COMPUTATIONAL INTERGENCE THEORY AND APPLICATIONS

AMAGENERAL

Edited By T. Ananth Kumar E. Golden Julie Venkata Raghuveer Burugadda Abhishek Kumar Puneet Kumar

VILEY

028

Brinnam

DIDAO

Diabil

J 1

Scrivener Publishing

100 Cummings Center, Suite 541J Beverly, MA 01915-6106

Publishers at Scrivener Martin Scrivener (martin@scrivenerpublishing.com) Phillip Carmical (pcarmical@scrivenerpublishing.com)

Theory and Applications

Edited by T. Ananth Kumar E. Golden Julie Venkata Raghuveer Burugadda Abhishek Kumar

and

Puneet Kumar

This edition first published 2024 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA © 2024 Scrivener Publishing LLC

For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

ISBN 978-1-394-21422-8

Front cover images supplied by Adobe Firefly Cover design by Russell Richardson

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

Printed in the USA

10 9 8 7 6 5 4 3 2 1

Contents

Int	trodu	ction			xvii	
1	Con S. Ja	nputati <i>iisiva</i> , (ional Inte C. Kumai	elligence Theory: An Orientation Technique ; S. Sakthiya Ram, C. Sakthi Gokul Rajan	e 1	
	and P. Praveen Kumar					
	1.1	Comp	outational	Intelligence	2	
	1.2	Appli	cation Fie	elds for Computational Intelligence	4	
		1.2.1	Neural 1	Networks	4	
			1.2.1.1	Classification	4	
			1.2.1.2	Clustering or Compression	5	
			1.2.1.3	Generation of Sequences or Patterns	5	
			1.2.1.4	Control Systems	5	
			1.2.1.5	Evolutionary Computation	6	
		1.2.2	Fuzzy L	ogic	6	
			1.2.2.1	Fuzzy Control Systems	6	
			1.2.2.2	Fuzzy Systems	6	
			1.2.2.3	Behavioral Motivations for Fuzzy Logic	7	
	1.3	Comp	outational	Intelligence Paradigms	7	
		1.3.1	Artificia	l Neural Networks	7	
		1.3.2	Evolutio	onary Computation (EC)	10	
		1.3.3	Optimiz	zation Method	11	
			1.3.3.1	Optimization	11	
	1.4	Archi	tecture A	ssortment	12	
		1.4.1	Swarm I	Intelligence	14	
		1.4.2	Artificia	l Immune Systems	14	
	1.5	Myth	s About C	Computational Intelligence	15	
	1.6	Super	vised Lea	rning in Computational Intelligence	16	
		1.6.1	Perform	ance Measures	17	
			1.6.1.1	Accuracy	17	
			1.6.1.2	Complexity	18	
			1.6.1.3	Convergence	19	

		1.6.2 Performance Factors	19
		1.6.2.1 Data Preparation	19
		1.6.2.2 Scaling and Normalization	19
		1.6.2.3 Learning Rate and Momentum	20
		1.6.2.4 Learning Rate	20
		1.6.2.5 Noise Injection	20
	1.7	Training Set Manipulation	21
	1.8	Conclusion	21
		References	21
2	Nat	ture-Inspired Algorithms for Computational Intelligence	
	The	eory—A State-of-the-Art Review	25
	B. A	Akoramurthy, K. Dhivya and B. Surendiran	
	2.1	Introduction	25
	2.2	Related Works	27
	2.3	Optimization and Its Algorithms	28
		2.3.1 Definition	28
		2.3.2 Mathematical Notations	28
		2.3.3 Gradient-Based Algorithms	29
		2.3.4 Gradient-Free Optimizers or Algorithms	31
	2.4	Metaheuristic Optimization Methods	32
		2.4.1 Ant Colony Algorithm	32
		2.4.1.1 Ant Colony Optimization Algorithm	32
		2.4.2 Flower Pollination Algorithm	34
		2.4.3 Genetic Algorithms	35
		2.4.4 Evolutionary Algorithm	36
		2.4.5 Method Based on Bats	37
		2.4.6 Cuckoo Searching Method	38
		2.4.7 Firefly Algorithm	39
		2.4.8 Particle Swarm Optimization Algorithm	41
		2.4.9 Krill Herd Algorithm	42
	2.5	2.4.10 Artificial Bee Colony (ABC)	43
	2.5	Computational and Autonomous Systems	44
		2.5.1 Computational Features of Nature-Inspired	
		Computing	44
		2.5.2 Comparison with Legacy Algorithms	45
	26	2.5.5 Autonomous Criticality Systems	46
	2.6	Diffesoived issues for Continued Study	4/
		Keierences	49

3	AI-I	Based (Computational Intelligence Theory	53		
	Jand	ı Selvag	ganesan, S. Arunmozhiselvi, E. Preethi			
	and	S. Than	ngam			
	3.1	Computational Intelligence				
	3.2	Design	ning Expert Systems	55		
		3.2.1	Characteristics	56		
	3.3	Core	of Computational Intelligence	56		
		3.3.1	Artificial Intelligence (AI)	56		
		3.3.2	Machine Learning (ML)	57		
		3.3.3	Neural Networks	57		
		3.3.4	Evolutionary Computation	58		
		3.3.5	Fuzzy Systems	58		
		3.3.6	Swarm Intelligence	59		
		3.3.7	Bayesian Networks	60		
		3.3.8	Optimization Techniques	60		
		3.3.9	Data Mining and Pattern Recognition	60		
		3.3.10	Decision Support Systems	61		
		3.3.11	Hybrid Approaches	61		
	3.4	Resear	rch and Development	62		
		3.4.1	Government Plans in Enriching AI-Based			
			Computational Intelligence Theory	62		
			3.4.1.1 Funding and Research Initiatives	62		
			3.4.1.2 Policy and Regulation	62		
			3.4.1.3 Standards and Interoperability	63		
			3.4.1.4 Education and Workforce Development	63		
			3.4.1.5 Industry Collaboration and Partnerships	63		
			3.4.1.6 Ethical Guidelines and Responsible AI	63		
			3.4.1.7 International Collaboration and Governance	64		
	3.5	New (Opportunities and Challenges	64		
		3.5.1	Explainable AI (XAI)	64		
		3.5.2	Adversarial Machine Learning	65		
		3.5.3	AI for Edge Computing	65		
		3.5.4	Continual Learning	67		
		3.5.5	Meta-Learning	68		
		3.5.6	AI for Cybersecurity	69		
		3.5.7	AI for Healthcare	70		
			3.5.7.1 AI for Healthcare-Based Recommendation			
			System	72		
		3.5.8	Responsible AI	72		
		3.5.9	AI and Robotics Integration	73		

		3.5.10	AI for Sustainability and Climate Change	74
		3.5.11	Quantum Computing and AI	75
		3.5.12	Human-AI Collaboration	76
	3.6	Applic	cations	77
		3.6.1	Google-Waymo Car	77
		3.6.2	ChatGPT	79
		3.6.3	Boston Dynamics' Atlas	80
		3.6.4	Netflix	81
		3.6.5	Trinetra	82
		3.6.6	Voice-Activated Backpack	83
	3.7	Case S	tudy: YOLO v7 for Object Detection in TensorFlow	84
		3.7.1	YOLO v7	84
		3.7.2	Working and Its Features	85
		3.7.3	Configuration to Deploy YOLO V7	87
	3.8	Result	S	88
	3.9	Perfor	mance Analysis	89
	3.10	Challe	nges in Automation	91
		3.10.1	Marching Towards Solution	92
	3.11	Conclu	usion	93
		Refere	nces	93
4	Info	rmatio	n Processing, Learning, and Its Artificial Intelligence	97
	P. Pı	aveenk	umar, Pragati M., Prathiba S., Mirthulaa G.,	
	Supr	iya P.,	Jayashree B. and Jayasri R.	
	4.1	Introd	uction—Artificial Intelligence	98
	4.2	Artific	ial Intelligence and Its Learning	99
	4.3	Artific	ial Intelligence's Effects on IT	100
	4.4	Examp	ples of Artificial Intelligence	101
		4.4.1	Smart Learning Content	101
		4.4.2	Intelligent Tutorial System Future	103
		4.4.3	Virtual Facilitators and Learning Environment	104
		4.4.4	Content Analytics	105
	4.5	Data F	Processing and AI in Human-Centered Manufacturing	106
	4.6	Inform	nation Learning	107
		4.6.1	Information Learning Through AI—Chatbots	107
		4.6.2	Information Learning Through AI—Virtual Reality	
			(VR)	108
		4.6.3	Information Learning Through AI—Management	
			ot Learning (LMS)	110

		4.6.5	AI Invoi	ce Processing is Not Fantastical—	
			It is Fan	tastic	113
	4.7	Resul	ts		113
	4.8	Conc	lusion		114
		Refer	ences		114
5	Cor	nputat	ional Inte	elligence Approach for Exploration	
	of S	patial	Co-Locat	ion Patterns	117
	S. L	ourdul	Marie Sop	hie, S. Siva Sathya, S. Sharmiladevi	
	and	J. Dha	kshayani		
	5.1	Intro	luction		118
	5.2	Spatia	al Data M	ining	120
		5.2.1	Spatial C	Co-Location Pattern Mining	120
	5.3	Prelir	ninaries		123
		5.3.1	Basic Co	oncepts	123
			5.3.1.1	Feature Instance	124
			5.3.1.2	Participation Ratio (PR)	124
			5.3.1.3	Participation Index (PI)	125
			5.3.1.4	Neighbor Relation	125
			5.3.1.5	Conditional Neighborhood	126
		5.3.2	Apache	Hadoop—MapReduce	126
		5.3.3	Related	Work	128
	5.4	Propo	osed Grid	-Conditional Neighborhood Algorithm	130
		5.4.1	Module	Description	131
			5.4.1.1	Search Neighbor	131
			5.4.1.2	Group Neighbors	132
			5.4.1.3	Pattern Search	133
			5.4.1.4	Top K Pattern Generation	133
	5.5	Expe	rimental S	Setup and Analysis	134
		5.5.1	Dataset	Used	134
		5.5.2	Perform	ance Analysis	136
	5.6	Discu	ssion and	Conclusion	138
		Refer	ences		140
6	Cor	nputat	ional Inte	elligence-Based Optimal Feature	
	Sele	ction 7	ſechnique	es for Detecting Plant Diseases	145
	Kar	thickm	anoj R., S	S. Aasha Nandhini and T. Sasilatha	
	6.1	Intro	duction		145
	6.2	Litera	ture Surv	ey	146
	6.3	Propo	osed Fram	nework	151
	6.4	Simu	ation Res	ults	152

x Contents

	6.5	Summary	156
		References	156
7	Prot	ein Structure Prediction Using Convolutional Neural	
,	Net	works Augmented with Cellular Automata	159
	Pok	kuluri Kiran Sree, Prasun Chakraharti, Martin Margala	107
	and	SSSN Usha Devi N.	
	7.1	Introduction	160
	7.2	Methods	162
	7.3	Design of the Model	164
	7.4	Results and Comparisons	167
	7.5	Conclusion	172
		References	172
8	Мос	leling and Approximating Renewable Energy Systems	
	Usir	ng Computational Intelligence	175
	<i>B. B</i>	alaji, P. Hemalatha, T. Rampradesh, G. Anbarasi	
	and	A. Eswari	
	8.1	Introduction	176
	8.2	Expert System	178
	8.3	Artificial Neural Networks	179
	8.4	ANN in Renewable Energy Systems	182
	8.5	Conclusion	185
		References	186
9	Con	nputational Intelligence and Deep Learning in Health	
	Info	rmatics: An Introductory Perspective	189
	J. N	askath, R. Rajakumari, Hamza Aldabbas	
	and	Zaid Mustafa	
	9.1	Introduction	190
	9.2	Mobile Application in Health Informatics Using Deep	
		Learning	191
	9.3	Health Informatics Wearables Using Deep Learning	197
	9.4	Electroencephalogram	202
	9.5	Conclusion	203
		References	207
10	Con	nputational Intelligence for Human Activity	
	Rec	ognition (HAR)	213
	Tha	ngapriya and Nancy Jasmine Goldena	
	10.1	Introduction	214
	10.2	Fuzzy Logic in Human Judgment and Decision-Making	215

		10.2.1	FL Algorithm	216
		10.2.2	Applications of FL	217
		10.2.3	Advantages of FL	217
		10.2.4	Disadvantages of FL	218
		10.2.5	Utilizing FLS and FIS in HAR Research	
			and Health Monitoring	218
	10.3	Artifici	al Neural Networks: From Perceptrons to Modern	
		Applica	ations	219
		10.3.1	ANN Algorithm	221
		10.3.2	Applications of ANN	222
		10.3.3	Advantages of ANN	222
		10.3.4	Disadvantages of ANN	222
		10.3.5	Artificial Neural Networks in HAR Research	223
	10.4	Swarm	Intelligence	223
		10.4.1	SI Algorithm	224
		10.4.2	Applications of SI	224
		10.4.3	Advantages of SI	225
		10.4.4	Disadvantages of SI	225
		10.4.5	Swarm Intelligence Techniques in HAR Research	225
	10.5	Evoluti	onary Computing	226
		10.5.1	EC Algorithm	226
		10.5.2	Applications of EC	227
		10.5.3	Advantages of EC	228
		10.5.4	Disadvantages of EC	228
		10.5.5	Harnessing Evolutionary Computation for HAR	
			Research	228
	10.6	Artifici	ial Immune System	228
		10.6.1	AIS Algorithm	229
		10.6.2	Applications of AIS	230
		10.6.3	Advantages of AIS	230
		10.6.4	Disadvantages of AIS	230
		10.6.5	Harnessing AIS for Preventive Measures	231
	10.7	Conclu	ision	231
		Referei	nces	232
11	Com	putation	nal Intelligence for Multimodal Analysis	
	of Hi	gh-Dim	ensional Image Processing in Clinical Settings	235
	B. Ba	laii. P. F	Pugazhendiran, N. Sivanantham, N. Velammal	_00
	and F	P. Vimal	a	
	11.1	Basics	of Machine Learning	236
	11.2	Feature	e Extraction	237

	11.3	Selectio	on of Features	238
	11.4	Statistic	al Classifiers	239
	11.5	Neural	Networks	242
	11.6	Biomet	ric Analysis	244
	11.7	Data fro	om High-Resolution Medical Imaging	251
	11.8	Compu	tational Architectures	255
	11.9	Timing	and Uncertainty	256
	11.10	AI and	Risk of Harm	258
	11.11	Conclus	sion	259
		Referen	ces	259
12	A Rev	view of C	Computational Intelligence-Based Biometric	
	Recog	gnition I	Methods	263
	T. Ila	mParith	i, K. Antony Sudha and D. Jessintha	
	12.1	Introdu	ction	263
		12.1.1	Objective	264
	12.2	Compu	tational Intelligence	264
	12.3	CI-Base	ed Biometric Recognition	266
		12.3.1	Acquisition	266
		12.3.2	Segmentation	266
		12.3.3	Quality Assessment	269
		12.3.4	Enhancement	270
		12.3.5	Feature Extraction	270
		12.3.6	Matching	271
		12.3.7	Classification	272
		12.3.8	Score Normalization	272
		12.3.9	Anti-Spoofing	272
		12.3.10	Privacy	273
	12.4	Applica	tions	273
		12.4.1	Business	273
		12.4.2	Education	274
		12.4.3	Military	275
		12.4.4	Health Care	276
		12.4.5	Banking	276
	12.5	Conclu	sion	277
		Referen	ces	277
13	Seein	g the Un	seen: An Automated Early Breast Cancer	
	Detec	tion Usi	ng Hyperspectral Imaging	281
	Srava	n Kuma	r Sikhakolli, Suresh Aala, Sunil Chinnadurai	
	and In	nbarasa	n Muniraj	202
	13.1	Introdu	ction	282

		13.1.1	Conventi	onal Imaging Methods for Detecting BC	283	
		13.1.2	Optical In	maging Techniques to Detect BC	284	
	13.2	Hypers	pectral Im	aging (HSI)	285	
		13.2.1	How Doe	es HSI Setup Look Like?	286	
	13.3	State-o	f-the-Art 7	Techniques for BC Detection	287	
		13.3.1	Breast Ca	ancer Ex Vivo Analysis	287	
		13.3.2	Breast Ca	ancer In Vivo Analysis	290	
	13.4	Artifici	al Intellige	nce in BC Detection Using HSI	291	
		13.4.1	Deep Lea	rning in HSI	291	
		13.4.2	Convolut	ional Neural Networks	292	
		13.4.3	Deep Bel	ief Networks Using HSI	293	
		13.4.4	Residual	Networks	293	
	13.5	Discus	sion and C	onclusion	293	
		Referer	ices		294	
14	Shede	ding Lig	ht into the	e Dark: Early Oral Cancer Detection		
	Using Hyperspectral Imaging 3					
	Sures	h Aala,	- Sravan Ku	mar Sikhakolli, Inbarasan Muniraj		
	and S	unil Ch	innadurai			
	14.1	Introdu	uction		302	
	14.2	HSI in	HNC Dete	ection	305	
	14.3	Deep L	earning in	In Vivo HSI	313	
		14.3.1	Endoscoj	pic	313	
	14.4	Conclu	sion and F	outure Research Directions	315	
		Referer	ices		316	
15	Mach	ine Lea	rning Tech	nniques for Glaucoma Screening		
	Using	, Optic l	Disc Detec	tion	321	
	V. Sul	bha, S. N	Viraja P. R	ayen and Manivanna Boopathi		
	15.1	Introdu	uction		322	
		15.1.1	Ophthalr	nic Process	324	
		15.1.2	Digital Ir	naging	324	
			15.1.2.1	Image Processing	325	
		15.1.3	Eye and I	ts Parts	326	
			15.1.3.1	Optic Disc	327	
			15.1.3.2	Aqueous Humor	327	
			15.1.3.3	Choroid	327	
			15.1.3.4	Ciliary Body	327	
			15.1.3.5	Ciliary Muscle	327	
			15.1.3.6	Iris	328	
			15.1.3.7	Pupil	328	

		15.1.3.8	Retina	328
		15.1.3.9	Photoreceptor Cells	328
		15.1.3.10	Retinal Blood Vessels	328
		15.1.3.11	Sclera	329
		15.1.3.12	Uvea	329
		15.1.3.13	Visual Axis	329
		15.1.3.14	Visual Cortex	329
		15.1.3.15	Visual Fields	329
		15.1.3.16	Vitreous	329
		15.1.3.17	Zonules	330
		15.1.3.18	Macula (Yellow Spot)	330
		15.1.3.19	Optic Nerve	330
	15.1.4	Eye Disea	ases	330
		15.1.4.1	Myopia	330
		15.1.4.2	Hyperopia	330
		15.1.4.3	Astigmatism	330
		15.1.4.4	Presbyopia	331
		15.1.4.5	Strabismus	331
		15.1.4.6	Amblyopia	331
		15.1.4.7	Cataracts	331
		15.1.4.8	Glaucoma	332
	15.1.5	Indicatio	ns of Glaucoma	332
	15.1.6	Causes of	f Glaucoma	332
		15.1.6.1	Dietary	332
		15.1.6.2	Ethnicity and Gender	332
		15.1.6.3	Genetics	333
	15.1.7	Analytica	al Methods of Glaucoma	333
15.2	Glauco	ma Screen	ing with Optic Disc and Classification	334
	15.2.1	Optic Dis	sc Detection	335
	15.2.2	Cropping	g ROI	337
	15.2.3	Optic Dis	sc Segmentation	338
	15.2.4	Optic Cu	p Segmentation	338
	15.2.5	Post-Pro	cessing	340
		15.2.5.1	Cup–Disc Ratio	340
		15.2.5.2	Evaluation of the NRR Area in the	
			ISNT Quadrants	341
		15.2.5.3	Superpixel Method	341
		15.2.5.4	Level Set Method	342

	15.3	Experi	mental Section	342
		15.3.1	Dataset Description	342
		15.3.2	Experimental Images	343
		15.3.3	Experimental Testing Phase	343
		15.3.4	Performance Analysis	344
	15.4	Conclu	ision	345
		Referen	nces	346
16	Role	of Artifi	cial Intelligence in Marketing	349
	<i>G. M</i>	urugana	ntham and R.S. Aswanth	
	16.1	Introdu	action	350
		16.1.1	Impact of AI in Marketing	351
		16.1.2	Benefits of AI in Marketing	352
		16.1.3	AI in Marketing Functions	354
		16.1.4	Applications of AI in Marketing	354
		16.1.5	Challenges of AI in Marketing	356
		16.1.6	Future of AI in Marketing	357
	16.2	New Ti	rends of AI in Marketing	358
		16.2.1	Companies Using AI in Marketing	359
	16.3	Aspect	s of AI in Marketing across Different Industries	362
	16.4	Conclu	ision	364
		Referen	nces	365
Ab	out t	he Edito	ors	369
In	dex			371

Introduction

Chapter 1 encompasses computing paradigms inspired by nature and cognition, rooted in evolution, fuzzy systems, and neural networks. Computational intelligence (CI) underpins potent AI systems, notably deep learning, a cornerstone of modern AI technology. It is the bedrock of highly effective AI systems, driving advancements like video games and cognitive development.

Chapter 2 handles merging evolutionary computation, neural networks, and fuzzy systems decades ago. Nature-inspired algorithms have evolved, proving more adaptable for optimization. Various types of these algorithms, particularly those centered on self-organizing natural communities, are actively developed. This article compares state-of-the-art optimization techniques with established gradient-based and gradient-free methods. It also identifies unresolved issues in optimization and meta-heuristics for future research.

Chapter 3 demotes AI's significance in modern industries for its robust computing capabilities, which process extensive data, yielding valuable insights and aiding decision-making. AI customizes experiences through user data analysis. Computational intelligence research benefits individuals and society, enhancing data processing for intelligent AI systems. This chapter explores various dimensions of computational intelligence, driving societal development and economic progress. It delves into hybrid models, ensemble techniques, and practical AI applications, offering insights for future researchers and scholars in advancing computational intelligence.

Chapter 4 delves into an AI system based on cognitive mechanisms for visual data processing. It explores the relationship between this model and cognitive processes, focusing on selective attention. AI is viewed as a transformative force in human-machine interaction, impacting organizational dynamics, communication, and ecosystems. While AI research can be complex, the information systems field is pivotal. The paper suggests that AI technology may surpass human instructors within a decade. Chapter 5 deals with groups of spatial co-location patterns. This work introduces a computational intelligence method employing a grid clustered technique, enhancing pattern detection. The Top-K co-location technique is used for generating highly co-located spatial patterns. Implemented on the MapReduce framework, it accelerates the processing of large spatial datasets, improving efficiency. Experimental results confirm the algorithm's effectiveness across various data sizes.

Chapter 6 introduces an efficient method for early detection and classification of plant illnesses using machine learning. Early detection of plant diseases is crucial in agriculture for increased profitability and yield protection. The approach involves capturing leaf images with a camera sensor, extracting essential features through segmentation, and utilizing SVM for disease categorization. The system's effectiveness is evaluated for both detection and classification.

Chapter 7 predicts that protein structure, a deep learning challenge, has seen notable progress, yet room for improvement remains. Deriving tertiary, secondary, and quaternary structures from the primary is complex. Convolutional neural networks (CNNs) model interactions using features like amino acid sequences. Employing data from a protein data bank, we developed CNN-CA-P, augmenting cellular automata. Achieving high accuracy (96.56% secondary, 91.2% tertiary, and 86.32% quaternary), it outperforms baseline methods, evaluated on parameters like accuracy, AUC, precision, F1 score, and recall.

Chapter 8 explores the application of artificial intelligence techniques, specifically artificial neural networks (ANNs) and expert systems (ES), in modeling and forecasting renewable energy effectiveness. It presents various problems in renewable energy engineering to showcase how these systems operate. The research demonstrates the potential of AI as a design tool across different aspects of renewable energy engineering, affirming the efficacy of neural networks in this domain.

Chapter 9 presents health informatics and a surge in data analytics driven by diverse multimodal data. This has sparked interest in tailored machine learning (ML) models. Deep learning (DL), rooted in neural networks, has emerged as a potent tool in AI, promising transformative impacts. Its capacity for complex feature enhancement and semantic analysis, coupled with computational advancements, fuels its prominence. This chapter comprehensively assesses DL's advantages, potential limitations, and prospects, particularly in health-related contexts. The investigation focuses on critical applications, spanning bioinformatics, continuous sensing, medical imaging, and public health. Chapter 10 tackles real-world issues using nature-inspired methods, distinct from formal models. CI plays a crucial role in human activity recognition (HAR), capturing activities via sensors and processing them. HAR holds vital information on identity, personality, gestures, and more, impacting interpersonal interactions. This chapter delves into CI paradigms for HAR, like fuzzy logic, artificial neural networks, swarm intelligence, evolutionary computing, and artificial immune systems. Researchers are advancing HAR with CI algorithms, showcasing CI's versatility and discussing its benefits and drawbacks in various research contexts.

Chapter 11 deals with AI with healthcare. Biomedical image processing employs image analysis, machine learning, and cloud technology. Fuzzy logic, Bayesian inference, and statistics aid medical disease detection. Overcoming challenges of high dimensionality, class imbalance, and limited databases, modern technology provides superior results. Cloud computing enables global accessibility for data storage and processing, improving diagnostic accuracy for connected diseases. AI strives for precise, comprehensive solutions in biomedical processing.

Chapter 12 deals with computational intelligence (CI) methods, including sample augmentation, feature extraction, categorization, indexing, fusion, normalization, and anti-spoofing, which are crucial in creating biometric identities and addressing dataset challenges. CI enables complex nonlinear calculations and model development from training data, employing supervised and unsupervised training. This chapter explores CI-based biometric recognition methods.

Chapter 13 deals with hyperspectral imaging (HSI), which has gained prominence, especially in biomedical fields like cancer detection. Breast cancer (BC) is a significant global health concern, with over 1.3 million cases in India. Early detection improves survival rates. Various optical techniques are employed, each with its advantages and drawbacks. Biopsies, the current validation method, are invasive. Non-invasive methods like HSI show promise. This chapter comprehensively reviews HSI for breast cancer detection, covering advanced deep-learning frameworks for automated diagnosis.

Chapter 14 also deals with healthcare and AI. Oral cancer (OC) is particularly prevalent in India, accounting for a significant percentage of cases and deaths. Early detection is crucial for survival. Various imaging techniques exist, with drawbacks. Emerging methods like hyperspectral imaging (HSI) show promise for non-invasive, safe, and precise diagnosis. HSI combined with deep learning techniques like CNNs and 3DCNNs holds potential for early OC detection. This chapter outlines these advancements and suggests future research directions. Chapter 15 deals with image processing, which plays a crucial role in human eye recognition. Prolonged computer use can lead to visual problems. Optic disc (OD) is vital for diagnosing retinal diseases. It is characterized by high fractal dimensions due to blood vessels. OD's location helps diagnose conditions like glaucoma. This screening system aids in glaucoma detection through OD segmentation. Glaucoma is a chronic eye disease causing irreversible vision loss. Retinal image features like OD, optic cup (OC), and neuro retinal rim (NRR) are crucial for disease identification. This work aims to enhance OD detection using multiple segmentation algorithms. The method involves directional matched filtering, vessel detection, and cup boundary assessment for OC segmentation. Machine learning algorithms further aid in glaucoma diagnosis. This method shows promising potential with a solid correlation to ground truth segmentation results.

Chapter 16 revolutionized AI in marketing, providing innovative ways to engage customers. It processes vast data, offering insights for tailored marketing strategies. Social media and placement automation streamlines operations, saving time and enhancing plans. AI-powered chatbots handle basic inquiries, freeing marketers. Predictive analytics use client data to forecast behavior and refine products and services. Embracing AI ensures a competitive edge in the digital landscape, enabling customized, effective marketing tactics. This chapter explores AI's role in marketing, presenting opportunities and challenges. It is a valuable resource for marketing professionals, educators, and students keen on understanding AI's impact in the field.

Computational Intelligence Theory: An Orientation Technique

S. Jaisiva^{1*}, C. Kumar², S. Sakthiya Ram³, C. Sakthi Gokul Rajan¹ and P. Praveen Kumar⁴

¹Electrical and Electronics Engineering, Sri Krishna College of Technology, Coimbatore, Tamil Nadu, India ²Electrical and Electronics Engineering, Karpagam College of Engineering, Coimbatore, Tamil Nadu, India ³Electronics and Instrumentation Engineering, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India ⁴Department of Information Technology, Sri Manakula Vinayagar Engineering College, Pondicherry, India

Abstract

The ability of a system to change its behavior to reach its objective in a variety of settings is intelligence. In reality, a different definition of computational intelligence (CI) is that it entails real-world adaption in challenging and shifting situations. In other words, it serves as a precise illustration of a notion. Adaptation and computational intelligence are intimately linked concepts. The concept, design, implementation, and advancement of computing paradigms driven by natural and cognitive motivations is known as CI. Evolutionary computation, fuzzy systems, and neural networks have historically been the three major foundations of CI. However, over time, various computing models that were inspired by nature have emerged. Sustainable smart information system, such as the creation of video games and cognitive developmental systems, heavily relies on CI. Deep learning study, especially that on deep convolutional neural networks, has exploded in recent years. Deep learning is currently the main approach for artificial intelligence. Deep learning has become the main technology for AI. In reality, CI is the foundation of some of the most effective AI systems.

^{*}Corresponding author: jaisiva1990@gmail.com

T. Ananth Kumar, E. Golden Julie, Venkata Raghuveer Burugadda, Abhishek Kumar and Puneet Kumar (eds.) Computational Intelligence: Theory and Applications, (1–24) © 2024 Scrivener Publishing LLC

Keywords: Computational intelligence, artificial intelligence, biological intelligence, neural networks, fuzzy systems, optimization, evolutionary computation

1.1 Computational Intelligence

Intelligence is a trait shared by all decision-makers with a goal. An analysis paradigm known as an artificial neural network (ANN) is loosely framed on the basis of the human brain massively parallel architecture [1]. It replicates a massively parallel, linked computing framework with a large number of very straightforward individual processing components (PEs). The phrases artificial neural network and neural network will now be used equally throughout this chapter. Fuzzies are non-statistical inexactitude and ambiguity in info, as used in this article. The majority of notions used or expressed in the real world are hazy. For instance, the sentence "It's somewhat misty outdoors right now" combines the notions of being pretty and, even before, a long period of time. (One may even contend that the term is ambiguous and inaccurate enough to be hazy.) Fuzzy sets simulate the characteristics of estimation, ambiguity, and inaccuracy. Fuzzy membership values in a fuzzy set represent the membership dimensions (or grades) of the set's components. It will be demonstrated that the fundamental concept of fuzzy set theory is a membership function, which is the same as a fuzzy set [2].

Crossover, mutations, and the survival of the fittest are examples of natural evolutionary phenomena that are incorporated into genetic algorithms, which are search algorithms. They are utilized for categorization as well as optimization more frequently. While genetic algorithms incorporate crossover, evolutionary programming approaches do not. Instead, they depend on mutation and the survival of the fittest. Comparable to genetic algorithms, evolution tactics frequently employ a distinct kind of mutation in addition to using combination to share data across members of population rather than crossover [3]. Computer programs can evolve using a technique called genetic programming. Hierarchical tree topologies are frequently used to manipulate structures. Potential solutions are dispersed throughout the problem space by particles in particle swarm optimization. The issue space's chosen locations where prior fitness values have been high are where the particles are pushed. The term "computational intelligence" refers to a computing-based methodology that gives a system the capability to gain knowledge of novel situations, giving the system the appearance of possessing one or more rational qualities including

generalization, discovery, connection, and abstraction. They are frequently made to resemble one or more characteristics of natural intelligence. In the illustration of a neural network paradigm is back-propagation, which presupposes a particular set of characteristics, such as the design and the learning algorithm [4]. A certain collection of options for each characteristic constitutes a paradigm. Introducing a separate paradigm includes putting together a group of characteristics that describe the desired behavior of the CI tool.

There are some words that should only be used with care. One such instance is neural networks, where it is important to be clear if we are taking about analytical tools for artificial neural network wetware. Let us explore the conceptual and technological underpinnings of computational intelligence tools and component approaches after providing the fundamental definitions [5]. We utilize and mention the caveat mentioned before. The creation of algorithmic models to address ever-more-complex issues is a key focus of algorithmic innovation. These clever algorithms are a subset of artificial intelligence, along with deductive reasoning, expert systems, case-based reasoning, and symbolic machine learning systems (AI). AI can be seen as a synthesis of various scientific areas, such as computer science, physiology, philosophy, sociology, and biology, just by looking at the broad range of AI methodologies [6].

Yet what exactly is intelligence? Definitions of intelligence continue to spark heated discussion. Dictionary definitions of intelligence include the capability for cognition and reason, as well as the capacity to perceive, comprehend, and benefit from experience (especially to a high degree). Innovation, ability, awareness, empathy, and instinct are other terms used to characterize characteristics of intelligence.

Can computers think for themselves? Even now, there is more disagreement over this issue than over how to define intelligence. Alan Turing gave this issue a lot of study in the middle of the 20th century. He thought it was possible to build devices that could duplicate the functions of the human brain. Turing firmly felt that a well-designed computer could perform every task that the brain was capable of. His predictions are still prophetic more than fifty years later. Smaller biological neural system components have been successfully modeled, but the complicated task of modeling is an essential component of mankind intelligence and remains unsolved [7].

The Turing test, created by Turing in 1950, is a measurement of computing intelligence. The test involved asking questions of both a person and a machine using a keyboard. The computer might be thought to be smart if the interviewer was unable to tell the computer from the person.

Turing anticipated that by the year 2000, a system will be able to compete with the testing and training of 70% chance. Has his conviction been realized? In order to avoid jumping into yet another argument, the reader is left to choose the solution to this issue. However, the information in this book may help to clarify some aspects of the response [8].

The IEEE Neural Networks Council of 1996 gave a more modern version of artificial intelligence as the research of how to get computers to perform tasks that people are good at. These processes include the AI paradigms that can generalize, synthesize, discover, and connect as well as learn novel contexts. While specific approaches and techniques from various CI paradigms have been effectively used to address issues in the real world, the current trend is to create hybridization of models because no one model is always better than the others. By doing this, we strengthen the areas where each component of the hybrid CI system excels and do away with those where it falls short. Swarm intelligence is a category of the CI concepts, despite the fact that many investigators believe they should only fall within the category of synthetic biology [9].

1.2 Application Fields for Computational Intelligence

There are applications for which every computational intelligence element technique is particularly well suited. A particular problem might be solvable by either a neural network or a fuzzy system, but at varying standards of achievement; therefore, consider the fact that main applications may intersect. It might not even be typical of all the important application fields. It is intended to give some insight into the variety of issues that have been addressed by using CI's component techniques.

1.2.1 Neural Networks

Generally speaking, neural networks are best suited for five types of applications. The first three have a connection.

1.2.1.1 Classification [10]

This section examines which of a number of predefined classes most accurately captures an input sequence. Usually, there are not many classes compared to the quantity of inputs. One illustration determines whether a specific EEG data section represents an epileptiform spike waveform. Another type of clustering is the creation of nonlinear mappings between

high-dimensional spaces by neural networks. This application area includes several forms of video image processing (such as tumor diagnosis).

1.2.1.2 Clustering or Compression

Although categorization is a part of this field, compression algorithm can also be used to describe it. Think of natural language processing as an example of how the complexity of a source is considerably decreased. Lowering the number of bits necessary to represent a data block within a specific allowed error range is another. In other words, less bytes than in the source information can be used to reproduce the original block of data within the allowed mistake.

1.2.1.3 Generation of Sequences or Patterns

In contrast to the first three, this fourth area does not entail any classification. Using examples as training data, a network creates these patterns [11]. At an instant, to duplicate a particular kind of harmonious progression, the network may be able to create "original" renditions of that style of music. Another option is to train a neural network to emulate or model anything. There may not be any "correct" solutions because the system being replicated has inherent unpredictability, yet the system can perhaps be quantitatively defined. These statistical characteristics can then be incorporated into the network simulation.

1.2.1.4 Control Systems

Among the quickest-evolving application areas for neural networks is control systems. It is being used extensively for a number of reasons. An ANN-based control system can first handle all sets of nonlinear effects. (An approximate linearity of the system is not required.) Second, when building the control system, the chaotic system can be modeled using a network. Third, compared to other, more conventional methods, developing a neural network control system often takes a lot less time. For each of the five uses, there appear to be more and more emerging every day. Some implementations are unique to a field of study [12]. EEG waveform classification and appendicitis diagnosis are two examples of fields such as medicine. Neural networks are used in accounting and commerce to process loan applications from financing companies and to trade options on commodity futures contracts. Neural networks are able to govern the locations of several cars on an interstate at once in the automotive sector.

1.2.1.5 Evolutionary Computation

Optimization and categorization are the two basic applications of evolutionary algorithms. Since optimization is the subject of the majority of engineering disciplines for evolutionary computation, optimization is the main topic of discussion in this theme.

1.2.2 Fuzzy Logic

Numerous engineering fields, including robotics and control, modeling, and geotechnical sciences, use fuzzy logic in a variety of applications. Medicine, management, decision analysis, and computer science are further application fields. Similar to neural networks, new applications pop up practically every day. Fuzzy expert networks and adaptive logic are two of the key application domains [13].

1.2.2.1 Fuzzy Control Systems

Fuzzy control systems have been used in traffic signal circuits, household appliances, video cameras, metro systems, cement kilns, and a number of automotive subsystems, along with the gearbox and emergency systems. The circuitry within a video camera that stabilizes the image despite the user's shaky hand placement is one technology that many people are familiar with. Fuzzy expert systems have been used in a variety of fields, including corporate strategy selection, industrial automation, medical diagnosis, planning, and currency trading.

1.2.2.2 Fuzzy Systems

According to conventional set theory, a component may either be a member of a set or it cannot. Similar restrictions apply to the results of an implicit learning procedure in binary-valued logic, which calls for model parameters to be either 0 or 1. Unfortunately, human logic is rarely this precise. Normally, there is a level of ambiguity in both our perceptions and thinking [14].

Probabilistic thinking is made possible by fuzzy sets and fuzzy logic. When using fuzzy sets, an element can be quite assured that it conforms to a range. Fuzzy logic enables inference of actual revelations from these ambiguous facts, each of which has a degree of certainty attached to it. In a way, rational thinking can be modeled using fuzzy sets and reasoning. Fuzzy systems have been effectively used to regulate traffic lights, lifts, cog shifting and brake mechanisms in automobiles, and many other systems.

1.2.2.3 Behavioral Motivations for Fuzzy Logic

Fuzzy systems are lacking a physiological rationale or foundation at the subcellular and cellular levels. It manifests itself in the way the creature behaves, or in how the creature engages with its surroundings. The methodologies before have a strong biological foundation, but fuzzy logic mostly works with uncertainty and vagueness. We do not exist in a universe of truth and untruth, ones and zeros, black and white, or other objective facts. Our emotions, interactions, and perceptions almost always contain a significant amount of unpredictability [15].

There are two primary categories of ambiguity. One is quantitative and is based on the probabilistic laws. The other kind of uncertainty is nonstatistical and relies on ambiguity, inaccuracy, or both. Fuzziness is a term used to describe nonprobability unpredictability. Fuzzy logic's capacity to effectively collect and manage these hazy, disorganized thoughts is one of its key characteristics.

A system's essential characteristic is fuzziness. By inspection or measurement, it is neither changed nor resolved. The representation of a complicated system can be made more tractable to analysis by accounting for some unpredictability. Thus, fuzzy logic offers a structure for the definition, description, and analysis of descriptive unpredictability. According to him, fuzziness results from a verbal lack of precision [16].

1.3 Computational Intelligence Paradigms

Artificial neural networks (NN), evolutionary computation (EC), swarm intelligence (SI), artificial immune systems (AIS), and fuzzy systems are the five basic paradigms that computational intelligence (CI) takes into account (FS). Figure 1.1 illustrates how deterministic methods are typically combined with CI approaches in addition to CI paradigms. The arrows show how different paradigm approaches can be merged to create architectures. Every CI paradigm has biochemical pathways at its foundation.

1.3.1 Artificial Neural Networks

A sophisticated, chaotic, and simultaneous computer is the nervous system. Even if events happen in the range of nanoseconds for semiconductor

Figure 1.1 Computational intelligence paradigms.

gates and milliseconds for brain systems, it can accomplish tasks like analytical thinking, vision, and motor control much more quickly than any computer. Investigation into algorithmic modeling of biological brain systems, also known as artificial neural networks, was stimulated by these traits as well as others like the capacity to learn, memorize, and still generalize (NN) [17].

The cerebral cortex is thought to contain 60 trillion interconnections and between 10 and 500 billion axons. Each of the 1000 primary modules that make up the arrangement of the neurons has about 500 neural networks. The most successful artificial neural networks (NNs) used in neural modeling today are tiny, task-specific NNs. As long as you are limited by the limits of current processing capacity and memory size, challenges are handled rather feasible with reasonable NNs. Conversely, the intellect has the capacity to solve many issues at once by utilizing different brain regions.

Neurons, often known as nerve cells, are the fundamental components of biological brain networks. A neuron comprises of an axon, dendrites, and the cell body as represented in Figure 1.2. Neurons are incredibly linked, with connections often occurring in between axon and dendrite of two different neurons. The term "synapse" refers to this link. From the synapses, signals travel to the axon and cell body, from where they spread to all associated filaments. When a nerve cell fires, a signal travels to the axon of the unit. A pulse can be either excited or inhibited by a cell. The following Figure 1.3 shows the representation of an artificial neuron, which