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PREFACE

In the Department of Materials Science and Engineering at UCLA, three courses on

kinetic processes in materials are being taught at the moment. The first course is

MSE 131 on “Diffusion and Diffusion Related Phase Transformations,” which is for

upper undergraduate students. The textbook is “Phase Transformations in Metals and

Alloys,” 2nd edition, by D. A. Porter and K. E. Easterling, published by Chapman

and Hall, London, 1992. The second course is MSE 223 on “Thin Film Materials

Science,” which is for first year graduate students. The textbooks are “Electronic

Thin Film Science,” by K. N. Tu, J. W. Mayer, and L. C. Feldman, published by

Macmillan, New York, 1993, and “Electronic Thin Film Reliability,” by K. N. Tu,

published by Cambridge University Press, UK, 2011. The third course is MSE 201

on “Principle of Materials Science: Solid State Reactions,” which is a mandatory

course for Ph.D. students. It had been taught by Prof. Alan Ardell until his retirement

in 2008. There is no textbook for this course, except the lecture notes by Prof. Ardell.

One of the reasons that this book is written is to serve as the textbook for this course

in the future. This book can also be used as a textbook for a kinetics course in the

Department of Physics at Cherkasy National University, Cherkasy, Ukraine. Roughly

speaking, MSE 131 covers mainly kinetics in bulk materials, MSE 223 emphasizes

kinetics in thin films, and MSE 201 will focus on kinetics in nanoscale materials. It is

worthwhile mentioning that kinetics in nanoscale materials is not completely new or

very different from those in bulk and thin films. Actually, a strong link among them

can be found, which is shown in this book. An example is the lower melting point of

nanosize particles. In morphological instability of the solidification of bulk melt, the

lower melting point of the tip of dendrite has been analyzed in detail.

Chapter 1 explains why the subject of kinetic processes in nanoscalematerials is

of interest. It begins with a discussion that the surface energy of a nanosphere is equal

to its Gibbs–Thomson potential energy. This is implicit in the classical theory of

homogeneous nucleation in bulk materials. Then, it is followed by several sections on

some general kinetic behaviors of nanosphere, nanopore, nanowire, nanothin films,

and nanomicrostructure in bulk materials. Specific topics on kinetics in nanoscale

materials are covered by Chapter 2 on linear and nonlinear diffusion; Chapter 3 on

Kirkendall effect and inverse Kirkendall effect; Chapter 4 on ripening among nano-

precipitates; Chapter 5 on spinodal decomposition; Chapter 6 on nucleation events in

bulk materials, thin films, and nanowires; Chapter 7 on contact reactions on Si: plane,

line, and point contact reactions; Chapter 8 on grain growth in micro and nanoscales;

Chapter 9 on self-sustained explosive reactions in nanoscale multilayered thin films;

and Chapter 10 on formation and transformation of nanotwins in Cu. In the last two

chapters, applications of nanoscale kinetics are emphasized by the explosive reactions

ix
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for distance ignition or for local heating, and by nanotwinned Cu for interconnect and

packaging technology for microelectronic devices.

In nanoscale materials, we encounter very high concentration gradient, very

small curvature, very large nonequilibrium vacancies, very few dislocations, and yet

very high density of grain boundaries and surfaces, and even nanotwins. They mod-

ify the driving force as well as the kinetic jump process. To model the nanoscale

processes, our understanding of kinetic processes in bulk materials can serve as the

stepping stone from where we enter into the nano region. On seeing the similarity

between bulk and nanoscale materials, the readers can follow the link to obtain a

better understanding of the kinetic processes in nanoscale materials. On seeing the

difference, the readers will appreciate what modification is needed or what is new in

the kinetic processes in nanoscale materials.

We would like to acknowledge that we have benefited greatly from the lecture

notes by Prof. Alan Ardell on kinetics of homogeneous nucleation, spinodal decom-

position, and ripening. We also would like to acknowledge that the second part of

Chapter 2 on thermodynamic nonlinear effects on diffusion is taken from an unpub-

lished 1986 IBM technical report written by Prof. Lydia Chiao in the Department

of Physics at Georgetown University, Washington, DC. We apologize to the readers

that because of our limited knowledge, we do not cover some of the very active and

interesting topics of nanomaterials, such as the nucleation and growth of graphene on

metal surfaces, VLS growth of nano Si wires, or interdiffusion in man-made super-

lattices. We hope that this book will help students and readers advance into these and

other nanoscale kinetic topics in the future.

King-Ning Tu and Andriy M. GusakApril 2014
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1.1 INTRODUCTION

In recent years, a new development in science and engineering is nanoscience and

nanotechnology. It seems technology based on nanoscale devices is hopeful. Indeed,

at the moment the research and development on nanoscale materials science for nan-

otechnology is ubiquitous.Much progress has been accomplished in the processing of

Kinetics in Nanoscale Materials, First Edition. King-Ning Tu and Andriy M. Gusak.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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2 CHAPTER 1 INTRODUCTION TO KINETICS IN NANOSCALE MATERIALS

nanoscalematerials, such as the growth of silicon nanowires. Yet, we have not reached

the stage where the nanotechnology is mature and mass production of nanodevices

is carried out. One of the difficulties to be overcome, for example, is the large-scale

integration of nanowires. We can handle a few pieces of nanowires easily, but it is

not at all trivial when we have to handle a million of them. It is a goal to be accom-

plished. For comparison, the degree of success of nanoelectronics from a bottom-up

approach is far from that of microelectronics from a top-down approach. In reality, the

bottom-up approach of building nanoelectronic devices from the molecular level all

the way up to circuit integration is very challenging. Perhaps, it is likely that a hybrid

device will have a better chance of success by building nanoelectronic devices on the

existing platform of microelectronic technology and by taking advantage of what has

been developed and what is available in the industry.

The proved success of microelectronic technology in the past and now leads to

expectations of both high yield in processing and reliability in the applications of the

devices. These requirements extend to nanotechnology. No doubt, reliability becomes

a concern only when the nanodevices are in mass production. We may have no con-

cern about their reliability at the moment because they are not yet in mass production,

but we cannot ignore it if we are serious about the success of nanotechnology.

On processing and reliability of microelectronic devices, kinetics of atomic

diffusion and phase transformations is essential. For example, on processing, the dif-

fusion and the activation of substitutional dopants in silicon to form shallow p–n

junction devices require a very tight control of the temperature and time of fabrica-

tion. It is worth mentioning that Bardeen has made a significant contribution to the

theory of atomic diffusion on our understanding of the “correlation factor” in atomic

jumps. On reliability, the issue of electromigration-induced failures is amajor concern

in microelectronics, and the kinetic process of electromigration is a cross-effect of

irreversible processes. Today, we can predict the lifetime of a microelectronic device

or its mean-time-to-failure by conducting accelerated tests and by performing statis-

tical analysis of failure. However, it is the early failure of a device that concerns the

microelectronic industry the most. Thus, we expect that in the processing and reliabil-

ity of nanoelectronic devices, we will have similar concerns of failure, especially the

early failure, which tends to happen when the integration processes and the reliability

issues are not under control. It is for this reason that the kinetics of nanoscale mate-

rials is of interest. If we assume that everything in nanoscale materials and devices is

new, it implies that the yield and reliability of nanodevices is new too, which we hope

is not completely true. In this book, we attempt to bridge the link between a kinetic

process in bulk and the same process in nanoscale materials. The similarity and the

difference between them is emphasized, so that we can have a better reference of the

kinetic issues in nanodevices and nanotechnology.

To recall kinetic processes in bulk materials, we note that there are several kinds

of phase changes in bulk materials in which the distance of diffusion or the size of

phases are in nanoscale. Take the case of Guinier–Preston (GP) zones of precipita-

tion, in which the thickness of GP zone is of atomic scale and the spacing between

zones is of the order of 10 nm. In the case of spinodal decomposition, the wave length

of decomposition is of nanometers. In homogeneous nucleation, the distribution of

subcritical nuclei is a distribution of nanosize embryos. In ripening, a distribution
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of particles of nanoscale is assumed, and the analysis of ripening starts with the

Gibbs–Thomson (GT) potential of these particles having a very small or nanoscale

radius.

Furthermore, there are nanoscale microstructures in bulk-type materials.

An example is the square network of screw dislocations in forming a small angle

twist-type grain boundary. We can take two (001) Si wafer and bond them together

face-to-face with a few degrees of misorientation of rotation, the dislocation network

in the twist-type grain boundary forms one of the most regular two-dimensional

nanoscale squares. Another example is a bulk piece of Cu that has a high density of

nanotwins. One more example is a layer of nanosize grains formed by ball milling

on the surface of a bulk piece of steel, which is called surface mechanical attrition
treatment (SMAT) of nano-grains.

Our understanding of kinetic processes in bulk materials can serve as the step-

ping stone from where we enter into the kinetics in nanoregion. On seeing the simi-

larity in kinetics between them, we can follow the similarity to reach a deeper level

of understanding of the kinetic processes in nanoscale materials. On seeing the dif-

ference, we may appreciate what modification is needed in terms of driving force

and/or kinetic process in nanoscale materials. In the early chapters of this book, sev-

eral examples have been chosen for the purpose of illustrating the link between kinetic

behaviors in bulk and in nanoscale materials, and in the later chapters a few cases of

applications of nanoscale kinetics are given.

When we deal with nanoscale materials, we encounter very high gradient

of concentration, very large curvature or very small radius, very large amount of

nonequilibrium vacancies, very few dislocations, and yet very high density of sur-

faces and grain boundaries and, may be, nanotwins. They modify the driving force as

well as the kinetic jump process. Indeed, the kinetic processes in nanoscale materials

have some unique behavior that is not found in the kinetics of bulk materials. In

this chapter of introduction, we present a few examples of nanoscale materials to

illustrate their unique kinetic behavior. They are nanospheres, nanowires, nanothin

films, and nanomicrostructures. More details will be covered in the subsequent

chapters.

1.2 NANOSPHERE: SURFACE ENERGY IS EQUIVALENT
TO GIBBS–THOMSON POTENTIAL

We consider a nanosize sphere of radius r. It has a surface area ofA= 4𝜋r2 and surface
energy of E= 4𝜋r2𝛾 , where 𝛾 is the surface energy per unit area and we assume that

the magnitude of the surface energy per unit area 𝛾 is independent of r. We note that

as surface energy is positive, the surface area (or the radius of the sphere) tends to

shrink in order to reduce surface energy, which implies that the tendency to shrink

exerts a compression or pressure to all the atoms inside the sphere. This pressure is

called the Laplace pressure. The effect of the pressure is felt when we want to add

atoms or remove atoms from the sphere because it will change the volume as well as

the surface area. When we want to change the volume of the sphere under the Laplace

pressure at constant temperature, we need to consider the work done and the work
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equals to the energy change, so that pdV= 𝛾dA. The pressure can be calculated as

p = 𝛾
dA
dV

= 𝛾
(d∕dr)(4𝜋r2)

(d∕dr)((4∕3)𝜋r3)
= 𝛾

8𝜋r
4𝜋r2

= 2𝛾

r
(1.1)

However, we note that the work done by the Laplace pressure is different from the

conventional elastic work done in a solid by a stress. The elastic work is given below,

Eelastic = V ⋅∫ 𝜎d𝜀 = V
1

2
K𝜀2 (1.2)

To calculate the elastic work, we need to know at least the elastic bulk modulus K
of the material (in case of homogeneous hydrostatic stress). On the other hand, the

work done by Laplace pressure is due to the change in volume by adding or removing

atoms under the Laplace pressure, and no modulus is needed.

We consider the case of adding an atom to a nanosphere, the Gibbs free energy

(G=U− TS+ pV) increases pΩ, where U is internal energy, T is temperature, S is

entropy, and Ω is atomic volume. By definition, pΩ is a part of the chemical poten-

tial of the nanosphere related to the change of its volume under the fixed external

pressure. It is the change (increase) of Gibbs free energy due to the addition of one

atom (or one mole of atoms, depending on the definition of chemical potential) to

the nanosphere (see Section 2.2.3, on the definition of chemical potential). It is worth

mentioning that adding an atom at constant temperature has effects on U, S, and p.
This is because it adds a few more interatomic bonds to U, the configuration entropy
increases because of more ways in arranging the atoms, and though it does not affect

the external pressure, the Laplace pressure will decrease because of the increase in

radius.

Here it is important to distinguish two alternative approaches to account for

surface (capillary) effects:

1. Helmholtz free energy F=U− TS of the limited system includes explicitly an

additional free energy of the surface: F = N ⋅ f + 𝛾 ⋅ A, where f is a bulk free

energy per atom, N is the number of atoms, A is an area of external boundary

(in our case A = 4𝜋R2), 𝛾 is an additional surface free energy per unit area. In

this case the “p” in the expression for Gibbs energy is just real external pressure
of the thermal ambient, without any Laplace terms. In this case,G = F + pV =
N ⋅ (f + pΩ) + 𝛾 ⋅ A = Ng + 𝛾 ⋅ A. Then the chemical potential 𝜇 = 𝜕G∕𝜕N =
g + 𝛾 ⋅ (𝜕A∕𝜕N). Below we start with this case.

2. Alternatively, free energy F = U–TS of the limited system may not

include explicitly the surface energy but instead use some effective

external pressure pef = p + pLaplace. Then 𝜇 = 𝜇bulk + pLaplace ⋅Ω. If

pLaplace = 𝛾 ⋅ ((1∕Ω)(𝜕A∕𝜕N)), then the result will be the same.

To add the atom, if we imagine that the atomic volume Ω is “smeared” over

the entire surface of the nanosphere as a very thin shell, it leads to the growth of the

radius, dr, of the nanosphere as:

Ω = dV = d
(
4

3
𝜋r3
)
= 4𝜋r2dr ⇒ dr = Ω

4𝜋r2
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so the work of Laplace pressure is pLaplace4𝜋r
2 × dr = pLaplaceΩ = 2𝛾Ω∕r, where the

product of pLaplace4𝜋r
2 (force) and dr (distance) is the work done by the Laplace

pressure. It is due to a surface change induced free energy change in the nanosphere,

hence it should be added to the chemical potential of all the atoms belonging to the

nanosphere. Thus, pΩ is the surface input into the chemical potential. We emphasize

that this is an additional chemical potential energy of every atom in the nanosphere,

not just the atoms on the surface, due to the surface effect. When r is small, this

addition to chemical potential (GT potential), 2𝛾Ω/r, cannot be ignored.
Let us take the integral over the process of constructing the entire volume of

the nanosphere by sequential adding of new spherical slices 4𝜋r′2dr′, and we obtain

∫
r

0

pLaplacedV = ∫
r

0

2𝛾

r′
4𝜋r′2dr′ =𝛾 ⋅ 4𝜋r2 = ΔEsurface (1.3)

It means that the work done by Laplace pressure during the formation (growth) of the

nanosphere is exactly equal to the surface energy. We have reached a very important

conclusion that the surface energy (4𝜋r2𝛾) is equal to the sum of GT potential energy

of all the atoms in the nanosphere, calculated as an integral over the evolution path

of this sphere formation. (It is important to remember that in Eq. (1.3) the Laplace

pressure under integral is not constant – it changes simultaneously with the growth

of the sphere.) In other words, when we consider the GT potential, it means that all

the atoms are the same, whether the atom is on the surface or within the nanosphere.

We may say that from the point of view of GT potential, there is no surface atom, as

all the atoms are the same, and hence there is no surface energy because the surface

energy is being distributed to all the atoms.

To avoid possible misunderstanding, we emphasize that to form a nanosphere,

we should add to the bulk energy an additional term of surface energy or the work of

Laplace pressure, but not both of them. An example is in considering the formation

energy of a nucleus in homogeneous nucleation, in which we include the surface

energy of 4𝜋r2𝛾 explicitly, see Eq. (1.11) or Eq. (6.1), so we do not need to add GT

potential to all the atoms, even though the radius of a nucleus is very small. Another

example is in ripening, in which the kinetic process is controlled by the mean-field

concentration in equilibrium with particles having the mean radius, following the

GT equation, but the surface energy of 4𝜋r2𝛾 is implicit in the analysis, although

the driving force comes from the reduction of surface energy. These two cases are

covered in detail in later chapters.

As we can regard the hydrostatic pressure or Laplace pressure, p, as energy
density or energy per unit volume, we might regard pV as the energy increase in a

volume V under pressure. Strictly speaking, it is not completely correct. For example,

the additional energy due to the existence of a surface is surface tension times the sur-

face area: ΔE= 𝛾4𝜋r2. However, the product pLaplaceV is equal to (2𝛾∕r)(4∕3)𝜋r3 =
2∕3(𝛾 ⋅ 4𝜋r2). It is less by one-third from the surface energy of ΔE. As shown in

Eq. (1.3), we need to take integration in order to obtain the correct energy.

We recall that when we consider the surface energy of a flat surface where the

radius is infinite. In this case, the Laplace pressure is zero, so does the GT potential.

Yet it does not mean the surface energy is zero. Instead, we use the number of broken
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bonds to calculate the surface energy of a flat surface by considering the cleavage of

a piece of solid into two pieces having flat surfaces. In the case of a nanosphere, we

simply use 4𝜋r2𝛾 for its surface energy on the basis of GT potential. We recommend

readers to analyze the above equations for the case when radius tends to infinity,

spherical surface becomes more and more flat, Laplace pressure tends to zero, but

total surface energy grows to infinity.

Next we might ask the question of a nonspherical particle, what is the chemical

potential inside the nonspherical particle with curvature changing from one area of

the surface to another area? In Appendix A, the concept of Laplace pressure is applied

to nano-cubic particle and nano-disk particle, and the chemical potentials are given.

On the question of a hollow nanoparticle that has two surfaces, the inner and

outer surfaces, the simple answer is that atoms at places with different curvatures

possess different chemical potentials, and these potential differences or chemical

potential gradient should enable surface and bulk diffusion to occur and lead to equal-

izing of curvatures. Nevertheless, the answer does not give a receipt of finding a

spatial redistribution of chemical potential inside the particle if the temperature is low

so that the smoothening proceeds only by surface diffusion. This gives us an example

of the limit of applicability of thermodynamic concepts owing to slow kinetics: chem-

ical potential is a self-consistent thermodynamic quantity assuming the condition of

sufficiently fast diffusion kinetics. So, if diffusion is frozen at a low temperature,

the driving force of chemical potential gradient has no response in such system or

subsystem. We analyze the case of hollow nanospheres having two surfaces in a later

section, assuming that atomic diffusion is fast enough for curvature change to happen.

1.3 NANOSPHERE: LOWER MELTING POINT

Nanosize will affect phase transition temperature besides pressure. Now we consider

the melting of nanoparticles. Melting means transition from a crystalline phase to

a liquid phase, where the crystalline phase is characterized by having a long range

order (LRO). At the melting point, Gibbs free energy of the two phases is equal. The

very notion of LRO for particles with the size of several interatomic distances or

even several tens of nanometers becomes somewhat fuzzy, and the melting transition

may become gradual within a temperature range, depending on the distribution of the

nanoparticle size in the sample. Experimentally, we tend to measure the melting of a

sample consisting of a large number of nanoparticles, rather than just one nanoparti-

cle. Assuming that the melting temperature has an average value within a temperature

range, we continue to define it as the temperature at which Gibbs free energy of the

two phases is equal.

In Figure 1.1, a plot of Gibbs free energy versus the temperature of the liquid

state and the solid state of a pure bulk phase having a flat interface is depicted by the

two solid curves. We assume that the bulk sample has radius r=∞. The two solid

curves cross each other at the melting point of Tm (r=∞).

For solid nanoparticles of radius r, its Gibbs free energy curve is represented

by one of the broken curves, and we note that the energy difference between the two

curves of the solids is the GT potential energy of pΩs = 2𝛾sΩs∕rs, where 𝛾s is the



1.3 NANOSPHERE: LOWER MELTING POINT 7

Tm(rs) Tm
bulk

ΔT

S (r = nano)

L (r = nano)

S (r = ∞)

L (r = ∞)

T

G

Figure 1.1 A plot of Gibbs free energy versus the temperature of the liquid state and solid

state of a pure phase is depicted by the two solid curves. The two solid curves cross each

other at the melting point of Tm. We assume that the solid state of a bulk sample has radius

r=∞. For solid and liquid nanoparticles of radius rs and rl, their Gibbs free energy curves are
represented by the broken curves. The broken curves intersect at a lower temperature of Tm
(nano), provided that we assume the surface energy of liquid is lower than that of the solid.

interfacial energy between the solid and the ambient and it is independent of size.

Usually we are interested in the melting point of nanoparticles in air or vacuum.

Strictly speaking, if this ambient is infinite and if it does not contain the vapor of

atoms of the same nanoparticle, and if we have unlimited time for observation, even-

tually these particles will evaporate totally. But we are not interested in this process;

instead, we want to know what happens with the nanoparticles at a much shorter time

(typically less than seconds), for example, if it is heated to some constant temperature

below Tm (r=∞), will it melt? In this case, the actual concentration of atoms in the

vapor phase is unimportant unless it influences significantly the surface tension.

For liquid nanoparticles of radius r, its Gibbs free energy curve is represented

by the other broken curve, and we note that the energy difference between the two

curves of the liquid is the GT potential energy of pΩl = 2𝛾lΩl∕rl, where 𝛾l is the

interfacial energy between the liquid and the ambient.

The solid-state curve of nanoparticle typically (if 2𝛾sΩs∕rs > 2𝛾lΩl∕rl) inter-
sects the liquid state curve of r=∞ at a lower temperature, Tm(rs), indicating that the
melting point of the nanoparticles (if many nanoparticles melt simultaneously form-

ing bulk liquid with formally infinite radius of surface) is lower than that of the bulk

solid having a flat surface. How much lower in the melting point will depend on 𝛾

and r for the solid state and the liquid state. Here is an analysis.

First, we can write the equilibrium condition at the melting point of the

nanosolid and liquid particles as

𝜇bulk
s

(
Tbulk
m + ΔT

)
+

2𝛾sΩs

rs
= 𝜇bulk

l

(
Tbulk
m + ΔT

)
+

2𝛾lΩl

rl
. (1.4)

Expanding the chemical potentials into Taylor series over ΔT including only the first

order terms (for not very big size effect) and taking into account that the derivative
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of chemical potential over temperature is minus entropy, we obtain

𝜇bulk
s

(
Tbulk
m

)
− SsΔT +

2𝛾sΩs

rs
= 𝜇bulk

l

(
Tbulk
m

)
− SlΔT +

2𝛾lΩl

rl
. (1.5)

Then, taking into account the equality of the bulk chemical potentials for solid

and liquid at the bulk melting temperature, the first term on both sides of the above

equation cancels out. Using Clausius relation between the heat of transformation per

atom qm and entropy change per atom[
qm = ∫

liquid

solid

TdS = Tbulk
m ∫

liquid

solid

dS = Tbulk
m ⋅

(
Sl − Ss

)]
,

we obtain:

Sl − Ss =
qm
Tbulk
m

ΔT
Tbulk
m

= −
((
2𝛾sΩs∕rs

)
− (2𝛾lΩl∕rl)

)
qm

= −
2𝛾sΩs

qmrs

(
1 −

𝛾l

𝛾s

Ωl

Ωs

rs
rl

)
(1.6)

By taking into account the conservation of the number of atoms in the nanoparticle,

(4∕3)𝜋r3s∕Ωs = (4∕3)𝜋r3
l
∕Ωl, we have finally:

ΔT
Tbulk
m

= −
2𝛾sΩs

qmrs

(
1 −

𝛾l

𝛾s

(
Ωl

Ωs

)2∕3
)

(1.7)

In Eq. (1.7), if we take 𝛾 l = 𝛾s and Ωl =Ωs, the bracket term becomes zero, it shows

no temperature lowering. Typically, we can assume Ωl =Ωs, and thus we have to

assume too 𝛾s >𝛾 l, as depicted in Figure 1.1. Taking the following reasonable values

for a metal,

𝛾s = 1.5J∕m2, 𝛾l = 1J∕m2, Ωs = Ωl = 10−29 m3, qm = 2 × 10−20 J, r = 10−8m.

We obtain ΔT∕Tbulk
m ≈ −0.05, so that the absolute value of melting temperature low-

ering, ΔT, is about 50∘ for a metal having a melting point about 1000K.

It is worth mentioning that the lowering of the melting point due to small radius

of solids has been studied long ago in the analysis of morphological instability of

solidification in the growth of dendritic microstructures in bulk materials. It is a rather

well developed subject by Mullins and Sekerka, so we discuss here only the key issue

in solidification very briefly [1]. In Figure 1.2, a schematic diagram of the solidifica-

tion front having a protrusion is depicted. The heat is being conducted away from the

liquid side. Thus we can assume the bulk part of the solid has a uniform temperature

of Tm, but the liquid has a temperature gradient so the liquid in front of the solid is

undercooled. The tip of the protrusion has a radius r. If we assume the radius is large

and we can ignore the effect of GT potential on temperature, the temperature along
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Figure 1.2 A schematic diagram of a

solidification front having a protrusion.

the entire solid–liquid interface is Tm everywhere, including the tip. Now, in order to

compare the temperature gradient in front of the tip and that in front of a point on the

flat interface, we assume a uniform temperature T∞ in the liquid, which is less than

Tm, at a distance away from the front of solidification, as depicted in Figure 1.2. The

temperature gradient in front of the tip of the protrusion is larger because x1 < x2.

Tm − T∞
x1

>
Tm − T∞

x2
(1.8)

The tip will advance into the undercooled liquid faster than the flat interface. Thus

we have dendritic growth; in other words, the flat morphology of the growth front is

unstable, and hence we have morphological instability.

However, if we assume now that the radius of the tip is of nanosize, we should

consider the effect of GT potential on melting. In Figure 1.2, we assume that the

melting point at the tip is Ti, and Ti < Tm.With respect to T∞, the temperature gradient

in front of the tip has changed. For comparison, we have now

Ti − T∞
x1

⇐==⇒
Tm − T∞

x2
(1.9)

There is the uncertainty whether the gradient in front of the tip is larger or smaller than

that in front of the flat surface. Because the radius of the tip tends to decrease with

growth, the dentritic growthwill persist. The optimal growthwas found by solving the

heat conduction equation and it occurs with the radius r= 2r*, where r* is the critical
radius of nucleation of the solid in the liquid at T∞. In the growth of thermal dendrites,

it is well known that besides primary arms, there are secondary and tertiary arms.

Lowmelting point of nanospheres may have an important application in micro-

electronic packaging technology: to lower the melting of Pb-free solder joints. In flip

chip technology, solder joints of about 100 μm in diameter are used to join Si chips
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to polymer-based substrate board. Owing to environmental concern, the microelec-

tronic industry has replaced eutectic SnPb solder by the benign Pb-free solder. The

latter, however, has a melting point about 220 ∘C, which is much higher than that of

eutectic SnPb solder at 183 ∘C. The processing temperature or the so-called reflow

temperature is about 30 ∘C above the melting point of the solder. The higher reflow

temperature of Pb-free solder has demanded the use of dielectric polymer materials

in the packaging substrate that should have a higher glass transition temperature. The

use of polymer of higher glass transition temperature increases the cost of packag-

ing. In addition, the higher reflow temperature also increases the thermal stress in

the chip-packaging structure. Thus, solder paste of nanosize particles of Pb-free sol-

der, the Sn-based solder, has been investigated for lowering the melting as well as the

reflow temperature. Nevertheless, one of the complications that needs to be overcome

is the fast oxidation of Sn nanoparticles in the solder paste.

1.4 NANOSPHERE: FEWER HOMOGENEOUS
NUCLEATION AND ITS EFFECT ON PHASE DIAGRAM

Besides melting, other phase transformation properties of nanoscale particles can

change with respect to bulk materials. We consider here the effect of nanoparticle

size on homogeneous nucleation and then on phase diagrams. Generally speaking, in

addition to pressure and temperature, GT potential will affect equilibrium solubility

or composition, as shown by GT equation below

XB,r = XB,∞ exp

(
2𝛾Ω
rkT

)
(1.10)

where XB,r and XB,∞ are the solubility of a solute at the surface of a particle of radius

r and ∞, respectively. As phase diagrams are diagrams of composition versus tem-

perature, the equilibrium phase diagrams of bulk materials will be affected when it is

applied to nanosize particles.

First, we consider the size effect on homogeneous nucleation in precipitation of

an intermetallic compound phase, that is, nucleation within a nanoparticle of a super-

saturated binary solid solution. We show that the homogeneous nucleation becomes

very difficult and even suppressed.

In the precipitation of a supersaturated binary solid solution, we start from

Figure 1.3, which is part of a bulk phase diagram of a two-phase mixture consist-

ing of a practically stoichiometric compound “i,” represented by the vertical line,

and the boundary of the saturated solid solution, represented by the curved line 1, in

Figure 1.3. When the solid solution is in the two-phase region, between the vertical

line and the curved line, precipitation of the compound can occur by nucleation and

growth.

The transformation starts from the formation of the critical nuclei of the com-

pound phase in the supersaturated solution. For simplicity, we take the nuclei to be

spherical. The change of the system’s Gibbs free energy because of the nucleation of
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Figure 1.3 Part of a bulk phase

diagram of a two-phase mixture

consisting of a practically

stoichiometric compound “i,” the

vertical line, and the saturated solid

solution, the curved line 1. The broken

curve represents the displacement of

line 1 due to nanosize solid solution; it

narrows down the two-phase region.

the compound sphere with radius r is

ΔG (r) = −Δg ⋅
(4∕3) ⋅ 𝜋r3

Ω
+ 𝛾 ⋅ 4𝜋r2 (1.11)

Here ((4∕3) ⋅ 𝜋r3)∕Ω = n is the number of atoms in the spherical nucleus of radius r,
Ω is atomic volume, Δg is a bulk driving force per one atom of the nucleus (the gain

in energy per atom in the transformation), and 𝛾 is surface energy per unit area of the

nucleus. The driving force, Δg, for macroscopic samples, can be calculated from the

construction shown in Figure 1.4 and it is equal to

Δg = gα(C) + (Ci − C)
𝜕gα
𝜕C

||||C − gi (1.12)

Cbin C Ci

C

g

i

α

Δg

Figure 1.4 The driving force, Δg, for
macroscopic samples, can be calculated

from the tangent construction as shown.

Qualitative concentration dependence

of the Gibbs free energy per atom of

parent phase 𝛼 and of line compound

phase i with Ci = 1∕2. Composition

Cbin of the bulk parent phase in the

equilibrium with intermediate phase is

determined by the common tangent.

The driving force Δg of the bulk
transformation is determined by the

supersaturation magnitude.
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Dependence of ΔG(r) on r has a maximum (nucleation barrier) at the critical size, at

which the first derivative dΔG(r)∕dr is equal to zero. We obtain

rcr =
2𝛾Ω
Δg

(1.13)

and the height of the nucleation barrier is

ΔG∗ = ΔG(rcr) = −Δg ⋅
(4∕3) ⋅ 𝜋r3cr

Ω
+ 𝛾 ⋅ 4𝜋r2cr =

1

3
𝛾 ⋅ 4𝜋r2cr (1.14)

The formation of the critical nucleus of the compound with a fixed composition, ci,
needs the fixed number of the solute atoms or B atoms as given below.

Ncr
B = Ci ⋅ ncr = Ci ⋅

4𝜋r3cr
3Ω

= Ci ⋅
4𝜋

3Ω
⋅
(
2𝛾Ω
Δg

)3

(1.15)

where ncr is the total number of atoms in the critical nucleus. If the precipitation

proceeds within a limited volume (nanoparticle), we clearly need to consider the lim-

itation due to the fact that a nanoparticle has a finite total number of B atoms;

Ntot
B = C ⋅ N = C

(4∕3) ⋅ 𝜋R3

Ω

where C is the fraction of B atoms in the nanoparticle, and R is the radius of the

nanoparticle, and N is the total number of atoms in the nanoparticle of radius R. Thus,
nucleation (and the transformation as a whole) becomes impossible if

Ci ⋅
4𝜋r3cr
3Ω

> C ⋅
4𝜋R3

3Ω
⇐==⇒ R <

(
Ci

C

)1∕3
rcr (1.16)

For example, if rcr = 1nm, Ci = 1∕2, C = 0.02, then nanoparticle of sufficiently

small size, R <≈ 3nm, cannot have homogeneous nucleation as considered above.

Moreover, we expect that even for larger sizes, when nucleation is theoretically pos-

sible, the barrier will be high, making the probability of transformation practically

impossible. In order to make nucleation possible, we need to increase the concentra-

tion of B atoms in the nanoparticle, in turn, we have to move the phase boundary of

nanoparticles to a much higher concentration. Combining with a lower melting point

of the nano compound phase, we show in Figure 1.3 the phase boundary of nanopar-

ticles by the broken curve, line 2. The two-phase region for nanoparticles is actually

narrower than that of the bulk phase.

The above consideration is based on homogeneous nucleation; however, we

have to consider heterogeneous nucleation in nanoparticles. Nevertheless, it is known

that the crystallization temperature in small droplets of high purity water can be low-

ered because of the suppression of heterogeneous nucleation as well as the difficulty

of homogeneous nucleation. If we assume a high-purity nanoparticle and also assume

that the surface energy of the compound phase is higher than that of the nano solid

solution phase, the heterogeneous nucleation can be ignored.
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1.5 NANOSPHERE: KIRKENDALL EFFECT AND
INSTABILITY OF HOLLOW NANOSPHERES

Hollow nanoparticles of CoO or Co3S4 were formed when Co nanoparticles were

annealed in oxygen or sulfur atmosphere, respectively [2]. The formation of the hol-

low nanoparticles was explained on the basis of Kirkendall effect by assuming that

the out-diffusion of Co is faster than the in-diffusion of oxygen or sulfur during the

annealing. We recall that the Kirkendall effect was originally observed in bulk dif-

fusion couple of Cu and CuZn [3]. Markers of Mo wire were placed at the original

interface between the Cu and the CuZn. After interdiffusion, the markers were found

to have moved into CuZn, indicating that the Zn atomic flux (JA) is greater than that
of Cu atomic flux (JB). The unbalance of the two atomic fluxes in the interdiffusion

has to be balanced by a flux of vacancies,

JV = JA–JB

which is directed toward the faster diffusing component. (Here we took the absolute

values of the fluxes, to show explicitly that the vacancy flux is the difference of two

atomic fluxes by absolute value.) Thus, to have void formation within a nanoparticle,

we should place the faster diffusing component inside.

The flux of vacancy may or may not lead to void formation. When the vacancy

concentration is assumed to be equilibrium everywhere in the bulk diffusion cou-

ple, no void forms. Indeed, in Darken’s analysis of interdiffusion, there is no void

formation because he has assumed that vacancy is in equilibrium everywhere in the

diffusion couple. This is because the nucleation of a void requires the supersaturation

of vacancy “vapor” or, in other words, the nonequilibrium vacancies.

In a nanosphere, the confinement of vacancies within the spherical shell struc-

ture will enable vacancies to accumulate and reach the supersaturation needed to

nucleate a void. However, when we consider interdiffusion in a nanosphere, besides

Kirkendall effect, we need to consider inverse Kirkendall effect, which is discussed

in Section 1.5. Now we consider the role of curvature or the GT effect on the stability

of a hollow nanosphere.

Figure 1.5a is a schematic diagram of the cross-section of a hollow nanosphere

of a pure phase, in which r1 and r2 are the inner and outer radius, respectively. If we

consider GT potential of both surfaces, an atom as well as a vacancy in the hollow

sphere will be driven to diffuse by the potential gradient between the two surfaces.

Here we take three approaches to consider the instability issue.

First, the inner surface has a negative curvature, but the outer surface has a

positive curvature. The chemical potential of atoms near r1 and r2 are

𝜇1

(
= 𝜇0 +

2𝛾

−r1
Ω
)

< 𝜇2

(
= 𝜇0 +

2𝛾

r2
Ω
)

(1.17)

where 𝜇0 refers to the chemical potential of atoms in bulk materials. Under the poten-

tial gradient, atoms will diffuse from the outer surface to the inner surface, and the

vacancies will diffuse in the opposite direction, leading to the elimination of the void
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Figure 1.5 (a) A schematic diagram of the cross-section of a hollow nanosphere, in which

r1 and r2 are the inner and outer radius, respectively. (b) A schematic diagram depicts the

vacancy gradient across the shell of the hollow nanosphere.

and to transform the hollow nanosphere to a compact nanosphere finally. Figure 1.5b

depicts the vacancy gradient across the shell of the hollow nanosphere.While vacancy

concentration gradient inside the shell must be hyperbolic, to be shown later, we

approximate it by a straight line because the distance is very short.

The second way is to look at the vacancy gradient by considering the radial

stress potential difference between the inner and the outer surface. Because surface

energy is positive, both surfaces tend to shrink. The tendency of shrinking of the

inner surface exerts a radial tensile stress in the region near the inner surface.

Following the Nabarro–Herring model of stress potential in analyzing creep, under

tension, it is easier to form vacancies in the tensile region because the formation of a

vacancy requires breaking bonds and it is easier to break those bonds that are already

stretched under tension. Thus there are more vacancies near the inner surface with

respect to the equilibrium vacancy concentration in a region without hydrostatic

pressure or stress. In comparison, the outer surface exerts a radial compressive stress

to atoms nearby, so there are fewer vacancies. Thus, the vacancy concentration

gradient as shown in Figure 1.5b will lead to the diffusion of vacancies from the

inner surface to the outer surface.

To avoid misunderstanding, one should remember that even in case of tensile

stresses at inner surface and compressive stresses at external surface, the gradient of

hydrostatic stress (one-third of the trace of stress tensor) inside spherical or cylindri-

cal layer is zero. (Radial component changes, two tangential components change, and

their sum is the same in each point inside shell.) There is no hydrostatic stress gradi-

ent inside shell; there is just difference of vacancy concentrations at the boundaries:

vacancies diffuse from the inner boundary to the external one not because of some

mechanical force, but due to entropic reasons – they diffuse from place with higher

concentration (in the vicinity of inner boundary) to the place with lower concentration

(in the vicinity of external boundary).

The third way is to examine the work done to form a vacancy in the inner as well

as the outer surfaces. In this case, we first consider the formation of a vacancy near the

inner surface. We remove an atom near the inner surface in order to leave a vacancy

there, and we place the atom on the inner surface, meaning a shrinking of the inner

surface (decrease of surface energy). Indeed, if we imagine that the atom of volume

Ω is taken from the “bulk” and is “smeared” over the inner spherical surface of radius
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r1, then this radius should be reduced by dr1 = −Ω∕4𝜋r2
1
. The corresponding change

of surface energy or work done for the formation of such a vacancy is d(𝛾 ⋅ 4𝜋r2
1
) =

𝛾8𝜋r1dr1 = 𝛾8𝜋r1 ⋅ (−Ω∕4𝜋r21) = −2𝛾Ω∕r1. Similarly, we can obtain the change of

surface energy or work done due to the formation of a vacancy near the outer surface,

and it is positive and equal to 2𝛾Ω∕r2. It means that it is easier to form a vacancy near

the inner surface than that in the outer surface. The equilibrium vacancy concentration

near the inner and the outer surfaces are, respectively,

Ceq

V
(r1) = exp

(
−
(
E∞
V
−
(
2𝛾Ω∕r1

))
kT

)
= Ceq

V
exp

(
2𝛾Ω
kTr1

)
and

Ceq

V
(r2) = exp

(
−
(
E∞
V
+
(
2𝛾Ω∕r2

))
kT

)
= Ceq

V
exp

(
− 2𝛾Ω
kTr2

)
(1.18)

where Ceq

V
is the equilibrium vacancy concentration in the bulk. Thus, the vacancy

concentration gradient as shown in Figure 1.5b, will lead to the diffusion of vacancies

from the inner surface to the outer surface.

The overall result is in agreement with an energy consideration based on the

total surface area. By conservation of volume, we have for the transformation of a

hollow sphere to a solid sphere,

4

3
𝜋r3

2
− 4

3
𝜋r3

1
= 4

3
𝜋r3

0

where r0 is the radius of the solid sphere. The reduction in surface area will be

4𝜋r2
0
< 4𝜋(r2

2
+ r2

1
)

In the hollow shell structure as shown in Figure 1.5a, we cannot define what

is the equilibrium concentration of vacancies. As there are two surfaces with differ-

ent potential to serve as references for source and sink of vacancies, no equilibrium

vacancy concentration can be given. System will reach equilibrium vacancy concen-

tration only after reaching equilibrium shape, which is after the collapse of a hollow

shell into a compact particle. This is unique in a hollow nanosphere. If we assign a

vacancy concentration corresponding to the equilibrium vacancy concentration with

respect to a planar surface in a bulk sample, Ceq

V
, it is between the vacancy concen-

tration at r1 and r2.
If we anneal the hollow nanosphere at a high temperature to enhance diffusion,

the void at the core of the nanosphere will disappear. To estimate the time scale for the

filling of a hollow nanosphere, a single elemental phase is assumed for simplicity. If

the inner and outer radii of the shell are not too small (ri ≫ (2𝛾Ω∕kT) ≡ 𝛽), then the

exponents in the above equations can be expanded, so that we can take the vacancy
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concentration near the inner surface, r1, and the outer surface, r2, respectively, to be

Cv(r1) = Ceq
v

(
1 + 𝛽

r1

)
Cv(r2) = Ceq

v

(
1 − 𝛽

r2

)
(1.19)

where 𝛽 = 2𝛾Ω/kT, and 𝛾 is the surface energy per unit area,Ω is atomic volume, and

kT has the usual meaning. We show here that we can use the vacancy concentrations

in Eq. (1.19) as the boundary conditions for the diffusion equation in the nanosphere.

In spherical coordinates and if we assume a steady state process, the diffusion

equation can be expressed as

∇2C = 𝜕2C
𝜕r2

+ 2

r
𝜕C
𝜕r

= 1

r2
𝜕

𝜕r

(
r2
𝜕C
𝜕r

)
= 0 (1.20)

which means

r2
𝜕C
𝜕r

= const = −B, dC = −Bdr
r2

By integration, we obtain the solution of the diffusion equation to be C(r)=B/r+A.
By using Eq. (1.19) as boundary conditions, we have

Cv(r1) =
B
r1

+ A = Ceq
v

(
1 + 𝛽

r1

)
Cv(r2) =

B
r2

+ A = Ceq
v

(
1 − 𝛽

r2

)
By solving the last two equations for A and B, we have

B = Ceq
v 𝛽

r2 + r1
r2 − r1

A = Ceq
v

(
1 − 2𝛽

r2 − r1

)
So we obtain the concentration profile of vacancies as [4],

Cv(r) = Ceq
v 𝛽

(
r2 + r1
r2 − r1

)
1

r
+ Ceq

v 𝛽

(
− 2

r2 − r1

)
+ Ceq

v (1.21)

Knowing Cv(r), we can calculate its first derivative at r1. Then, using Fick’s first law
of diffusion, we obtain the total flux of vacancies, J, leaving (or atoms arriving at) at

the spherical surface of r1. The volume of the void is V= (4/3)𝜋(r1)
3, the number of

atoms needed to fill the void is N=V/Ω, where Ω is the atomic volume. We can take

N= JA′t, where A′ the surface area of the void and t is time, but A′ is shrinking with

time; instead, we can take N = Jt, where J is an average total flux during shrinking
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and t is the shrinkage time, and the time needed to fill the void can be estimated

roughly to be

t ≅ kT
A𝛾DΩ

r3
1

(1.22)

where A is a constant of the order of 10, and D ≈ DvC
eq
v is the self-diffusion coeffi-

cient of the atoms in the nanosphere.

If we take Au as an example because we know its surface energy and

self-diffusivity very well, 𝛾 = 1400 erg/cm2 and D= 0.1× exp −(1.8 eV)/kT cm2/s.

Assume a hollow nanosphere having r1 = 30 nm and r2 = 60 nm, it will take about

5× 103 s at 400 ∘C to transform the hollow nanosphere to a solid nanosphere.

In the case where the hollow particles has r1 = 3 nm and r2 = 6 nm, the required

transformation time is only a few seconds.

We can simplify the above analysis, without solving the diffusion equation in

spherical coordinates, by assuming that the vacancy flux is steady because the thick-

ness of the nanoshell is extremely small, and thus the vacancy flux is given as

JV = −DV

ΔCV

Δr
= −DVC

eq

V

(1 + (𝛽∕r1)) − (1 − (𝛽∕r2))
r1 − r2

= −DVC
eq

V
𝛽
((1∕r1) + (1∕r2))

r1 − r2

= DVC
eq

V

2𝛾Ω
kT

(
1

r1
+ 1

r2

)
1

Δr
(1.23)

where 𝛽 = 2𝛾Ω∕kT andΔr = r2 − r1. Then we assume this average vacancy flux will

remove the void in time “t” and we take (4∕3)(𝜋r3
1
)(1∕Ω) = JV(4𝜋r21)t. We reach the

same conclusion as that given by Eq. (1.22).

We can have several kinds of nano hollow spheres; they are a pure element,

an intermetallic compound phase, an alloy phase, and a coaxial bilayer structure. We

have discussed here the kinetic behavior of nano hollow spheres of a pure element. In

the following section, we consider nano hollow spheres of an alloy or solid solution

phase for the consideration of inverse Kirkendall effect. Then we study the nano hol-

low spheres having a coaxial bilayer structure for the consideration of interdiffusion.

More detailed studies are presented in Chapter 3.

1.6 NANOSPHERE: INVERSE KIRKENDALL EFFECT
IN HOLLOW NANO ALLOY SPHERES

If the hollow nanosphere is an alloy phase, the vacancy diffusion as discussed in

the previous section will induce the inverse Kirkendall effect. The classic Kirkendall

effect of interdiffusion in a diffusion couple of A and B showed that when the flux

of A is not equal (by absolute value) to the counter flux of B, a vacancy flux will

be generated to balance the interdiffusion. The inverse Kirkendall effect refers to the

effect when a preexisting vacancy flux (generated by some external force) affects the
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AB alloy

ri

re

Figure 1.6 A schematic diagram depicts a homogeneous AB

alloy with a hollow shell structure. A vacancy gradient exists

and the vacancy diffusion from the inner side to the outer

side, and consequently, will lead to dealloying when the

intrinsic diffusion of A and B is different.

interdiffusion of A and B in a homogeneous alloy of AB. A classic example is the

irradiation of a homogeneous alloy in a nuclear reactor. Under irradiation, segregation

in a homogeneous AB alloy occurs and the alloy becomes inhomogeneous because

the irradiation has produced excess vacancies and in turn a flux of vacancy in the

alloy. The diffusion of the vacancies has led to the interdiffusion and segregation of

A and B in the homogeneous alloy.

We consider a homogeneous AB alloy with a hollow shell structure, as shown in

Figure 1.6. When such a hollow nanoshell is annealed at a constant temperature, deal-

loying or segregation of A and B occurs. This is different from thermomigration or the

Soret effect, which occurs when a homogeneous alloy is annealed in a temperature

gradient. The segregation in the nano shell alloy takes place isothermally, so there is

no temperature gradient. Following GT effect, there will be a higher vacancy concen-

tration near the inner shell surface than that near the outer shell surface. Because of the

vacancy concentration gradient, a vacancy flux exists, and the diffusion of vacancies

will affect the diffusion of A and B atoms. If we assume that the intrinsic diffusivity

of A and B are different, it leads to dealloying or segregation in the hollow alloy shell.

The faster diffusing species will segregate to the inner shell and create a gradient of

chemical potential to retard the vacancy flux. The diffusion of A and B is uphill. Pro-

vided that the vacancy potential is larger than the counterpotential of dealloying, the

hollow alloy shell will eventually transform to a solid nanosphere in order to reduce

the total surface area, but the rate is typically slower than that of a pure phase. The

kinetic analysis is presented in Chapter 3.

1.7 NANOSPHERE: COMBINING KIRKENDALL EFFECT
AND INVERSE KIRKENDALL EFFECT ON CONCENTRIC
BILAYER HOLLOW NANOSPHERE

When we consider the interdiffusion of A and B in a planar two-layer structure as

shown in Figure 1.7a, we have only the Kirkendall effect when the atomic fluxes of

A and B are unequal. When we bend the planar bilayer into a nano shell having a

coaxial bilayer structure, as shown in Figure 1.7b, the Kirkendall effect and inverse

Kirkendall effect coexist [5]. How they interact with each other is not straightforward

and it requires a careful analysis.

If A is the outer layer and B is the inner layer and if the flux of A, JA, is bigger
than the flux of B, JB, the balancing vacancy flux, JV, due to Kirkendall effect, will


