, an observabil-
ity vendor, so the company could focus on its core intellectual property (IP) instead of managing
third- party software. an architect in the office of the CtO vetted the vendor and its technology.
Given other organizational priorities, the engineering team was largely uninvolved in the proof of

4 | CHAPTER 1 What Is ObservabIlIty?

concept (PoC). the vice President (vP) of engineering was tasked with ensuring the service’s sla
was consistently hit ahead of the holiday period as well as the adoption and success of the
Watchwhale product. he allocated one of his budget IDs (bIDs) for a senior sre position, which led
to riley being hired.

Background
The term observability has been around since at least the mid- 20th century and is mainly credited
to Rudolf E. Kálmán, a Hungarian American engineer who used it in a paper about control
theory.5 Since then, the term has been used in various fields, including quantum mechanics,
physics, statistics, and perhaps most recently, software development. Kálmán’s definition of
observability can be summarized as a measure of how well the internal states of a system can be
inferred from knowledge of its external outputs.6

Observability Abbreviation

Observability is often abbreviated as O11y (the letter O, the number 11, and the letter y), as there
are 11 characters between the letter O and the letter y. While it is the number 11, the ones are pro-
nounced as the letter l— thus, the abbreviation is pronounced Ollie. this abbreviation standard is
common for longer words in software. for example, Kubernetes, a popular cloud native open source
project, is often referred to as K8s and pronounced kay- ates for the same reason.

Cloud Native Era
In software, the term observability has become popular due to the rise of cloud native workloads.
Since the turn of the century, the software industry has seen a progression that has included

baCKGrOunD | 5

moving from bare metal machines to virtual machines (VMs) to containers. In addition, there has
been a shift from owning, deploying, and managing hardware to leasing data center equipment
to deploying in the cloud. But what does cloud native mean? One way to answer this question is
to look to the CNCF. The foundation is part of the Linux Foundation and defines itself as:

The open source, vendor- neutral hub of cloud native computing, hosting projects like Kubernetes
and Prometheus to make cloud native universal and sustainable.7

Perhaps not surprisingly, the CNCF has created a definition for the term cloud native:

Cloud native practices empower organizations to develop, build, and deploy workloads in comput-
ing environments (public, private, hybrid cloud) to meet their organizational needs at scale in a
programmatic and repeatable manner. They are characterized by loosely coupled systems that
interoperate in a manner that is secure, resilient, manageable, sustainable, and observable.

Cloud native technologies and architectures typically consist of some combination of containers,
service meshes, multi- tenancy, microservices, immutable infrastructure, serverless, and declarative
APIs— this list is non- exhaustive.

Monitoring Compared to Observability
Before the cloud native era, it was common to see patterns including on- premises software,
monoliths, separate development and operations teams, and waterfall software development
with long release cycles. In this prior generation, the term observability had not been adopted yet,
and instead, the term monitoring was used. Sometimes, these terms are used interchangeably, but
their meanings are not identical. The Merriam- Webster dictionary defines monitoring as the
ability “to watch, keep track of, or check usually for a special purpose.”8 It defines observability
as the ability “to come to realize or know especially through consideration of noted facts.”9 The
distinction between monitoring and observability is important. With monitoring, you track items
but must infer why something occurred or how it is related to another event. With observability,
you use information to prove facts and use that knowledge to determine how or why something
behaves the way it does. Observability allows for first principle thinking, or the ability to
validate assumptions not deduced from another assumption.10

In software, both observability and monitoring rely on specific data types— primarily metrics
and logs with some tracing— but the usage of the data differs. Before the cloud native era, most
software ran on- premises and was often developed and deployed as a monolith or single code
base or application. As a result, problem isolation, or where the problem originated, was easy to
identify when issues occurred, and scaling typically consisted of adding more resources to the
monolith, known as scaling up or scaling vertically. When issues arose, the problem was either the
monolith, the infrastructure the monolith was running on top of, or whatever application was
calling into or called by the monolith (see Figure 1.1). To monitor the monolith, operational teams
needed the ability to be alerted about specific, known symptoms, sometimes referred to as known
knowns. Monitoring systems did exactly that.

To provide monitoring, either your application needs to be instrumented to emit health data
or you are required to infer the health of the application by watching its external behavior. In
either case, the data collected needs to be able to track and answer questions about availability,
performance, and security. This data collection needs to be added before issues happen; other-
wise, you cannot proactively determine nor quickly resolve the problems as they arise.

6 | CHAPTER 1 What Is ObservabIlIty?

Types of Monitoring

there are two different types of monitoring. first, there is monitoring based on data exposed from
the internals of the system. this means the application makes specific data available for external
systems to gather. this type of monitoring is sometimes called white box monitoring because you can
see into the system,11 though a better name would be internally provided monitoring. second, there is
monitoring based on external behavior. this means the application does not make any data availa-
ble beyond what is required for the application to function. as such, an external system must infer
what an application is doing. this type of monitoring is sometimes called black box monitoring
because you cannot see into the system,12 though a better name would be externally provided
monitoring.13

In many cases, application developers add instrumentation as necessary, including to measure
performance and investigate issues during development and operations. Engineers responsible
for monitoring the health and performance of these applications would typically send telemetry
data to a monitoring platform. Based on this telemetry data, the engineer would then define
alerts with static thresholds. To determine these thresholds, an engineer would need to know
what problems to expect beforehand, thus enabling proactive monitoring; otherwise, new thresh-
olds would have to be defined after an issue is identified, which is known as reactive monitoring.
One way to think about monitoring is like a doctor who collects certain pieces of information
from a person and compares that data against known baselines to understand the symptoms
being experienced and to determine the health of the person. The monitoring of heart rate, blood
pressure, and temperature in humans is like the monitoring of CPU (central processing unit),
memory, and disk usage in applications.

While monitoring with static thresholds provides some awareness of potential system issues,
it is not without its limitations. Take, for example, CPU utilization, which represents the rate at
which an application is operating expressed as a percentage. If CPU utilization is very high, this
could be a symptom of a system issue and, as such, something you want to be notified about. For
example, you could define an alert when the CPU utilization exceeds 95 percent for some period

Figure 1.1
an example of a
monolithic application
experiencing an issue.
The square represents
the monolith, while the
circles represent
different functions or
features within the
monolith. In this
example, the b function
is experiencing
problems, denoted by
the service’s gray
shading. This may or
may not result in issues
with the a and C
functions.

baCKGrOunD | 7

of time. In fact, such a definition is common in traditional monitoring applications. The problem
is, such an alert may not indicate a problem but instead indicate that the application is using its
resources efficiently. What is missing from this symptom is context, including how other related
components are behaving, and correlation, including changes within the environment. Another
limitation of traditional monitoring tools is the difficulty in alerting on issues that do not
manifest as high resource consumption or latency.

The introduction of cloud native workloads made traditional monitoring even less effective.
In this new world, workloads are run in the cloud and often consist of many small applications,
called microservices, that are isolated to individual functionality. For example, an authentication
service or a notification service. Microservices make it easier to deploy more instances, known as
scaling out or scaling horizontally, and allow for specific components to be scaled as needed. These
microservices typically run on immutable infrastructure using declarative APIs (application
programming interfaces). In addition, they are run with DevOps practices and with the help of
site reliability engineers (SREs).14 Software release cycles are also more frequent and leverage
continuous integration and continuous deployment or CI/CD pipelines. The decoupling and
elasticity of applications enable developers to reduce duplicated efforts and scale to meet
demand, but often at the cost of being able to troubleshoot the system and keep it available. In
this era, it is the “unknown unknowns” that need to be addressed.

Due to the difficulty in troubleshooting microservice- based architectures, a popular meme
was shared throughout the community:

“We replaced our monolith with micro services so that every outage could be more like a murder
mystery.” @honest_update15

With cloud native workloads, problem isolation became a problem. This is because when one
microservice has an issue, it could impact upstream or downstream services, causing them to
have problems as well (see Figure 1.2). Using traditional monitoring, the net result is alert storms
and the need to investigate every issue on every service in order to get to the root cause and
remediation. Of course, there are other issues with cloud native workloads as well. For example,
there is an inability to have complete visibility into the infrastructure as it is being managed by a
third party and prone to dynamic changes.

Figure 1.2
an example of a
microservice- based
architecture experienc-
ing an issue. each circle
represents a different
microservice. In this
example, multiple
microservices are
experiencing an issue,
denoted with gray lines,
though one service is the
root cause of the
problem, denoted with
gray shading. note not
all services called by the
root cause service are
impacted.

8 | CHAPTER 1 What Is ObservabIlIty?

Going back to the doctor analogy, assume you have a large group of people who are all part of
the same community, and multiple people become sick around the same time. While you may
want to help everyone experiencing symptoms concurrently, it requires many doctors and
resources. In addition, focusing on the symptoms of the patients does not address the root cause
issue, which is that people are getting sick from something, and it is spreading instead of being
contained. The sickness may cause other problems to arise as well. For example, doctors may
become sick and thus become unable to care for patients, or businesses might need to shut down
because they do not have enough employees to work. Without containment, an infectious disease
can spread uncontrollably. This analogy is similar to the changes necessary due to the shift to
cloud native workloads. For example, instead of paging all service owners during an outage and
burning out engineers, the more sustainable approach is to contain the problem and page the
root cause service. Observability helps with containment.

When dealing with complex systems, it is ideal when you can address things you are aware of
and understand, referred to as known knowns, as well as things you are not aware of and do not
understand, referred to as unknown unknowns, using the same solution. See Table 1.1 for different
states of awareness and understanding. A goal of observability is to provide the ability to answer
the “unknown unknowns.” At the same time, it contains the building blocks necessary to address
the “known knowns.” As a result, observability may be considered a superset of monitoring.

Metadata
When you hear the term observability, you may initially think about data sources such as metrics,
logs, and traces. These terms will be introduced in the next section, but something just as
important as the data source information is metadata. While a fancy word, metadata is just data
about other data. For example, if you generate and collect a metric, such as the total number of
HTTP requests, it may also be helpful to know other information about that metric, such as
which host it is running on or what HTTP status code was returned for that request. These
additional pieces of information are known as metadata and are typically attached to traditional
data source information, such as metrics, logs, and traces. Metadata may go by other names as
well, including tags, labels, attributes, and resources.

Metadata is powerful because it provides additional information to data sources, which helps
with problem isolation and remediation. This information may even contain context and
correlation, topics explored in Chapter 8, “The Power of Context and Correlation.” Without

Table 1.1: a 2×2 matrix showing states of awareness and understanding. Monitoring
systems are optimized to address “known knowns” where observability systems
can address all aspects but especially “unknown unknowns.”

Awareness
Known Unknown

Understanding Known aware of and understand aware of but do not understand

Unknown understand but not aware of neither aware of nor understand

MetaData | 9

metadata, observability is harder to achieve. Metadata is typically represented as a key- value
pair, such as foo="bar". The key is the name for the piece of metadata and is often referred to as
a dimension. The value can be of various forms, including numbers or strings and the uniqueness
of the values is referred to as cardinality. Other ways to represent metadata also exist. For
example, in unstructured log records, metadata is sometimes presented as just a value where the
name is inferred— an example is provided in the “Logs” section later in this chapter.

Dimensionality
In observability, Dimensionality refers to the number of unique keys (sometimes called names)
within a set. It is represented by attributes or labels associated with telemetry data, allowing for
more granular and detailed analysis. Each piece of telemetry data can have multiple dimensions
that provide context about the data. These dimensions enable the grouping, filtering, and slicing
of data along various axes, which is crucial for deep analysis and troubleshooting. Examples of
dimensions include:

 ◆ Time

 ◆ Application, such as service.name and service.version

 ◆ Host, such as host.name and host.arch

 ◆ User, such as enduser.id and enduser.role

 ◆ HTTP, such as http.route and http.response.status_code

These dimensions would allow you to ask your telemetry to show you data such as:

 ◆ All 502 errors in the last half hour for host foo

 ◆ All 403 requests against the /export endpoint made by user bar

Dimensionality, which may also be referred to as the width of telemetry data, is a founda-
tional concept in observability that greatly enhances the depth and utility of telemetry data. It
matters because it enables more detailed, contextualized, and actionable insights, which are
essential for maintaining and improving the performance and reliability of modern distributed
systems. In practice, dimensions are indexed by observability platforms to support capabilities,
including auto- complete and real- time analysis of key- value pairs, that assist with
troubleshooting.

Cardinality
In observability, Cardinality refers to the number of unique values for a given key within a set.
High cardinality refers to a large number of unique values, whereas low cardinality indicates fewer
unique values. For example, a dimension like HTTP status code, which includes values such as
404 or 500, is bounded and has low cardinality, whereas a dimension like a user, session, or
transaction ID is unbounded and is likely to have high cardinality. Monitoring and observability
platforms care about cardinality. For example, if a platform supports indexing of keys, it likely
needs to return values for those indexed keys quickly. For high cardinality metadata, this can
prove challenging to visualize and very expensive to compute. In short, cardinality affects the
storage, performance, and usability of telemetry data. High cardinality presents both opportuni-
ties for detailed insights and challenges in terms of resource consumption and data management.
Effectively managing cardinality is essential for maintaining scalable, efficient, and actionable
observability systems.

http://service.name
http://host.name

10 | CHAPTER 1 What Is ObservabIlIty?

Semantic Conventions
Another concept you should be aware of is semantic conventions, or semconvs for short. These are
standardized dimensions, or keys, for metadata and ensure consistency in how data is recorded,
labeled, and interpreted across different systems and services. It may also contain standardized
cardinality, or values for these dimensions. For example, it is common to have semconvs for
HTTP- related data. An example of this may include the key for the HTTP route, such as http
.route, or the response status code, such as http.response.status_code. Semconvs can be
grouped into multiple different categories, such as the aforementioned HTTP. Other categories
would include databases, exceptions, host metrics, function as a service, and messaging, to name
a few. Each category would have multiple semconvs defined. Semconvs may be signal specific or
apply to more than one signal type. Semconvs matter because they enable context and correlation
and provide data portability. For example, if the same key is used to represent the same data,
then it is easy to see its behavior across systems and environments. In addition, if keys are
consistently named, they can be leveraged identically across different platforms.

Data Sensitivity
Metadata can contain sensitive information. For example, names or email addresses may be
attached to data sources and leak personally identifiable information (PII). In addition, internal
business logic, such as Internet protocol (IP) addresses or hostnames, may be considered
sensitive information. This information would generally only be sent to the configured observ-
ability platforms, but that configuration can change over time. In addition, while only restricted
users may have access to the platform data, for example, employees of a company authenticated
via Security Assertion Markup Language (SAML), without proper data permissions, such as
role- based access control (RBAC), it is possible that sensitive information is exposed to employ-
ees who should not have access to such information. Given that metadata can contain virtually
anything, care must be taken to ensure proper data configuration, scrubbing, and access control.

Signals
The three pillars of observability is an industry phrase that you have likely encountered. The three
pillars refer to metrics, logs, and traces. While these pillars are just data sources and do not
inherently provide observability, they are recognized as fundamental types of telemetry data
needed to understand the behavior and performance of systems. Another comparable term or
acronym in the observability space is MELT, which stands for metrics, events, logs, and traces.
These are the most common data sources, but they are far from exhaustive. Other examples
include profiling and sessions. Data sources have a variety of names in the industry, including
diagnostics, telemetry, signals, or data sources. For the purposes of this book, and in alignment
with OpenTelemetry, the term signals will be used going forward. It is important to note that
signals do not inherently provide observability, though they are necessary to enable it.

Metrics
A metric, sometimes referred to as a metric record, measurement, or metric time series (MTS), is a set
of data points represented as a time series with metadata. A time series is a set of data points over

sIGnals | 11

some period of time. To generate a time series, an instrument takes one or more measurements.
For example, a speedometer measures speed, and a measurement could be taken every tenth of a
second but recorded every minute. Metrics also have signal- specific metadata terms. For exam-
ple, attributes, dimensions, labels, and resources are all terms used with metrics that refer to some
kind of metadata.

A metric contains a name, value, timestamp, and optionally additional metadata. Note that
multiple types of metric values exist. For example, it may be a single value, such as a counter, or
a multi- value, such as a histogram. Here is an example of a metric from Prometheus, an open
source metric solution that will be described in more detail later:

http_requests_total{method="post",code="200"} 1027 | 1395066363000

The example Prometheus metric is made up of various components, including:

 ◆ Name— http_requests_total

 ◆ Metadata— {method="post",code="200"}

 ◆ Value— 1027

 ◆ Timestamp— 1395066363000

Metrics are one of the primary data sources used to engage on- call engineers as well as
troubleshoot availability and performance issues. It is pervasive for alerts and dashboards to be
configured based on metric data. Generally, aggregated metrics, like those shown in Figure 1.3,
provide the most value because they identify behaviors over time and can be used to determine
anomalies. Some popular methods for analyzing aggregated metrics include:

 ◆ RED, which stands for requests, error, and duration and was popularized by Tom Wilkie.16
The idea is for every object to monitor the number of requests, the number of those
requests that result in an error, and the amount of time those requests take. In general, this
information can be used to determine user experience.

 ◆ USE, which stands for utilization, saturation, and errors and was popularized by Brendan
Gregg.17 The idea is for every object to monitor the percentage of time the object was busy,
the amount of work (queue size) for the object, and the number of errors. In general, this
information can be used to determine object experience.

 ◆ Four golden signals, which include latency, traffic, errors, and saturation and was popu-
larized by the Google SRE Handbook.18 The idea is for every object to monitor the time it
takes to service a request, the amount of demand placed on the object, the rate of requests
that fail, and the fullness of the object. This is like RED but includes saturation.

In addition, metrics are used to define service- level indicators (SLIs) that measure the perfor-
mance of applications. These SLIs are used to define and measure service- level objectives (SLOs)
which determine whether applications are operating within acceptable bounds. Service- level
agreements (SLAs) are also defined and calculated based on metrics to determine whether
applications are meeting specified customer expectations.

12 | CHAPTER 1 What Is ObservabIlIty?

Learning More About SLIs, SLOs, and SLAs

slIs, slOs, and slas are critical topics that are outside the scope of this book. If you are looking to
learn more about these concepts, be sure to read the Google Site Reliability Engineering (SRE) book,
which is freely available online.19

Given the ever increasing number of objects in an environment and the need to collect more
and more data, metric platforms need to be able to process and store a large number of metrics
quickly. Various techniques are used to control the amount of data generated, processed, and
stored. For example, the interval at which metrics are generated within the application or stored
within an observability platform can be different from the resolution displayed in charts.
Aggregation techniques are used to achieve these different granularities, including aggregation
policies and rollups. In short, these strategies provide a summarized view of granular data over
specific time intervals. Regardless of the techniques used, end users consume charts or alerts
from this collected, analyzed, and queried data.

Several open source metric instrumentation frameworks and standards have become popular
over the years. For example, the following solutions were popular in the monitoring era:

 ◆ StatsD (https://github.com/statsd/statsd)

 ◆ Graphite (https://graphite.readthedocs.io/en/stable/overview.html)

Figure 1.3
a Grafana dashboard
displaying aggregate
metric information.

https://github.com/statsd/statsd
https://graphite.readthedocs.io/en/stable/overview.html

