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Preface

The book Microbial Enzymes: Production, Purification, and Industrial Applications
provides an insight into diverse aspects of microbial enzymes, highlighting strate-
gies for their production, purification, manipulation, and elucidating multifarious
industrial applications. Microbial enzymes have played a pivotal role in several
industries, and over the years, substantial efforts have been made to reveal the hid-
den potential of untapped microbial diversity in search of a repertoire of enzymes.
A plethora of microbial enzymes have been reported so far, and efforts have been
made to incorporate many of these enzymes in this book authored by experts.
An emphasis has also been placed on discussing the recent technological inter-
ventions in microbial enzyme technology, such as metagenomics, system biology,
molecular biology, genomics, directed evolution, and bioinformatics, in this book.
The important microbial enzymes highlighted in this book include xylanases,
ureases, methane monooxygenase, polyhydroxyalkanoates, pectinases, peroxidases,
α-L-rhamnosidase, alkane hydroxylases, laccases, proteases, gallic acid decarboxy-
lase, chitinases, beta-glucosidase, lipases, inulinases, tannase, mycozyme, ACC
deaminase, and ligninolytic enzymes, among others. Few chapters are exclusively
focused on microbial enzyme intervention as an eco-friendly approach in diverse
industrial applications.

From an environmental point of view, all the recent and classic microbial
treatment technologies should be amplified to make them more viable and feasible.
Contaminate mitigation or removal using enzyme technology has become an
attractive and potential alternative in recent days. Further, recent developments in
the fields of biotechnology, molecular biology, ecology, and microbiology have been
applied to develop different novel treatment methods involving novel strains of
microorganisms with desirable properties that would be applicable in the process of
bioremediation. Various types of beneficial microbes are present in the ecosystem,
and they can play a key role in mitigating climate concern, improving green
production technology, enhancing agriculture productivity, and providing a means
of earning a livelihood. A few chapters have highlighted the omics-driven research
in microbial enzyme technology.

This book is a good collection of chapters reflecting multidimensional aspects
of microbial enzyme technology, and it will be of immense importance for stu-
dents, scientists, biotechnologists, microbiologists, and policymakers working in
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environmental microbiology, biotechnology, and environmental sciences with the
basics and advanced enzyme technology. Moreover, readers can also get state-of-
the-art or background information on existing technologies, their challenges, and
future prospects.

The editors express sincere thanks to the contributors for submitting their work
in a timely and proper manner. The editors are also thankful to national and inter-
national reviewers for their evaluation and valuable suggestions and comments to
heighten the book’s quality for readers. Further, editors also acknowledge the coop-
eration received from the Wiley team for their guidance in finalizing this book.
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1.1 Introduction

The cell wall of the plant is composed of different lignocellulosic compounds, being
the xylan the main compound of hemicellulose. This structure consists of xylose
united by β-1,4-glycosidic bonds and different branches of α-D-glucuronide, ara-
binose, galactose, acetate, methyl glucuronic acid, and other simple sugars [1, 2].
Xylanase is a group of hydrolytic enzymes involved in the hydrolysis of xylan to
convert it into monosaccharides and xylooligosaccharides. The xylanase system is
constituted by glycosyl hydrolases (endo-xylanases, exo-xylanases, β-D-xylosidases,
α-glucuronidase, and α-L-arabinofuranosidases) and esterases [3].

The heterogeneous composition of hemicellulose hampers the complete depoly-
merization by a single enzyme, requiring the action of both glycosyl hydrolases and
esterases [4]. Each enzyme of the xylanase group contributes to xylan degradation
in a specific way: endo-xylanase randomly cleaves the xylan; exo and endo xylanases
acting on the xylan backbone and producing short-chain oligomers; β-D-xylosidases
cleaves xylose monomers, α-L-arabinofuranosidases removes the side groups,
α-D-glucuronidases, and acetylxylan esterases remove acetyl and phenolic side
branches and act synergistically on the complex polymer [4, 5]. The most common
natural sources of xylanases are produced by different biological systems such as
bacteria, protozoans, fungi, plants, and mollusks. Actually, it has been reported
that xylanases have been identified from lignocellulose-degrading microbiota from
cow rumen and, the termite hindgut. There are two strategies applied to date for
microbial xylanase production, either using native microorganisms or genetic
engineering modified microorganisms [3, 4].
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Xylanase production from nonmodified fungi and bacteria must use proper
microorganisms, which should produce acceptable yields and should not produce
toxins or any other unsought products [6]. Xylanases can be produced by hydrolysis
of xylan by the microorganisms that express the enzyme gene. Nonetheless, due to
the xylan complexity, the production of this enzyme from different microorganisms
on a large-scale is hard because one of the main problems is the presence of other
enzymes. This problem is also present during the purification steps, increasing
costs. Hence, one alternative is the use of modified strains for large-scale xylanase
production [7, 8].

In the case of bacteria, the alkaline-thermostable xylanase-producing trait is useful
in most industrial applications since it reduces the steps due to the higher pH level
required for the optimal growth and activity of the microorganism [9]. Xylanases
require N-glycosylation as one of the most important posttranslational modifica-
tions; therefore, not all bacterial expression hosts are suitable, such as Escherichia
coli, which lacks the pgl gene, to produce this modification. Because of this, other
alternative expression hosts are Bacillus subtilis and Lactobacillus sp. [10, 11].

Filamentous fungi are an important option to produce high amounts of xylanases
in comparison to yeast and bacteria [12]. A problem associated with fungal xylanases
is cellulase excretion; therefore, an operational process to obtain xylanolytic systems
free of cellulases is very important in this case [13]. Another major problem associ-
ated with fungi is the reduced xylanase yield in fermenter studies, principally for
the agitation that promotes fungal disruption, leading to low productivity [14].

Some examples of xylanases-producing fungus used in industry are Penicillium
canescens, Streptomyces sp. P12–137, Thermomyces lanuginosus SD-21, Penicillium
fellutanum, Penicillium sclerotiorum, Acremonium furcatum, Aspergillus niger PPI,
Neocallimastix sp. Strain L2, Cochliobolus sativus Cs6, Bacillus circulans D1, Strep-
tomyces sp. strain Ib 24D, and Paecilomyces themophila J18. The substrate used
by these microorganisms for fermentation is derived from cereals as soya, wheat,
corn, and oat [15–25]. On the other hand, yeasts are good expression hosts due to
their ability to perform eukaryotic posttranslational modifications, high cell density
growth, and secretion of proteins into fermentation media [26, 27]. Some yeasts used
for xylanase production are Saccharomyces cerevisiae and Pichia pastoris [28, 29]

Plants are also used for xylanases production, using bio-farming. The require-
ments for this objective are (i) high-level expression, (ii) stability and functional-
ity of enzymes to be expressed, and (iii) easy purification. In planta expression of
lignocellulose-digesting enzymes from mesophilic bacteria and fungi can compro-
mise plant biomass production because of autohydrolysis of cell walls and others
such as growth, yield, germination, fertility and susceptibility of the host to disease
[30]. There are enzymes that can be used during the lignocellulose pretreatment
without losing their enzymatic activity for their hypo-thermophilic capacity [31].

Recently, there has been much industrial interest on xylanases, from native
microorganisms and recombinant hosts for different applications. For example, in
the baking industry, endo-1,4-β-xylanase from Aspergillus oryzae, B. subtilis, and
Trichoderma longibrachiatum is used for bread making, the production of maize
starch and alcohol through fermentation. Particularly, in the bread industry, the
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uses of xylanase are intended for flexibility and stabilization of dough (breaking
down polysaccharides) and improve gluten strength. This impacts the sensory
perception of bread [32].

In the animal nutrition industry, xylanases from Acidothermus cellulolyticus and
Neocallimastix patriciarum are used to reduce feed conversion rate and enhance the
digestibility of cereal feeds in poultry and ruminant [33, 34]. Lactobacillus xylanases
depolymerize hemicellulose, making silage more stable and digestible by cattle [35].
The most common uses of xylanases have been used in the paper and pulp industry
for the benefits of the quality of the products as purity, bright, and more permeabil-
ity of fiber surface and diffusion during the bleaching processes [36–38]. Due to the
current crisis of energy, the utilization of lignocellulosic agents is considered as sus-
tainable biomass to produce nonfossil fuels. These biomasses should be hydrolyzed
for bioethanol production from agricultural waste such as corncob, chili residue, rice
straw, banana peel, apple pomace, and others [3, 39–42].

Xylanases have an important role in hydrolyzing the xylan and generate value-
added products, such as xylitol. Xylitol is a sweetener used in soft drinks, candies, ice
cream, chewing gum, and various pharmaceutical products as a natural sweetener
in toothpaste [43]. Other uses have been explored, e.g., extracellular xylanase from
a culture of Aspergillus carneus M34 and used to treat xylooligosaccharide. Feruloyl
xylooligosaccharides showed antioxidative capacity in a cell model of ultraviolet B
(UVB)-induced oxidative damage, demonstrating the potential of xylanases use in
photo-protectant preparation [44].

1.2 Sources, Production, and Purification Strategies

Xylanases can be obtained in a large number of biologic systems such as fungi, bacte-
ria (Bacillus pumilus, B. subtilis, Bacillus amyloliquefaciens, Bacillus cereus, B. circu-
lans, Bacillus megatorium, Bacillotherus licheniformis, Bacillotherus sp., Streptomyces
roseiscleroticus, Streptomyces cuspidosporus, Streptomyces actuosus, Pseudonomas
sp., Clostridium absonum, and Thermoactinomyces thalophilus), yeasts, and seaweed
[45]. Some other organisms such as mycorrhizae, actinomycetes, protozoa, insects,
crustaceans, snails, and some plant seeds during the germination phase have been
identified as xylanase sources [46]. Filamentous fungi being the main producers of
xylanolytic enzymes, compared to other microorganisms [47]. In this way, xylanases
have different applications, according to the source of production and some studies
have focused on optimizing enzyme production, mainly from more powerful fungal
and bacterial strains or through mutant strains for higher enzyme production
[26, 48–50].

Fungal strains are important producers of xylanases due to their high yield and
extracellular release of enzymes. They also show greater xylanase activity than
yeast and bacteria. However, they present some characteristics that make them
little available for use in industry. Fungal xylanases cannot be used in the pulp
and paper industry because they need an alkaline pH and a temperature higher
than 60 ∘C [45]. These xylanases are efficient at temperatures below 50 ∘C and a
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pH range of 4–6. The fungal sources of xylanases are A. niger, Aspergillus fetidus,
Aspergillus brasiliensis, Aspergillus flavus, Aspergillus nidulans, Aspergillus terreus
Penicillium sp., Trichoderma reesei, T. longibrachiatum, Trichoderma harzianum,
Trichoderma viride, Trichoderma atroviride, Fusarium oxysporum, T. lanuginosus,
Alternaria sp., Talaromyces emersonii, Schizophyllum commune, and Piromyces sp.
[47]. Although many of the reports focus on studies of xylanolytic systems from
filamentous fungi mainly, and by bacteria, there are some reports on obtaining
xylanases from yeasts [51, 52]. Two Cryptococcus yeast strains had been identified
as producers of xylanases with a thermostable behavior [52]. Other reports are
on the identification of yeast strains able to produce cellulase-free xylanases to
solve the most common problem during the search of biologic systems for xylanase
production [53].

From the great variety of xylanase-producing microorganisms, some thermophilic
microorganisms have been isolated, which grow at an optimal temperature between
50 and 80 ∘C, and extremophiles or hyperthermophiles, which grow at temperatures
above 80 ∘C [54]. Thermophilic microorganisms are sources of enzymes with
greater activity at high temperatures [55]; these sources are important because
xylanolytic enzymes are required to be able to withstand aggressive working con-
ditions, such as acidic or alkaline environments and high temperatures, this due
to its various industrial applications. For this reason, xylanases have been isolated
from extremophilic bacteria and fungi. According to the analyses of genomic and
transcriptomic profiles of xylanase-producing extremophilic fungi, it is argued
that the discovery of new sources of thermostable xylanases, using molecular
tools such as directed evolution, can satisfy the growing demand for thermostable
xylanases. Table 1.1 shows a list of xylanases that come from thermophilic and
hyperthermophilic microorganisms [61, 62].

Recent studies have focused on xylanase production optimization, for which they
have used new strains of endophytic fungi, which were good producers of xylanases
when solid-state fermentation (SSF) is used [63]. In the past, about 80–90% of
commercial xylanases have been produced by submerged fermentation (SmF);
however, SSF has a great option, such as less space requirement, low cost, and the

Table 1.1 Thermophilic and hyper-thermophilic microorganisms producing thermostable
xylanases.

Source Specie GH family References

Bacteria Caldicellulosiruptor sp. 10 [56]
Bacteria Caldicoprobacter algeriensis 11 [56]
Bacteria Dictyoglomus thermophilum 11 [57]
Bacteria Microcella alkaliphila 10 [58]
Hongo Aspergillus niger 11 [59]
Hongo Malbranchea cinnamomea 11 [44]
Hongo Thermomyces lanuginosus 11 [60]


