




Communication Systems Engineering with GNU Radio





Communication Systems Engineering with GNU Radio

A Hands-on Approach

Jean-Michel Friedt
University of Besançon
France

Hervé Boeglen
University of Poitiers
France



Copyright © 2025 by John Wiley & Sons, Inc. All rights reserved, including rights for text and data mining and
training of artificial technologies or similar technologies.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons,
Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/
go/permission.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or
its affiliates in the United States and other countries and may not be used without written permission. All other
trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product
or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing
this book, they make no representations or warranties with respect to the accuracy or completeness of the contents
of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose.
No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies
contained herein may not be suitable for your situation. You should consult with a professional where appropriate.
Further, readers should be aware that websites listed in this work may have changed or disappeared between when
this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or
any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer
Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317)
572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data applied for:
Hardback ISBN: 9781394218882

Cover Design: Wiley
Cover Images: Courtesy of Jean-Michel Friedt, © GNU Radio logo - Wikimedia Commons/public domain

Set in 9.5/12.5pt STIXTwoText by Straive, Chennai, India

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com/go/permission
http://www.wiley.com


To Jean-Michel for his unfailling enthusiasm and for convincing me to join
the world of freedom (Linux).





vii

Contents

About the Authors xi
Foreword xiii
Acknowledgments xvii
Acronyms xix
About the Companion Website xxi
Introduction xxiii

1 Getting Started with GNU Radio: Synthetic Signals 1
1.1 Evolution of Radio Frequency Electronics Toward SDR 1
1.2 The Complex Envelope and the Justification of the IQ Structure 2
1.3 Complex Number Manipulation 7
1.4 GNU Radio and GNU Radio Companion 7
1.5 Sample Rates, Decimation and Aliasing 13
1.6 Low-pass Filtering or Working on Upper Nyquist Zones 19
1.7 ADC and DAC Resolution 24
1.8 Power Spectral Density Display with the Frequency Sink 27
1.9 Conclusion 29

References 29

2 Using GNU Radio with Signals Collected from SDR Hardware 31
2.1 SDR Hardware Architecture 32
2.2 Using Readily Available Processing Tools 33
2.3 Amplitude Modulation and Demodulation 36
2.4 Frequency Modulation and Demodulation 41
2.4.1 Commercial FM Broadcast: Demodulation and Audio Output 46
2.4.2 Stereo Sound and RDS 48
2.4.3 FSK Modulation 50
2.5 Phase Modulation and Demodulation 53
2.5.1 Phase Modulation 53
2.5.2 Phase Demodulation 55
2.5.3 Radio Data System (RDS) 55
2.5.4 The Global Positioning System (GPS) 57
2.6 Spectral Occupation of the Various Modulation Schemes 63
2.7 Local Oscillator Leakage Issue 63
2.8 Conclusion 67

References 67



viii Contents

3 Communicating with External Software (Python, Networking, ZeroMQ,
MQTT) 69

3.1 Connecting to an External Sentence Decoding Tool Using Named Pipes 70
3.1.1 POCSAG Single Channel Decoding 70
3.1.2 POCSAG Multichannel Decoding 72
3.2 TCP/IP Server Running in a Separate Thread 75
3.3 XML-RPC 81
3.4 Zero MQ (0MQ) Streaming 84
3.5 MQTT 93
3.5.1 MQTT for Python, Bash and Octave 94
3.6 Conclusion 96

References 96

4 Correlating: Passive and Active Software-Defined Radio (SDR)–RADAR 99
4.1 SDR–RADAR Requirements and Design 99
4.2 Correlation: GNU Radio Implementation 103
4.3 Passive RADAR Principle and Implementation 113
4.4 Active RADAR Principle and Implementation 113
4.5 Measurement Principle 114
4.6 From Theory to Experiment: Ranging by Frequency Stacking 115
4.7 Results 120
4.8 Conclusion on Range Measurement 122
4.9 Azimuth Resolution Through Spatial Diversity: Synthetic Aperture RADAR 122
4.9.1 OFDM RADAR (WiFi) 126
4.10 Acquisition for Azimuth Measurement 129
4.11 Suppressing Direct Coupling Interference 132
4.12 Signal Processing 132
4.13 Result Analysis 135
4.14 Interferometric Measurement 136
4.15 Reproducible Positioning of the Receiving Antenna: Motorized Rail 138
4.16 The Radio Frequency Corner Reflector 139
4.17 Fine Displacement Measurement 141
4.18 Impact of the Atmosphere 142
4.19 Time of Flight Measurement with Sub-sampling Period Resolution and the Use of a

Surface Acoustic Wave Cooperative Target for Reproducible Range Simulation 144
4.20 Conclusion 149

References 150

5 Digital Communications in Action: Design and Realization of a QPSK
Modem 153

5.1 Digital Communication Concepts 153
5.1.1 What Is Digital Information? 153
5.1.2 From Digital Data to Electrical Pulses 155
5.1.3 Occupied Bandwidth and Spectral Efficiency 157
5.2 Building a QPSK Modulator with GNU Radio 160
5.3 Building a QPSK Demodulator with GNU Radio 165
5.3.1 Synchronization 167



Contents ix

5.3.1.1 The Digital PLL 168
5.3.1.2 Maximum Likelihood Estimation and the Costas Loop 174
5.3.1.3 QPSK Timing Recovery 176
5.3.2 Automatic Gain Control (AGC) 181
5.3.3 Assembling All the Components: The Ultimate QPSK Receiver Flowgraph 182
5.4 Conclusion 187

References 188

6 Messages, Tags, and Packet Communications 189
6.1 Introduction 189
6.2 Polymorphic Types 190
6.3 Messages 193
6.4 Tags 202
6.5 Case Studies 206
6.5.1 Improving the gr-nordic OOT Module 206
6.5.2 Converting the QPSK Modem to Packet Mode 212
6.6 Conclusion 216

References 217

7 A Digital Communication Standard: The DAB+ Radio Broadcasting
System 219

7.1 Introduction 219
7.2 The DAB+ Standard 220
7.2.1 Foundations of Digital Audio Coding 220
7.2.1.1 The Absolute Threshold of Hearing 220
7.2.1.2 Critical Bands 220
7.2.1.3 Masking 222
7.2.2 Audio Coding Standards and Their Usage in DAB and DAB+ 224
7.2.2.1 The MPEG/ISO/IEC International Audio Standards 224
7.2.2.2 The DAB and DAB+ Audio Coders 225
7.2.3 Digital Transmission over Time and Frequency-Selective Channels: The Need for

COFDM 228
7.2.3.1 Time and Frequency-Selective Wireless Channels 228
7.2.3.2 COFDM: Digital Communication Techniques for the Wireless Channel 232
7.2.3.3 The ETSI EN 300 401 DAB Standard 236
7.3 Building a DAB+ Transmitter 241
7.4 Building a DAB+ Receiver with GNU Radio 244
7.4.1 Basic Usage of gr-dab 244
7.4.2 gr-dab in More Details 246
7.5 Conclusion 249

References 249

8 QPSK and CCSDS Packets: Meteor-M 2N Satellite Signal Reception 251
8.1 Introduction 251
8.2 When Will the Satellite Fly Overhead? 255
8.3 Why Such a Complex Protocol? 258
8.4 How to Tackle the Challenge? 260



x Contents

8.5 From the Radio frequency Signal to Bits 261
8.5.1 Data Format 262
8.5.2 Decoding Data 264
8.5.3 Convolutional Encoding of the Synchronization Word 265
8.5.4 Convolutional Code Representation as State Machines 267
8.5.5 Decoding a Convolutional Code: Viterbi Algorithm 269
8.5.6 Constellation Rotation 271
8.5.7 From Bits to Sentences: Applying the Viterbi Algorithm Decoding 273
8.6 From Sentences to Paragraphs 279
8.7 So Much Text…Pictures Now 281
8.8 JPEG Image Decoding 286
8.9 Conclusion 291

References 296

9 Custom Source and Sink Blocks: Adding Your Own Hardware Interface 297
9.1 Python Block 298
9.2 Out-of-Tree Blocks 300
9.3 Cross-compiling for Running on Headless Embedded Systems 310
9.4 Conclusion 312

References 312

10 Conclusion 315
References 318

Index 319



xi

About the Authors

Jean-Michel Friedt was trained as a physicist at École Normale Supérieure in Lyon (France). He
completed his PhD on scanning probe microscopy in 2000 before joining IMEC (Leuven, Belgium)
as a postdoctoral researcher working on surface acoustic wave (SAW)-based biosensors. He joined
the company SENSeOR in 2006 as a systems engineer, developing short-range RADAR systems
for probing SAW resonators acting as wireless passive cooperative targets with sensing capability.
Before becoming associate professor at Franche-Comté University in Besançon (France) in 2014
with his research activities hosted by the Time & Frequency department of the FEMTO-ST Insti-
tute, he became intrigued by the field at the intersection of computer science, radio frequency, and
digital signal processing with access to the physical properties of the electromagnetic waves, namely
software-defined radio (SDR), and its opensource implementation GNU Radio. Visiting the radio-
silent research station of Ny-Ålesund (Norway, see cover) had the most profound impact on his
personal and research and development activities, from satellite communication to remote sensing
during field trips since 2007. He has been a regular contributor to the French GNU/Linux Maga-
zine/France and related journals since 2005 whose publications motivated most of this research,
with an emphasis to present results toward the general public and curious readers willing to repro-
duce experiments with affordable and readily available hardware and opensource software. Current
investigations focus on the use of SDR for time and frequency distribution including GNSS (with
anti-jamming and spoofing strategies), RADAR and spectrum spreading for time dissemination,
remote sensing, and spaceborne communications.

Hervé Boeglen graduated from the University of Haute Alsace in Mulhouse, France with an
MSc degree in electrical engineering in 1994. He worked as a full-time lecturer in electronics in the
telecommunications and networks department at the IUT of Colmar, University of Haute Alsace,
France, from 1995 to 2013. Between 2006 and 2008, while working, he pursued a PhD in digital
communications. In 2013, he joined the University of Poitiers, France, as an associate professor in
electrical engineering. He currently teaches graduate-level courses in embedded systems and digi-
tal communications using GNU Radio. He is also a member of the XLIM lab at the Futuroscope site
in France. His research focuses on wireless channel modeling and digital communication systems,
both radio and optical, using software-defined radio. He is also a radio transmission enthusiast and
holds an amateur radio license (callsign F4JET).





xiii

Foreword

Communications Engineering solves one of the central problems of mankind: making sure that
what is known in one place becomes known in another. This is a book instructing the reader how
to implement that, wirelessly, with naught but a computer, free software, and a radio frontend.

Sufficiently obvious is the need for education in the practicalities of this communication technol-
ogy, given how transformative they have been: The geopolitical situation of the twenty-first century
is hard to imagine without the TV; neither the Arab Spring nor the public perception of Russia’s
invasion of Ukraine would have assumed their shape without ubiquitous mass communication.
However, this is not a guide on how to make a call using a cell phone, or how to upload a video to
social media.

Instead, its purpose lies in enabling the reader to work on a more fundamental, the physical
layer, themselves, with nothing between them and the radio waves that need to be modified to
communicate information. The power of Software-Defined Radio (SDR) lies in its ability to make
the mathematical description of the physical phenomenon that is radio available for analysis and
manipulation in a computer, and thus gives its users the ability to control what and how informa-
tion is transported to the fullest extent.

Conversely, understanding how communication is actually done using SDR allows for a deeper
insight into the nature of wireless communications. As the presence of a chapter on passive and
active radar shows, the same techniques enabling us to exchange information with a communica-
tion partner allow us to retrieve information about things far away. This serves to illustrate one of
the strengths of teaching concepts from communications engineering based on working, practical
implementations: The theory taught on one page to establish the working of an aspect of commu-
nications serves as an explanation for the technology taught a few pages further down.

The authors elected to use GNU Radio to teach these concepts, why? GNU Radio is Free and
Open Source Software (FOSS). This means three things for its usage as an educational tool:
1. Its openness allows for introspection: An interested user could always look inside and discover

“how it’s done.”
2. Its wide availability across platforms, free of cost, makes it a desirable platform to work on, while

not sacrificing on its professionality: The very same tools used by researchers, companies, and
hobbyists worldwide are at the fingertips of the learner, giving them the opportunity to grow
continuously from a beginner to an expert in designing communication systems.

3. The community built around GNU Radio is largely motivated by the idea that everyone should
have access to both the knowledge and the tools needed to build communication systems. This
leads to intense sharing of knowledge, both in the shape of software and its source code, as well
as of methodology and theory.



xiv Foreword

Surprisingly to me, as former leader of the software and its development process, openness is not
the strongest argument (but still important to many) for using GNU Radio to teach communications
engineering.

More valuable is the community arising from the FOSS nature. GNU Radio understands itself
not only as a software project, but as the unifying part of a whole ecosystem of SDR applications,
libraries, research groups, and users. This has made it the most popular open source environment
for SDR development, with an annual conference in the United States and in Europe, a pervasive
presence in research articles, the amateur radio community, demonstrators, and common use case
for the vendors of SDR frontends. This comes with a network of educators, users, developers, sup-
porters, and learners. But GNU Radio did not start out as a large project. However, its function as
tool to understand wireless communications is part of the very foundations of it, which is a short
look back as its history shows:

When Eric Blossom, a computer-science-friendly electrical engineer in the United States
was designing cryptographically secure telephones around 1993, he found commercial and
official understanding of secrecy to be lacking. The freshly evolving digital wireless, cellular
communication standards, in the shape of IS-95, had serious cryptographical flaws.

Considering the technological and financial entry hurdles of working with the waveforms on the
air, Blossom talked to John Gilmore, of fame for sponsoring the Electronic Frontier Foundation’s
(EFF) efforts to build a demonstrator to prove the Data Encryption Standard (DES) encryption
standard to be weak, the two enter into a patronage, where Blossom gets to be paid on a Free and
Open Source SDR framework – leading to the birth of the GNU Radio idea in 1998; the early code
was based on MIT’s Pspectra SDR framework.

The progression from a small project to the most popular SDR framework in existence was
fostered by the Moving Picture Association of America throwing in their weight when the United
States moved analog TV to the digital Advanced Television Systems Committee (ATSC) – and
enforcing a “copy-protection bit,” to be respected by video recorders. That not sitting well with
EFF ideals of free access to technology, a reason emerged to write a complex receiver in what
would become GNU Radio – something that can receive ATSC TV, get the video, and not care at
all about any copyright bits.

The EFF proving the ATSC copy-protection is a publicity success, but a project of that size showed
the need to overhaul the code. Clearing this milestone, Blossom convinces Gilmore to let him re-
write GNU Radio from scratch to remove its limitations resulting from Pspectra legacy.

At this point, about 2003, Matt Ettus gets involved and starts building his SDR frontend – what he
coined the “Universal Software Radio Peripheral” (USRP) – a device that attaches to PCs through
USB, allowing anyone to work with electromagnetic spectrum with off-the-shelf, relatively afford-
able hardware. Ettus becomes a contributor to GNU Radio, and hard- and software co-evolve. Early
versions of the driver for the hardware are part of GNU Radio; only later on, a more generally use-
ful driver for the Ettus hardware is written. Academic interest is massively picking up – numerous
PhD students work with GNU Radio, contribute code, and most importantly: They (and the stu-
dents they supervise) form a lively community. At the same time, the project becomes commercially
relevant enough to support consultants.

One of these PhD students is Thomas Rondeau – who later becomes the lead to replace Blossom;
the consultant, to become the maintainer of GNU Radio, is Jonathan Corgan, both who shape the
project into a software project that is good at accepting contributions. At the same time, community
events start to emerge. Students – the author of this foreword not being an exception – get highly
invested. A very active mailing list forms the glue of an international community of users and
developers.



Foreword xv

Things go smoothly, and GNU Radio 3.7 becomes the stable release found in nearly all Linux dis-
tributions; there’s binary installers for Windows, the annual GNU Radio conferences attract more
than 300 people a year. Development moves from a self-hosted git server with trac as project man-
agement to github and mediawiki for documentation. However, stability is a double-edged sword;
it means contributions begin to dry up in development branches that stand little chance to actu-
ally get deployed to users. As Corgan leaves the position of maintainer, GNU Radio has excellent
support on all relevant desktop operating systems, but the “next” branch, which was destined to
become GNU Radio 3.8, is not in a shape immediately ready for release.

This is when I’m asked to step in and switch from a very unofficial role, where I try to stay atop
of what is happening on the mailing list, explain the code, the communications engineering base
and the occasional bug to users, to a more official role; from 2018 to 2021, I become architect and
maintainer of GNU Radio. What an honor! Getting the 3.8 release out of the door with the help
of a lot of friends, we gave GNU Radio a new velocity (and, as you can imagine, we broke some
poor people’s applications in the process of making sure GNU Radio still works on machines with
Python 3). Releases become more regular, and the number of contributions surges strongly.

Handing my responsibility off to two people – Josh Morman as the new architect, and Jeff Long
as release maintainer concerned especially with the stable releases – was excellent for the project,
too. It allows the evolution of the developer code base with less worries about things breaking on
the machines of users, without sacrificing on the ability to spin reliable new releases.

However, it goes without saying that a software framework having an easy 20 years of develop-
ment history comes with some baggage. Not all things are as intuitive, or as fast, or as safe, or as
consistent as they could be, even in GNU Radio 3.10, the current release series as of writing. The
GNU Radio project continues to evolve; what I believe will stay the same is the dedication to one
central principle:

Through offering a very accessible FOSS framework for SDR application, with which every-
body can get access to this great shared resource, the electromagnetic spectrum, GNU Radio will
continue to foster, and live off, an active community of coders, researchers, hackers, users, and
operators that drive the project forward.

I hope this book motivates generations of people willing to learn to tackle something as rich in
facets as communications engineering – using tools that allow and encourage them to go beyond
what is available as what companies are willing to sell them as wireless devices.

June 2024 Marcus Müller





xvii

Acknowledgments

This book would not exist without … the GNU Radio development team. Over the years, numer-
ous contributors have improved the software, sometimes with challenging decision on the software
architecture (e.g. SWIG to PyBIND transition), but always to achieve utmost quality and perfor-
mance. Next to the development, the opensource spirit has driven not only software development
but also sharing the complex field of digital signal processing. By tackling practical applications,
GNU Radio provides a fun and attractive framework for becoming familiar with such obscure con-
cepts as an imaginary voltage or a negative frequency.

In this vein, the GNU Radio related conferences have been the opportunity for developers not
only to share results as is usual in “scientific” conferences, but most importantly the means to
achieve and reproduce these results. The American GNU Radio Conference with its proceedings
available at https://pubs.gnuradio.org and YouTube channel at https://www.youtube.com/
@GNURadioProject, the European Free Open-Source DEveloper Meeting (FOSDEM) software
defined radio devroom and the European GNU Radio Days – with its YouTube channel at https://
www.youtube.com/@europeangnuradiodays1445/ that both authors have helped co-organize
since 2018 – have been the source of inspiration and motivation with technical discussions with
speakers and attendees.

Jean-Michel Friedt and Hervé Boeglen

https://pubs.gnuradio.org
https://www.youtube.com/@GNURadioProject
https://www.youtube.com/@GNURadioProject
https://www.youtube.com/@europeangnuradiodays1445/
https://www.youtube.com/@europeangnuradiodays1445/




xix

Acronyms

ACARS aircraft communication addressing and reporting system
ADC analog-to-digital converter
AGC automatic gain control
BPSK binary phase shift keying 𝜑 ∈ {0, 𝜋}
CCSDS consultative committee for space data systems
CDMA code division multiple access used in particular for identifying which GPS satellite is

broadcasting
CGRAN comprehensive GNU Radio archive network at https://cgran.org
COTS commercial off the shelf
CRC cyclic redundance check
DAB digital audio broadcasting
DAC digital-to-analog converter
FDMA frequency division multiple access
FFT fast Fourier transform an N log2(N) complexity implementation of the Fourier

transform
FM frequency modulation
FSK frequency-shift keying (FM digital modulation)
FSPL free space propagation loss, the logarithmic expression of Friis energy conservation
GNU GNU is not Unix
GPS global positioning system
GRAVES Grand Réseau Adapté à la VEille Spatiale is the French space surveillance RADAR

emitting a continuous wave at 143.05 MHz
IF intermediate frequency
IQ in-phase/quadrature
ISI inter-symbol interference
ISS International Space Station whose amateur service is broadcasting on 145.8 MHz
LEO low Earth orbit
LO local oscillator
LOS line of sight
MEO medium Earth orbit
NCO numerically controlled oscillator
OFDM orthogonal frequency division multiplexing
PDU Protocol Data Unit
PMT polymorphic types

https://cgran.org


xx Acronyms

POCSAG Post Office Code Standardisation Advisory Group pager protocol for emergency
services

QPSK quad phase shift keying 𝜑 ∈ {0, 𝜋∕2, 𝜋, 3𝜋∕2}
RADAR radio detection and ranging
RDS radio data system
RRC root raised cosine
RF radio frequency
RTL-SDR a set of low-cost SDR receivers based on a RF front end and the Realtek RTL2832U

analog-to-digital converter to USB
SDR software-defined radio
SNR signal-to-noise ratio
TED timing error detector
WBFM wideband frequency modulation the modulation scheme used by commercial

FM broadcasters



xxi

About the Companion Website

This book is accompanied by a companion website:

www.wiley.com/go/friedtcommunication

The website https://gitlab.xlim.fr/gnuradio_book/flowcharts mirrored at https://gitlab.com/
gnuradio_book/flowcharts includes:
● the flowcharts, included in the book as static figures, to be executed with GNU Radio 3.10 for

assessing the output of the signal processing chains and tuning the parameters to observe the
impact on the output signals. All figures are included in the folder with the name of the associated
chapter for easy matching. Specific information needed to perform some of the experiments is
also provided.

https://www.wiley.com/go/friedtcommunication
https://gitlab.xlim.fr/gnuradio_book/flowcharts
https://gitlab.com/gnuradio_book/flowcharts
https://gitlab.com/gnuradio_book/flowcharts




xxiii

Introduction

What is GNU Radio? GNU Radio is a toolkit providing the means to address discrete-time digital
signal processing chains oriented toward radio frequency (RF) communication, but not limited to
it. GNU Radio is not a readily functional decoding software for a given communication protocol:
understanding the principles of signal representation, frequency transposition, synchronization,
and digital information extraction will be needed before implementing functional communication
systems. Thanks to its flexibility, GNU Radio is not restricted to digital communication over radio
frequency channels but can be used for instrumentation, RADAR and radio frequency channel
characterization, time and frequency transfer, beamforming and null steering for e.g. jamming and
spoofing suppression, or any application benefiting from accessing the raw radio frequency wave
characteristics.

To make the learning curve less steep, a graphical interface for assembling signal processing
blocks is provided: GNU Radio Companion. It should be emphasized, though, that the graphi-
cal interface is for development ease only and is not needed for executing the resulting flowgraph;
hence, GNU Radio is perfectly suited for running on embedded systems not fitted with graphical
interfaces. Indeed, GNU Radio is included in the embedded Linux-built frameworks, Buildroot and
OpenEmbedded, allowing to use the Python-generated processing scripts on headless embedded
systems running the operating system and the associated C++ libraries.

The reader is encouraged to test all processing sequences and assembling processing chains step
by step: even though some of the examples are a lengthy sequence of processing steps, assessing
the impact of each block by displaying the frequency domain or time domain characteristics after
each processing step is mandatory. In order to help the reader test various processing sequences,
records of relevant signals are made available on https://iqengine.org in the GNU Radio repository.

A word of caution before starting to experiment with software-defined radio (SDR) and storing
huge files: make sure to remember the experimental setup leading to these records, and most sig-
nificantly the carrier frequency, the sampling rate, and data format. Many times have these authors
run days of records to forget after a few days how data had been collected and hence how to read
them for post-processing. To avoid such hassle, the SigMF (signal metadata format) standard has
been proposed, specified at https://github.com/sigmf/SigMF. This format associates with each data
file (sigmf-data), a format description (sigmf-meta) which provides the receiver character-
istics including carrier frequency, bandwidth (sampling rate), or data format (floating point or
integer, and integer size of each sample). All records at https://iqengine.org comply with the SigMF
format, hence providing the necessary information for processing the collected data.

The GNU Radio Companion processing sequences described throughout the book are available at
https://gitlab.xlim.fr/gnuradio_book and also mirrored at https://gitlab.com/gnuradio_book, and
each chapter starts by referring to the relevant IQEngine record. For optimal layout of the proposed

https://iqengine.org
https://github.com/sigmf/SigMF
https://iqengine.org
https://gitlab.xlim.fr/gnuradio_book
https://gitlab.com/gnuradio_book


xxiv Introduction

flowcharts, it will be assumed that GNU Radio Companion is configured (View menu) with the
Show parameter value in block. All flowcharts have been tested with the 3.10 version of
GNU Radio and GNU Radio Companion.

This discussion on using GNU Radio aims at a balance between processing synthetic signals and
live signals collected from hardware. Indeed, the philosophy of SDR is to minimize the specificity
of hardware and move most processing steps to software.

The book is organized as follows. The first chapter introduces GNU Radio and GNU Radio Com-
panion as tools for becoming familiar, through simulations, with basic concepts needed when
processing radio frequency signals, including the manipulation of complex numbers and baseband
versus radio frequency bands. The second chapter extends the processing to real signals collected
from hardware, with records available to readers for reproducing the processing steps if such sig-
nals are not available at their location or if the relevant hardware is not available. The third chapter
tackles the communication between GNU Radio and external tools, either through network sockets
or filesystems, introducing concepts needed in the following chapters. The fourth chapter bene-
fits from all these knowledge to demonstrate how to assemble various SDR RADAR architectures,
whether passive or active, and how accessing the raw radio frequency samples allows for target
range and velocity detection as well as azimuth when combined with a moving antenna for spa-
tial diversity of the sources in the synthetic aperture RADAR implementation. The fifth chapter
returns to some basic concepts of GNU Radio for synchronizing processing tasks and propagat-
ing tags marking some features detected in the processed signal. The newly acquired knowledge is
used in the sixth chapter to develop a complete digital communication system. The seventh chapter
extends the custom digital communication system to decoding all layers of a satellite communi-
cation system using the same underlying modulation scheme: being a low-earth orbiting (LEO)
satellite flying every day over every area in the world, the signal is accessible to all readers irrelevant
of their geographical setting. While spaceborne communication benefits from ideal propagation
conditions in free space, ground-based communication is plagued with multipath interferences
and fading, an issue tackled in the eighth chapter using orthogonal frequency division multiplex-
ing (OFDM) as implemented in the digital audio broadcast standard. Finally, the ninth chapter
develops how the open-source GNU Radio framework can be complemented with custom process-
ing blocks written in Python or C++, with an emphasis on custom source blocks for adding new
hardware to the processing chain or new sinks for implementing processing or decoding protocols
not yet supported by the standard GNU Radio processing blocks.



1

1

Getting Started with GNU Radio: Synthetic Signals

This first chapter aims at achieving three outcomes; introducing the general concepts of software-
defined radio (SDR) and how to reduce to a minimum the hardware dependence of the processing
to move all digital signal processing steps after the analog-to-digital conversion; justifying the han-
dling of complex numbers with a real and imaginary by GNU Radio; and becoming familiar with
the GNU Radio Companion graphical user interface (GUI). These goals will be reached by using
GNU Radio to process synthetic signals so that no hardware is needed to complete this first chapter.
All GNU Radio Companion flowgraphs presented in this and the subsequent chapters are available
from the GitHub repository at https://gitlab.xlim.fr/gnuradio_book, also mirrored at https://gitlab
.com/gnuradio_book. When opening these flowcharts, it is assumed that View→Show param-
eter expressions in block and Show parameter value in block as well as Show
Block comments are active for best layout experience.

1.1 Evolution of Radio Frequency Electronics Toward SDR

The term “software radio” was coined by J. Mitola in the early 1990s [Mitola, 1993]. The main idea
of this technology is to reduce the analog electronics of a radio receiver to the part near the antenna,
namely the radio frequency (RF) front end (RF amplifier + filters), and use a high-speed analog-to-
digital converter (ADC) to get the baseband signal in the digital domain. All the usual operations
(demodulation, filtering, etc.) are then performed digitally with the help of a digital signal proces-
sor (DSP). This would represent the ultimate SDR solution which is achievable today, though still
quite expensive, for example, AMD-Xilinx Zynq Ultrascale+RFSoC field programmable gate arrays
(FPGAs) [AMD-Xilinx, 2024]. In this case, 5.9 GSps ADCs and 10 GSps digital to analog converters
(DACs) are available, allowing to directly sample signals with a carrier frequency up to about 3 GHz.
It is widely acknowledged that in telecommunications, a carrier frequency is employed to transmit
information from one point to another. The carrier itself does not convey information; thus, it is
removed at the receiving end. This is achieved by multiplying the signal received from the antenna
by a local replica of the carrier. Consequently, this process results in a baseband spectrum contain-
ing the transmitted information, centered around 0 Hz. In the not-so-distant past, these operations
were carried out using analog electronic components. In the case of the ultimate SDR system, the
concept is to execute all demodulation and decoding functions in the digital domain. To gain a
comprehensive understanding of the SDR hardware to be utilized in Chapter 2 (i.e. Adalm-Pluto
and RTL-SDR), it is essential to grasp the fundamental concepts that have driven modern SDR
architectures, particularly those constructed around the zero intermediate frequency structure
(zero-IF or ZIF). Let us concentrate on the receiving side. It is widely recognized that the heterodyne

Communication Systems Engineering with GNU Radio: A Hands-on Approach,
First Edition. Jean-Michel Friedt and Hervé Boeglen.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/friedtcommunication

https://gitlab.xlim.fr/gnuradio_book
https://gitlab.com/gnuradio_book
https://gitlab.com/gnuradio_book
http://www.wiley.com/go/friedtcommunication


2 1 Getting Started with GNU Radio: Synthetic Signals

structure is the most commonly used in analog receivers. Therefore, to achieve efficient reception
of various channels, the demodulation stage operates at a fixed intermediate frequency (IF), typ-
ically 10.7 MHz for the frequency modulation (FM) broadcast band. All the electronic parts of this
section are optimized for this fixed IF frequency (amplifiers, filters, etc.). The frequency translation
of the signal coming from the antenna (e.g. 88–108 MHz for FM broadcast) is performed by a mixer
and a tunable local oscillator structure. In the case of SDR, having an IF is not desirable as our aim
is to process only the baseband signal. Therefore, the direct-conversion or ZIF architecture is what
we seek. Although this structure has been known for quite some time, it was not until the 1990s,
with advancements in integrated electronics, that it became a viable option. Let us now illustrate
this evolution with two different SDR hardware platforms that we will be utilizing in Chapter 2.
The first one, whose structure is illustrated in Figure 1.1, is the RTL-SDR receiver, initially designed
for digital TV reception. It adopts a so-called zero second IF structure and uses an analog front end,
which down-converts the RF signal to a user-defined IF frequency. This IF signal is then sampled by
an 8-bit ADC at 28.8 MHz. Interestingly, the ADC is followed by a two-channel structure called an
IQ (in-phase and quadrature) demodulator. The IQ structure is a fundamental constant found
in any SDR system, and we will come back to it shortly.

The second hardware example is the Adalm-Pluto from Analog Devices Inc. (ADI) [Analog
Devices, 2024] (Figure 1.2). It integrates a radio chip, which is a complete 2 × 2 transceiver
(AD9363, see Figure 1.3), working on carrier frequencies between 325 MHz and 3.8 GHz and
an instantaneous bandwidth of 56 MHz. This is a complete ZIF transceiver and one of the first
efficient implementations of this apparently simple structure. For completeness, it is important
to specify to the reader that the ZIF structure is not without its issues, which partly explains why
its introduction is relatively recent. These issues include local oscillator (LO) leakage, DC offsets,
and IQ mismatch, which may require compensation during a relatively complex calibration stage.
Interested readers can refer to Razavi’s book [Razavi, 2012], which delves into this subject in great
detail.

1.2 The Complex Envelope and the Justification of the IQ Structure

The fundamentals of signal processing teach us that the Fourier transform of a real-valued signal
is complex symmetric. This implies that in the frequency domain, negative frequency components
emerge redundantly alongside the positive frequencies. However, negative frequencies do not exist
in the physical domain; this phenomenon can be considered as an annoying mathematical arti-
fact that often disrupts most students! It is, however, possible to build a time signal known as
an analytic signal, whose Fourier transform exclusively reveals positive frequencies. This ana-
lytic signal, being complex valued, encompasses the original real-valued signal. The concept of
the analytic signal originates from the contributions of Gabor [1946], Ville [1948, 1958], as stated
by Viswanathan [2017]. Interested readers can explore classical signal processing literature for a
more comprehensive understanding. The application of the analytic signal holds particular signif-
icance in numerous signal processing contexts, especially within the software-defined radio (SDR)
domain. The theory concerning the analytic signal is intricately connected to the concept of the
complex envelope, a well-established notion within the telecommunication community. For fur-
ther insight into constructing the complex envelope of a bandpass signal s(t) from its analytical
representation, readers are encouraged to consult [Guimaraes, 2020]. Let us now consider a modu-
lated bandpass signal s(t) having a center frequency of fc. It can be shown [Guimaraes, 2020] that

s (t) = Re
[
s̃ (t) exp( j2𝜋fct)

]
(1.1)



Analogue Digital
R820T2 RTL2832U

VCO

ADC

NCOfs = 28.8 MHz

Resample
/sync.

Resample
/sync.

0°

R

R

To

USB
90°

8 bits

8 bits

Q

I

RF
signal

24–1850 MHz

LNA VGA

IF

Figure 1.1 Block diagram depicting the RTL-SDR receiver, comprising two essential chips: the R820T2 and the RTL2832U.



Rx Channel 2

Rx Channel 1

Radio

switching GPO

RX2A_P,
RX2A_N
RX1A_P,
RX1A N

RX2B_P,
RX2B_N

Automatic
gain
control

TIA

TIA

I

Q

Manual
Slow
Fast

ADC HB3 HB2 HB1 GAIN FIR

ADC HB3 HB2 HB1

÷1
÷2
÷3

÷1
÷2
÷4

÷1
÷2

÷1
÷2

GAIN FIR

RX1B_P,
RxB

RxA

RX1B_N

RX2C_P,

RX1C_P,
RX1C_N

RX2C_N
Phase

splitter

In
p

u
t M

u
x

RF channel bandwidth

200 kHz–56 MHz (I/Q)

RxC

TXMON2

TXMON1

Rx  Tx

Tx

Tx
Mon

Tx

RXLO

XTALP

XTALN

Rx

Rx

DCXO DIVDIV

LNA

Baseband

715–1430 MHz
DIV

70 MHz–6 GHz

70 MHz–6 GHz

Rx decimation

digital filtering and equalization

2
5

–
6

4
0

 M
S

P
S

Enable state

machine (ENSM)

Temperature

sensor

AD9363

Rx 61.44 MSPS

C
h

2
 I/Q

C
h

1
 I/Q

LOOP

BACK PN &

BISTCalibration and

correction
ANALOG

DEVICES

C
M

O
S

 / LV
D

S
 IN

T
E

R
F
A

C
E

Tx 61.44 MSPS

Figure 1.2 ADI AD9363 IC receiver section. This radio chip is integrated into the Adalm-Pluto device.


