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Foreword

Communications Engineering solves one of the central problems of mankind: making sure that
what is known in one place becomes known in another. This is a book instructing the reader how
to implement that, wirelessly, with naught but a computer, free software, and a radio frontend.

Sufficiently obvious is the need for education in the practicalities of this communication technol-
ogy, given how transformative they have been: The geopolitical situation of the twenty-first century
is hard to imagine without the TV; neither the Arab Spring nor the public perception of Russia’s
invasion of Ukraine would have assumed their shape without ubiquitous mass communication.
However, this is not a guide on how to make a call using a cell phone, or how to upload a video to
social media.

Instead, its purpose lies in enabling the reader to work on a more fundamental, the physical
layer, themselves, with nothing between them and the radio waves that need to be modified to
communicate information. The power of Software-Defined Radio (SDR) lies in its ability to make
the mathematical description of the physical phenomenon that is radio available for analysis and
manipulation in a computer, and thus gives its users the ability to control what and how informa-
tion is transported to the fullest extent.

Conversely, understanding how communication is actually done using SDR allows for a deeper
insight into the nature of wireless communications. As the presence of a chapter on passive and
active radar shows, the same techniques enabling us to exchange information with a communica-
tion partner allow us to retrieve information about things far away. This serves to illustrate one of
the strengths of teaching concepts from communications engineering based on working, practical
implementations: The theory taught on one page to establish the working of an aspect of commu-
nications serves as an explanation for the technology taught a few pages further down.

The authors elected to use GNU Radio to teach these concepts, why? GNU Radio is Free and
Open Source Software (FOSS). This means three things for its usage as an educational tool:
1. Its openness allows for introspection: An interested user could always look inside and discover

“how it’s done.”
2. Its wide availability across platforms, free of cost, makes it a desirable platform to work on, while

not sacrificing on its professionality: The very same tools used by researchers, companies, and
hobbyists worldwide are at the fingertips of the learner, giving them the opportunity to grow
continuously from a beginner to an expert in designing communication systems.

3. The community built around GNU Radio is largely motivated by the idea that everyone should
have access to both the knowledge and the tools needed to build communication systems. This
leads to intense sharing of knowledge, both in the shape of software and its source code, as well
as of methodology and theory.
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Surprisingly to me, as former leader of the software and its development process, openness is not
the strongest argument (but still important to many) for using GNU Radio to teach communications
engineering.

More valuable is the community arising from the FOSS nature. GNU Radio understands itself
not only as a software project, but as the unifying part of a whole ecosystem of SDR applications,
libraries, research groups, and users. This has made it the most popular open source environment
for SDR development, with an annual conference in the United States and in Europe, a pervasive
presence in research articles, the amateur radio community, demonstrators, and common use case
for the vendors of SDR frontends. This comes with a network of educators, users, developers, sup-
porters, and learners. But GNU Radio did not start out as a large project. However, its function as
tool to understand wireless communications is part of the very foundations of it, which is a short
look back as its history shows:

When Eric Blossom, a computer-science-friendly electrical engineer in the United States
was designing cryptographically secure telephones around 1993, he found commercial and
official understanding of secrecy to be lacking. The freshly evolving digital wireless, cellular
communication standards, in the shape of IS-95, had serious cryptographical flaws.

Considering the technological and financial entry hurdles of working with the waveforms on the
air, Blossom talked to John Gilmore, of fame for sponsoring the Electronic Frontier Foundation’s
(EFF) efforts to build a demonstrator to prove the Data Encryption Standard (DES) encryption
standard to be weak, the two enter into a patronage, where Blossom gets to be paid on a Free and
Open Source SDR framework – leading to the birth of the GNU Radio idea in 1998; the early code
was based on MIT’s Pspectra SDR framework.

The progression from a small project to the most popular SDR framework in existence was
fostered by the Moving Picture Association of America throwing in their weight when the United
States moved analog TV to the digital Advanced Television Systems Committee (ATSC) – and
enforcing a “copy-protection bit,” to be respected by video recorders. That not sitting well with
EFF ideals of free access to technology, a reason emerged to write a complex receiver in what
would become GNU Radio – something that can receive ATSC TV, get the video, and not care at
all about any copyright bits.

The EFF proving the ATSC copy-protection is a publicity success, but a project of that size showed
the need to overhaul the code. Clearing this milestone, Blossom convinces Gilmore to let him re-
write GNU Radio from scratch to remove its limitations resulting from Pspectra legacy.

At this point, about 2003, Matt Ettus gets involved and starts building his SDR frontend – what he
coined the “Universal Software Radio Peripheral” (USRP) – a device that attaches to PCs through
USB, allowing anyone to work with electromagnetic spectrum with off-the-shelf, relatively afford-
able hardware. Ettus becomes a contributor to GNU Radio, and hard- and software co-evolve. Early
versions of the driver for the hardware are part of GNU Radio; only later on, a more generally use-
ful driver for the Ettus hardware is written. Academic interest is massively picking up – numerous
PhD students work with GNU Radio, contribute code, and most importantly: They (and the stu-
dents they supervise) form a lively community. At the same time, the project becomes commercially
relevant enough to support consultants.

One of these PhD students is Thomas Rondeau – who later becomes the lead to replace Blossom;
the consultant, to become the maintainer of GNU Radio, is Jonathan Corgan, both who shape the
project into a software project that is good at accepting contributions. At the same time, community
events start to emerge. Students – the author of this foreword not being an exception – get highly
invested. A very active mailing list forms the glue of an international community of users and
developers.
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Things go smoothly, and GNU Radio 3.7 becomes the stable release found in nearly all Linux dis-
tributions; there’s binary installers for Windows, the annual GNU Radio conferences attract more
than 300 people a year. Development moves from a self-hosted git server with trac as project man-
agement to github and mediawiki for documentation. However, stability is a double-edged sword;
it means contributions begin to dry up in development branches that stand little chance to actu-
ally get deployed to users. As Corgan leaves the position of maintainer, GNU Radio has excellent
support on all relevant desktop operating systems, but the “next” branch, which was destined to
become GNU Radio 3.8, is not in a shape immediately ready for release.

This is when I’m asked to step in and switch from a very unofficial role, where I try to stay atop
of what is happening on the mailing list, explain the code, the communications engineering base
and the occasional bug to users, to a more official role; from 2018 to 2021, I become architect and
maintainer of GNU Radio. What an honor! Getting the 3.8 release out of the door with the help
of a lot of friends, we gave GNU Radio a new velocity (and, as you can imagine, we broke some
poor people’s applications in the process of making sure GNU Radio still works on machines with
Python 3). Releases become more regular, and the number of contributions surges strongly.

Handing my responsibility off to two people – Josh Morman as the new architect, and Jeff Long
as release maintainer concerned especially with the stable releases – was excellent for the project,
too. It allows the evolution of the developer code base with less worries about things breaking on
the machines of users, without sacrificing on the ability to spin reliable new releases.

However, it goes without saying that a software framework having an easy 20 years of develop-
ment history comes with some baggage. Not all things are as intuitive, or as fast, or as safe, or as
consistent as they could be, even in GNU Radio 3.10, the current release series as of writing. The
GNU Radio project continues to evolve; what I believe will stay the same is the dedication to one
central principle:

Through offering a very accessible FOSS framework for SDR application, with which every-
body can get access to this great shared resource, the electromagnetic spectrum, GNU Radio will
continue to foster, and live off, an active community of coders, researchers, hackers, users, and
operators that drive the project forward.

I hope this book motivates generations of people willing to learn to tackle something as rich in
facets as communications engineering – using tools that allow and encourage them to go beyond
what is available as what companies are willing to sell them as wireless devices.

June 2024 Marcus Müller
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Introduction

What is GNU Radio? GNU Radio is a toolkit providing the means to address discrete-time digital
signal processing chains oriented toward radio frequency (RF) communication, but not limited to
it. GNU Radio is not a readily functional decoding software for a given communication protocol:
understanding the principles of signal representation, frequency transposition, synchronization,
and digital information extraction will be needed before implementing functional communication
systems. Thanks to its flexibility, GNU Radio is not restricted to digital communication over radio
frequency channels but can be used for instrumentation, RADAR and radio frequency channel
characterization, time and frequency transfer, beamforming and null steering for e.g. jamming and
spoofing suppression, or any application benefiting from accessing the raw radio frequency wave
characteristics.

To make the learning curve less steep, a graphical interface for assembling signal processing
blocks is provided: GNU Radio Companion. It should be emphasized, though, that the graphi-
cal interface is for development ease only and is not needed for executing the resulting flowgraph;
hence, GNU Radio is perfectly suited for running on embedded systems not fitted with graphical
interfaces. Indeed, GNU Radio is included in the embedded Linux-built frameworks, Buildroot and
OpenEmbedded, allowing to use the Python-generated processing scripts on headless embedded
systems running the operating system and the associated C++ libraries.

The reader is encouraged to test all processing sequences and assembling processing chains step
by step: even though some of the examples are a lengthy sequence of processing steps, assessing
the impact of each block by displaying the frequency domain or time domain characteristics after
each processing step is mandatory. In order to help the reader test various processing sequences,
records of relevant signals are made available on https://iqengine.org in the GNU Radio repository.

A word of caution before starting to experiment with software-defined radio (SDR) and storing
huge files: make sure to remember the experimental setup leading to these records, and most sig-
nificantly the carrier frequency, the sampling rate, and data format. Many times have these authors
run days of records to forget after a few days how data had been collected and hence how to read
them for post-processing. To avoid such hassle, the SigMF (signal metadata format) standard has
been proposed, specified at https://github.com/sigmf/SigMF. This format associates with each data
file (sigmf-data), a format description (sigmf-meta) which provides the receiver character-
istics including carrier frequency, bandwidth (sampling rate), or data format (floating point or
integer, and integer size of each sample). All records at https://iqengine.org comply with the SigMF
format, hence providing the necessary information for processing the collected data.

The GNU Radio Companion processing sequences described throughout the book are available at
https://gitlab.xlim.fr/gnuradio_book and also mirrored at https://gitlab.com/gnuradio_book, and
each chapter starts by referring to the relevant IQEngine record. For optimal layout of the proposed

https://iqengine.org
https://github.com/sigmf/SigMF
https://iqengine.org
https://gitlab.xlim.fr/gnuradio_book
https://gitlab.com/gnuradio_book


xxiv Introduction

flowcharts, it will be assumed that GNU Radio Companion is configured (View menu) with the
Show parameter value in block. All flowcharts have been tested with the 3.10 version of
GNU Radio and GNU Radio Companion.

This discussion on using GNU Radio aims at a balance between processing synthetic signals and
live signals collected from hardware. Indeed, the philosophy of SDR is to minimize the specificity
of hardware and move most processing steps to software.

The book is organized as follows. The first chapter introduces GNU Radio and GNU Radio Com-
panion as tools for becoming familiar, through simulations, with basic concepts needed when
processing radio frequency signals, including the manipulation of complex numbers and baseband
versus radio frequency bands. The second chapter extends the processing to real signals collected
from hardware, with records available to readers for reproducing the processing steps if such sig-
nals are not available at their location or if the relevant hardware is not available. The third chapter
tackles the communication between GNU Radio and external tools, either through network sockets
or filesystems, introducing concepts needed in the following chapters. The fourth chapter bene-
fits from all these knowledge to demonstrate how to assemble various SDR RADAR architectures,
whether passive or active, and how accessing the raw radio frequency samples allows for target
range and velocity detection as well as azimuth when combined with a moving antenna for spa-
tial diversity of the sources in the synthetic aperture RADAR implementation. The fifth chapter
returns to some basic concepts of GNU Radio for synchronizing processing tasks and propagat-
ing tags marking some features detected in the processed signal. The newly acquired knowledge is
used in the sixth chapter to develop a complete digital communication system. The seventh chapter
extends the custom digital communication system to decoding all layers of a satellite communi-
cation system using the same underlying modulation scheme: being a low-earth orbiting (LEO)
satellite flying every day over every area in the world, the signal is accessible to all readers irrelevant
of their geographical setting. While spaceborne communication benefits from ideal propagation
conditions in free space, ground-based communication is plagued with multipath interferences
and fading, an issue tackled in the eighth chapter using orthogonal frequency division multiplex-
ing (OFDM) as implemented in the digital audio broadcast standard. Finally, the ninth chapter
develops how the open-source GNU Radio framework can be complemented with custom process-
ing blocks written in Python or C++, with an emphasis on custom source blocks for adding new
hardware to the processing chain or new sinks for implementing processing or decoding protocols
not yet supported by the standard GNU Radio processing blocks.



1

1

Getting Started with GNU Radio: Synthetic Signals

This first chapter aims at achieving three outcomes; introducing the general concepts of software-
defined radio (SDR) and how to reduce to a minimum the hardware dependence of the processing
to move all digital signal processing steps after the analog-to-digital conversion; justifying the han-
dling of complex numbers with a real and imaginary by GNU Radio; and becoming familiar with
the GNU Radio Companion graphical user interface (GUI). These goals will be reached by using
GNU Radio to process synthetic signals so that no hardware is needed to complete this first chapter.
All GNU Radio Companion flowgraphs presented in this and the subsequent chapters are available
from the GitHub repository at https://gitlab.xlim.fr/gnuradio_book, also mirrored at https://gitlab
.com/gnuradio_book. When opening these flowcharts, it is assumed that View→Show param-
eter expressions in block and Show parameter value in block as well as Show
Block comments are active for best layout experience.

1.1 Evolution of Radio Frequency Electronics Toward SDR

The term “software radio” was coined by J. Mitola in the early 1990s [Mitola, 1993]. The main idea
of this technology is to reduce the analog electronics of a radio receiver to the part near the antenna,
namely the radio frequency (RF) front end (RF amplifier + filters), and use a high-speed analog-to-
digital converter (ADC) to get the baseband signal in the digital domain. All the usual operations
(demodulation, filtering, etc.) are then performed digitally with the help of a digital signal proces-
sor (DSP). This would represent the ultimate SDR solution which is achievable today, though still
quite expensive, for example, AMD-Xilinx Zynq Ultrascale+RFSoC field programmable gate arrays
(FPGAs) [AMD-Xilinx, 2024]. In this case, 5.9 GSps ADCs and 10 GSps digital to analog converters
(DACs) are available, allowing to directly sample signals with a carrier frequency up to about 3 GHz.
It is widely acknowledged that in telecommunications, a carrier frequency is employed to transmit
information from one point to another. The carrier itself does not convey information; thus, it is
removed at the receiving end. This is achieved by multiplying the signal received from the antenna
by a local replica of the carrier. Consequently, this process results in a baseband spectrum contain-
ing the transmitted information, centered around 0 Hz. In the not-so-distant past, these operations
were carried out using analog electronic components. In the case of the ultimate SDR system, the
concept is to execute all demodulation and decoding functions in the digital domain. To gain a
comprehensive understanding of the SDR hardware to be utilized in Chapter 2 (i.e. Adalm-Pluto
and RTL-SDR), it is essential to grasp the fundamental concepts that have driven modern SDR
architectures, particularly those constructed around the zero intermediate frequency structure
(zero-IF or ZIF). Let us concentrate on the receiving side. It is widely recognized that the heterodyne
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structure is the most commonly used in analog receivers. Therefore, to achieve efficient reception
of various channels, the demodulation stage operates at a fixed intermediate frequency (IF), typ-
ically 10.7 MHz for the frequency modulation (FM) broadcast band. All the electronic parts of this
section are optimized for this fixed IF frequency (amplifiers, filters, etc.). The frequency translation
of the signal coming from the antenna (e.g. 88–108 MHz for FM broadcast) is performed by a mixer
and a tunable local oscillator structure. In the case of SDR, having an IF is not desirable as our aim
is to process only the baseband signal. Therefore, the direct-conversion or ZIF architecture is what
we seek. Although this structure has been known for quite some time, it was not until the 1990s,
with advancements in integrated electronics, that it became a viable option. Let us now illustrate
this evolution with two different SDR hardware platforms that we will be utilizing in Chapter 2.
The first one, whose structure is illustrated in Figure 1.1, is the RTL-SDR receiver, initially designed
for digital TV reception. It adopts a so-called zero second IF structure and uses an analog front end,
which down-converts the RF signal to a user-defined IF frequency. This IF signal is then sampled by
an 8-bit ADC at 28.8 MHz. Interestingly, the ADC is followed by a two-channel structure called an
IQ (in-phase and quadrature) demodulator. The IQ structure is a fundamental constant found
in any SDR system, and we will come back to it shortly.

The second hardware example is the Adalm-Pluto from Analog Devices Inc. (ADI) [Analog
Devices, 2024] (Figure 1.2). It integrates a radio chip, which is a complete 2 × 2 transceiver
(AD9363, see Figure 1.3), working on carrier frequencies between 325 MHz and 3.8 GHz and
an instantaneous bandwidth of 56 MHz. This is a complete ZIF transceiver and one of the first
efficient implementations of this apparently simple structure. For completeness, it is important
to specify to the reader that the ZIF structure is not without its issues, which partly explains why
its introduction is relatively recent. These issues include local oscillator (LO) leakage, DC offsets,
and IQ mismatch, which may require compensation during a relatively complex calibration stage.
Interested readers can refer to Razavi’s book [Razavi, 2012], which delves into this subject in great
detail.

1.2 The Complex Envelope and the Justification of the IQ Structure

The fundamentals of signal processing teach us that the Fourier transform of a real-valued signal
is complex symmetric. This implies that in the frequency domain, negative frequency components
emerge redundantly alongside the positive frequencies. However, negative frequencies do not exist
in the physical domain; this phenomenon can be considered as an annoying mathematical arti-
fact that often disrupts most students! It is, however, possible to build a time signal known as
an analytic signal, whose Fourier transform exclusively reveals positive frequencies. This ana-
lytic signal, being complex valued, encompasses the original real-valued signal. The concept of
the analytic signal originates from the contributions of Gabor [1946], Ville [1948, 1958], as stated
by Viswanathan [2017]. Interested readers can explore classical signal processing literature for a
more comprehensive understanding. The application of the analytic signal holds particular signif-
icance in numerous signal processing contexts, especially within the software-defined radio (SDR)
domain. The theory concerning the analytic signal is intricately connected to the concept of the
complex envelope, a well-established notion within the telecommunication community. For fur-
ther insight into constructing the complex envelope of a bandpass signal s(t) from its analytical
representation, readers are encouraged to consult [Guimaraes, 2020]. Let us now consider a modu-
lated bandpass signal s(t) having a center frequency of fc. It can be shown [Guimaraes, 2020] that

s (t) = Re
[
s̃ (t) exp( j2𝜋fct)

]
(1.1)
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Figure 1.1 Block diagram depicting the RTL-SDR receiver, comprising two essential chips: the R820T2 and the RTL2832U.



Rx Channel 2

Rx Channel 1

Radio

switching GPO

RX2A_P,
RX2A_N
RX1A_P,
RX1A N

RX2B_P,
RX2B_N

Automatic
gain
control

TIA

TIA

I

Q

Manual
Slow
Fast

ADC HB3 HB2 HB1 GAIN FIR

ADC HB3 HB2 HB1

÷1
÷2
÷3

÷1
÷2
÷4

÷1
÷2

÷1
÷2

GAIN FIR

RX1B_P,
RxB

RxA

RX1B_N

RX2C_P,

RX1C_P,
RX1C_N

RX2C_N
Phase

splitter

In
p

u
t M

u
x

RF channel bandwidth

200 kHz–56 MHz (I/Q)

RxC

TXMON2

TXMON1

Rx  Tx

Tx

Tx
Mon

Tx

RXLO

XTALP

XTALN

Rx

Rx

DCXO DIVDIV

LNA

Baseband

715–1430 MHz
DIV

70 MHz–6 GHz

70 MHz–6 GHz

Rx decimation

digital filtering and equalization

2
5

–
6

4
0

 M
S

P
S

Enable state

machine (ENSM)

Temperature

sensor

AD9363

Rx 61.44 MSPS

C
h

2
 I/Q

C
h

1
 I/Q

LOOP

BACK PN &

BISTCalibration and

correction
ANALOG

DEVICES

C
M

O
S

 / LV
D

S
 IN

T
E

R
F
A

C
E

Tx 61.44 MSPS

Figure 1.2 ADI AD9363 IC receiver section. This radio chip is integrated into the Adalm-Pluto device.


