Blender Scrlptlng
with Python

Automate Tasks, Write Helper Tools,
and Procedurally Generate Models in
Blender 4

Isabel Lupiani

ApPress:

Blender Scripting
with Python

Automate Tasks, Write Helper
Tools, and Procedurally
Generate Models in Blender 4

Isabel Lupiani

Apress’

Blender Scripting with Python: Automate Tasks, Write Helper Tools, and
Procedurally Generate Models in Blender 4

Isabel Lupiani
Orlando, FL, USA

ISBN-13 (pbk): 979-8-8688-1126-5 ISBN-13 (electronic): 979-8-8688-1127-2
https://doi.org/10.1007/979-8-8688-1127-2

Copyright © 2025 by Isabel Lupiani

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Spandana Chatterjee

Editorial Project Manager: Kripa Joseph

Desk Editor: James Markham

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1

New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub. For more detailed information, please visit https://www.apress.com/gp/
services/source-code.

If disposing of this product, please recycle the paper

https://doi.org/10.1007/979-8-8688-1127-2

For James, Zoe, and Caleb

Table of Contents

About the Authorcccciieemmininsesnmmssss s Xiii
About the Technical REVIEWETcuuseemmmssssnnsmsssssnssssssssnssssssssnsssssssnns Xv
Acknowledgments.......ccccuusssssssmmssmmmmsssssssssssssssssesssssssssssnssssssssssssnnnnns Xvii
Introductioncccccisemmmmmisssnnnmmnssssnnnnss s —————— Xix
Chapter 1: Getting Started on Blender Scriptingcccccuseeeninsssnnnsnnns 1
Introduction to Blender’s Scripting Interface.........ccocvvevvvervrrenesnsnsenesesessersenes 1
Convenience VariabIes ... e 2
Automatic Imports and AUTOCOMPIETEc.cvvverrerierener e 3
Example: Move Mesh Vertices in the Viewport with the Python Console 7
Transferring Console Contents into @ SCHPt........cccvvvvvnieniennrnrenienessenenens 10
Editing and Running Script FileSccvvirrrnrrienennsesseresessessese e sessessesees 11
Using an IDE to Write YOUr SCHPIS.....cccverevrririere s sersene e ses e sse e sessessesne s 20
Finding the Corresponding Script Function to a Commandcceevrevvveriernens 20
Finding Script Functions or Properties Through Tool Tipsccccvrerererserienees 21
Secondary Scripting Helper MENU.......ccoccveverrrrereressesseressesessessessessssessessenes 24
Context-Sensitive SEArch BoXccccovecrnievnicnnnsscrsse s 28
SUMMANY..c..citiiiicirese e s e s s b e e e b e e e e aenns 32
Chapter 2: Getting Started with Operators and Add-0ns.........ccccueeees 33
Formulating a Plan to Automate a Task........c.ccccvvernrerrenenescrnsesesesese e 34
ACCESSING AUU-0NS ... 35
Legacy vs. Extension Add-0NS..........ccovermrnnnnsenmnenssssessssssessssesessessssssessnnes 35

TABLE OF CONTENTS

Enable Built-In Legacy Add-0nS.........c.ccucvverininnnneniensensessse s ssessessenns 36
Installing EXIENSIONS.......ccccoveriirierie e 37
Examining Add-0n Source Files.......cccovvmvninininsnic s sesesnens 39
Locating Built-In Legacy Add-On Source Files Under a
Blender InStallation.............covoeerererenrrcrerese s 39
Structure of a Legacy Add-0n Package...........cceeeevrvererenerenscsensesessesesessenenns 40
Locating Extension Add-0n Source Files on DisK..........ccceeeerecrnicnerencrnnne. 42
TemPIate FilS.....ccouviiiirrrr e 44
Overview of Built-In Modules of the Blender APccouirenrnnenenenerensenenns 45
Basic Structure of Operators ... 46
Adding an Operator or Add-0n t0 @ MenU.........ccccoevrererernsesessesessseressesessenens 51
Adding a Pop-Up Dialog to the Simple Operator..........c.ccevivvnvniriennsnienens 59
Creating a Custom Ul Panel in the Properties Shelfcccccvvninviniennenn 62
Finding the Python Class for a Menu Item from Its Source File..........cccccvvennne. 84
Preparing Your Add-0n for Publication...........cceevvrverienensnseniennsensessesesessensesaens 85
Creating Metadata for Your Add-0n.........cccocvvvvrennnnseniensnensessesesessessessens 86
AddiNG @ LICENSEvevveerererierersere s sese s ssssese e ssssesessessessssessessessssessessens 89
1] 4= 7 91
Chapter 3: Mesh Modeling BasiCSccssunsssansssassssnsssansssassssnsssanssans 93
Accessing a Mesh ODject.........ccovrnrcnr 93
Watching Out for Invalid Referencesc.ccoovcvvriresnsnienesnsene s s 96
Selecting Objects and Setting Object Interaction Modes...........cccvvrvervinienenen 97
Adding Built-In Primitive ShApEsccuerrrerermsernsesesssesssesessesesesesessssessenens 101
Preventing Addition of Duplicate Primitives.........ccccurvvvininnennnesnnsesesesennenes 104
Accessing Object Locations and Moving ObjJects..........ccccvervevnrnierierenensensennes 105
Adding Modifiers to Objects and Changing Modifier Settings........ccccvevvevveriennen 111
Creating New Mesh ODjJECtS.......ccccvvcrnvrnerre e 115

TABLE OF CONTENTS

Getting Started With BMESHcccevvvriniererrsensere s sessessessessssessessens 118
Accessing or Editing an Existing Mesh..........ccccvvvninininnncnvnsnnenieninnns 118
Building @ Mesh from SCratChcccvvevevnrnieriesnsensere s sessesesesessesessens 120
Using BMesh As a Mesh SKetch Padcccvvevennnnienennsensesenessessesenees 123
Editing and Generating Meshes with BMEeSh..........c.ccvvvverevnnnienenensensenens 125

Generating Simple Barrel Meshes from Scratch............cccooeevinvvnievnicccrnccnnn 141
Generating the Circular Top, Bottom, and Cross-Sections of the Barrel....... 141
Procedurally Generating a Barrel Using Circular Cross-Sections................ 144

3101111 T 149

Chapter 4: Advanced Mesh Modelingccccuunssssemsnnsmmesssssssssssssnnnnas 151

Running This Chapter’s EXamples.........ccccrinnininennnnsnese s sessenns 151
Setting Up/Running the Script VErsionccccvvevnnennnesennnesessesesssenenns 152
Installing/Running the Extension Add-0n Versionccevevsrnsenenenerennes 153
Script vs. Add-0n at the Source Level.........ccccvvnvnininncnsnenecencenenn, 157
Importing Functions from Other SCriptsc.cccvivnnnininnsnsne e 157
Turning a Script into an Add-0N ... 160

BMesh vs. bpy.ops.mesh Operators for Mesh Editing..........cccoevvnvrinniniennene 162

Using bmesh.ops Operators to Create Primitivesccocvverievnnnvenenensensennens 164

Editing Meshes with EAge LOOPSccvervriinnenininsin e sse e 167
Selecting Edge Loops and RiNGSccvevvrenrnerenssnensesessesessessesessssessessees 168
Bridging EAge LOOPS......ccooerirvirrirnerirserses s sses s ssessse e s sssssasssessessens 174

Merging and Splitting Mesh Elements...........cccovvrinvincnnnienssncenesssessennens 193
Merging VertiCes........ccuvrriinnnicre s sns e s 194
RipPIiNg VEIICES ... ettt s sn e snens 198
Splitting and Joining FACEScccoveeererrnirre e e 201

Rotating and Scaling Mesh Objects (Object Mode).......c.c.ccorererrencrersererenereenes 203

vii

TABLE OF CONTENTS

Rotating and Scaling Mesh Objects (Edit MOUE)cocevverrererensersererensensersenes 207
Rotating Individual EAQes........cccvveriririnne s sessesses e 207
Rotating and Scaling a Selection on @ MeSh........cccccvvrverevnnnienenensensenens 209

Beveling Edges and VErtiCeS........cccvvvnrniniennsinsesse s ses s 209

INSELHING FACES......cceereecrerereree e 212

Editing NOrmMalS........ccvveerrieresernesesese s s snenes 214
Configuring Viewport Settings for Debuggingcocveeverrerernseressesesenerennes 214
Accessing and Flipping NOrMalSccoovevmenmrnnmsnsesessesessss s s sessesenns 216

Removing DOUDIESccoviiirierrernessse e 218

RemoVving LOOSE VEILICEScovverrererrerirrerenessssesse e ssssessesse s sassessesaessssessessees 219

SUMMAIY.c.veitetrerere e e re e sre s e e s s s s e e e s e s s saese e e saesaesae e s e saesae s eenaesaens 220

Chapter 5: Procedurally Generating Stylized Fire Hydrants 221

Running This Chapter’s EXamples..........cccecrnvernieneniesennsenene s sesessesessesessens 221
Setting Up/Running the Script Versioncccccvvvevvecvnsenneseseserencenene 222
Installing/Running the Extension Add-0n Versioncccccevvvevnrererencrnnne. 222
Imports from Chapters 3 and 4. 223

Designing the Generation AlgOrithm ..o 223
Breaking the Generation into Stages..........covevrrererrenrnscrennesesesers s 225
Deciding Which Parameters Should Be Adjustable...........ccoccoveirnecnennnens 226
Generating the Basecoccvrererenernscrresere e 230
Adding the Pole and Top Band............coocoreirennnscnerese e 236
Adding the Dome and the Basis for the Cap........ccccorrerresrnscnenienernscnen 240
Shaping the Cap ... e s 245
Adding Details and FinisShing Up.........cooverrienrennnscneresereseresesese e 248
Generating a Variety of Fire Hydrants by Changing Parameters.................. 253

Turning the Generation Algorithm into an EXtension.........c.c.ccovverervserensesennens 256
Exposing Generation Parameters as User INputscccceevnvncenevniniennens 256

Creating an Operator to Call the Generation Routine with Widget Values ...260

viii

TABLE OF CONTENTS

Exposing the Input Widgets and the Operator in the Ul Panel.............c.cc..... 261
Wrapping Up the Extension Implementationcccccvvvvininininneninninnns 264
31011117 SR 265
Chapter 6: Sculpting and Retopologyccccreussmresssmsssssnsssssnsssssnnsas 267
Running This Chapter’s EXamples.........ccccinninnnnnnsnsnese s sessessens 268
Setting Up/Running the SCrptSooveererrrsrrere e 268
Installing/Running the Sculpt Retopo Toolkit Extensioncccccoveeeernnne. 268
Imports from Chapters 3 and 4..........cccvvrvnnnsnsnnn s 269
Automating the Setup of Reference Imagescccceevvvnirieninnnsnsenesssensennns 269
Implementing the Sculpt Retopo Toolkit EXtension...........cccueevrvsernsesenesennnnes 277
Using the Sculpt Retopo TOOIKIL.........c.cccvvrennenernse s 278
Creating User Input Widgets As Scene Variables...........ccvevvnvriernnenseniennns 280
Accessing and Configuring Grease Pencil in Python..........cccceevivinincennns 283
Implementing the Carve and In/Outset Functionalities for the Toolkit......... 292
(3110100 [0 OSSPSR 305
Wrapping Up the Extension Implementationcccvcvevivcnnicnnenernscnnn 322
SUMMAIY.c.veitiiriere et s ss e e s e s sae e e e s e s aesae e s e e aesae e e e nannaees 326

Chapter 7: UV Mapping.....cccuseesmmmsssnsnsmsssssssssssssssssssssssssssssssssnssssssnsss 32 1

Running This Chapter’'s EXamples.........cccverevnnennenennnensessesessssessesessssessessenes 328
Setting Up/Running the SCriptSccvvrivvinrnere s ses s sessesaees 328
Before Unwrapping: Marking SEamScccovvevrnerenesernsesenesesssesessesessesessenes 329
HOW D0 SEAMS WOIK?oovveecrerireeeere e sesssssnens 330
UV Mapping in Blender by Hand............ccooeorrennenreerecereser e 332
Automating the UV Mapping Process in Python...........cccvvevnnenenenennsenennens 332
Applying Modifiers in PYtNON.........ccccovvrnnnenersse s sessesenns 333
Marking Seams from Script FUNCLIONS..........ccccovivvrenrnss e 337
Opening a UV or Image Editor Using Python...........cccuevrienernncnnscsenenenenne, 344

ix

TABLE OF CONTENTS

Configuring Commonly Used Settings for UV Mapping.........cccevrererersersennes 348
Configuring UV Settings in GENEralccccovvevrerevennersesenessensesesessessesenees 357
Visualizing Unwrapped UVs on the Modelcccovvrvninnnininsnnenieninnns 360
Putting It Altogether: Automating UV Unwrapping of a Given Mesh............. 368
SAVING 10 FIlE ...t e e e 371
EXporting UV Layout ... e s sessesnens 371
Saving Image Data BIOCK 10 File.........ccooeerrverncenernscrccc e 374
SUMMANY.....eieeereeereree e s e se s e re e e e e 375
Chapter 8: Texture Paintingcccusnemmmmmmmmnnmsssssssssssnnseesssssssssssnnns 377
Running This Chapter’s EXamples.........ccccrnnnninennnnnsnese s sessessenns 377
Setting Up/Running the Text Editor Version..........c.ccoveevrreserssesessesessnenennes 377
Installing/Running the Extension Add-0n Versioncccoveveernseserenerennes 378
Handling Imports from Chapters 6 and 7ccccvvvvninnnnnninennsensennens 378
Utilizing Reference Images for Texture Paintingcovevvrennescsnsesenesennnnes 378
Projection Painting Workflow by Hand...........ccccovvrirvinininenn s 379
Step #1: Seam and Unwrap Your Modelccocevvvrvrienennnenseneseenessenenes 381
Step #2: Unwrap by “Project From View” to Create a Separate
UV Map for Each Reference Photo........c.ccocvvvvrerennsensenienssessene e sessenaennes 382
Step #3: Projection Paint with Clone Brush Using Each
<Reference Photo, UV Map> Pairing.......c.ccccvvrrevennnniesienensenseseseesessessenees 384
Designing a Projection Painting Helper EXtensioncccocvvvvnincenvenneniennens 390
Extension Structural DESIGNcoovvervevrerevenserseressssessesessesessessessessssessessens 390
Extension User Interface DesSign........c.ccucvverininienneniensensen e ssessesseessessessens 393
Making an Operator to Unwrap the Selected MeSh.........ccevvvvierievenieniennens 397
Making Operators to Unwrap the Selected Mesh via
“Project From VIEW”cccciririrne i sses e s e s e s sesssesnessesseas 404
Making Operators to Open Reference Photos.........cccvvverevensenserenensensenaens 411
Making Operators to Projection Paint............cccevrervinienieninnensensenienessensensens 414

TABLE OF CONTENTS

Wrapping Up Implementation for The Projection Painting Helper

EXTENSION ..ot 422
Advantages of Projection Painting and Texture Generation and
WRHEN 10 USE I.....oee s 423
SUMMANY....ceireerinesesese s s e e s s e se e nenssnenns 424

Chapter 9: Showcasing and Publishing Your Extensions
and Scripts .. —————————————————=——— 2 1

Running This Chapter’'s EXamples.........cccverevnnenseniessnsnsessesessssessessessssessessenes 428
Setting Up/Running the Text Editor VErsionc.ccccvvvrevenensensersessssensenenes 428
Installing/Running the Extension Add-0n VErsionccceevvvverrevnvenseniennns 428
Handling Imports from Chapters 3ccovvvrvniennsnnenese s sesessessssessensens 429

From Code t0 ProdUCLcoeeeeceerrneccse e 429
LICENSINGcieriececir st e e e s 429
Package Your EXIENSIONcccocerernnnieniennssne s s e s sessesnens 430
Deciding on a Publication Qutletcccorinvninnincrrc e 432
Case Studies on the Marketing Strategies of Your Favorite Add-Ons.......... 433
KNOW YOUF AUQIENCE ..o 434
Writing @ Product Listingccccccvcvininninsncnesssinsesese s sessennens 435
o0 6 T [OOSR SRS 439

Promoting YOUr Add-0N........coooeereeereerereeres e 442
Using the Add-On in Video or Written Tutorials........c.ccccoveeeereecrnscneresernnnes 442
Boost Sales with Reviews or TesStimonialsccoeerneerrneneresernscnenienens 443
Drive Traffic by Offering DiSCOUNTScccceveerriererencrr e 443
Creating a Personal Brand............ccccoveenrneneresernscsenesese s 444

Creating Marketing Materials for Your Add-0nccococevrienrnsennnenenenesensenenns 445
Customize Viewport Visuals for Captures........ccccoeevvvninennsnsenenesessensenes 445
Collecting SCreenShOtS.ccoverererernserese s 448

TABLE OF CONTENTS

Making a Time-Lapsed Demo ... ssessessee e ssesseas 455
Overview of the Barrel PCG Demo EXIENSION..........ccoveeverereressnsncseseressnnnneaes 456
Implementing the Input Widgets.........covvvnrinininnninrn e 457
Implementing the “Generate Barrel” Operatorcccoevrevvververieresensersenes 457
Implementing the “Barrel Demo Timelapse” Operatorccocveevvrerverienen 464
Implementing the “Barrel Demo Interactive” Operator..........ccccveevvverreriennen 472

SUMMAIY.. et s e s e a e s p e e s ae e e e e nne s 474

1T - 475

xii

About the Author

Isabel Lupiani is a software engineer by day
and a maker by night, who enjoys handcrafting
3D models as much as procedurally generating
them. She received her MS in Computer
Science from Georgia Tech and has worked

at several game studios in the past as an Al

engineer for PC/Xbox games. Most recently,
Isabel was a lead Al engineer in the simulation
industry.

xiii

About the Technical Reviewer

Ajit Deolikar is a mechanical engineer

from Pune, India, and has experience in

new product design and development.

His work area involves designing aesthetic
accessories for four wheelers and two wheelers
(motorcycles as well as scooters), structural
systems, power parts, bodywork, etc. He is also

involved in designing and engineering of farm
equipment and other testing equipment.

He is passionate about art and started using the open source software
Blender as a hobby many years ago. He likes to create short animations
as well as explanatory videos of various training modules for educational
purposes.

He extended Blender experience in his professional work for preparing
product styling surfaces and CAD construction using hard surface
modeling. In addition, he has used it to solve complex mechanical motions
using a physics engine and for various other tasks. With Blender Python
scripting, he has created specific add-ons for simplifying and automating
many repetitive tasks. He has even taken efforts to customize the project
workflow for improving product quality to shorten delivery schedules. His
product marketing videos and brochure, made using Blender, make him
stand out from the competition.

In his spare time, he likes to play chess and analyze game strategies
played by the world’s great Grandmasters. He would someday love to
write at least one book on those approaches. He can be reached at
ajitb502@gmail.com.

Acknowledgments

I've always found the thought of anyone willing to read my work incredibly
humbling and flattering. Thank you to all the readers out there, whether
you've supported the previous incarnations of the book or are picking it up
for the first time—the book exists (and lives on) because of you. I'd also like
to express my gratitude to Spandana Chatterjee, Shobana Srinivasan, Kripa
Joseph, James Markham, Joseph Quatela, Jessica Vakili, Sowmya Thodur,
and the rest of the Apress team, for your support and guidance throughout
the publishing process. Thank you to the technical reviewer for taking the
time to read the chapters, dotting my Blender i’s, and crossing my Python t’s.
Last but not least, thank you to my husband James, my daughter Zoe, and
my son Caleb, for your eternal love and support, and not to forget Tiddles,
the red-footed tortoise, for graciously modeling for the Chapter 8 photos.

xvii

Introduction

Art, games, and I go way back. My kindergarten teacher folded a paper
crane in class one day, and I was hooked. By the time I was in first grade,

I was designing and making my own pop-up cards. To this day, I love
telling the story of the day the stars aligned and I won a Sega Genesis in an
art competition—henceforth my indoctrination to the fascinating world
of video games. You could call it fate, since my parents probably never
would’ve bought me a game console!

Fast forward to 2007, I was a year into the game industry as an Al
programmer and had picked up Blender in my spare time to communicate
with artists at work better and to fuel my own creative outlet. It would take
another 10 years, however, when I took on a project to port Blender to
room-scale VR that I finally attempted to work with Blender Python—and
boy, was that difficult! Even though I'd been using Blender for years and
programming professionally, getting one thing to work in Blender Python
would sometimes mean days of trial and error plus digging through
documentation and poring over online posts. It may be cliché when
authors say they wanted to write a book they wished had existed—in my
case, honestly did. This book is the accumulation of everything I learned
working with Blender Python over the years, with solutions to problems
that'd only come up when you try to write tools for a real production
environment.

The book will show you how to write extension add-ons for Blender 4
from start to finish. Chapter 1 opens with a hands-on tour of the Scripting
workspace with basics like loading and running scripts and turning hand
modeling steps into Python by capturing them in the Info Editor. Chapter 2
explains the structure of operators and add-ons and shows how to use
various input widgets to create user interfaces. You'll learn various

Xix

INTRODUCTION

strategies for finding the Python equivalent of Blender menu options
and hotkeys in a systematic way. In addition, you'll dissect add-ons
shipped with Blender to see how they work and take advantage of built-in
templates to quickly create new scripts.

With a firm grasp of scripting basics, in Chapters 3, 4, and 5, you'll
find out how to create add-ons for editing and generating 3D models. In
Chapter 3, you'll learn the basics of using modifiers and the bmesh module
to edit meshes in Python and then write your own script to generate
barrels from scratch with interesting variations. In Chapter 4, you'll
add more advanced mesh editing functionalities to your add-ons, like
extrude/bridge edge loops, loop cut-and-slides, plus all the essentials for
manipulating vertices, edges, and faces like merge, rip, join, rotate, scale,
bevel, and inset. You'll also write functions for cleaning up meshes and
correcting normals. In addition, you'll learn how to handle imports (i.e.,
scripts that reference functions defined in one another) for both scripts
meant to run in the Text Editor as well as packaged add-ons.

The second half of the book takes you through developing a series
of practical and production-quality add-ons, inspired by various stages
of a 3D modeling pipeline. In Chapter 5, you'll develop an add-on to
procedurally generate stylized fire hydrant meshes with parametric
controls. In Chapter 6, you'll create a suite of helper tools that collect user
inputs from Grease Pencil strokes marked directly on sculpted meshes, for
carving and in/outsetting selected regions as well as retopologizing them.
In Chapter 7, you'll learn to write Python functions that automate key steps
of the UV mapping process. Building on skills from Chapter 7, in Chapter 8,
you'll create tools for projection painting textures by sampling from the
same reference photos used to model the mesh. After mastering add-on
development, in Chapter 9, you'll find out how to package, distribute, and
market your extension add-ons through different channels. With the help
of modal operators, you'll also create time-lapsed and interactive demos to
showcase your procedural generation algorithm building a mesh gradually
in the viewport with 3D text as captions.

INTRODUCTION

Who This Book Is For

The intended audience of this book are 3D artists and programmers who
want to create custom Blender add-ons to automate part of their workflow.
Readers are assumed to have a high-level understanding of the 3D art
pipeline, and either already use Blender or have experience with other
CAD software such as 3Ds Max, Maya, or Rhino. Knowing basic Python is
immensely helpful, although it is possible for motivated readers to learn it
along the way by supplementing with resources outside the book.

Suggested Reading Road Map

The book is designed for a linear read through from Chapters 1 to 9.
However, if you already have experience with Blender Python or are only
interested in certain stages of the 3D modeling pipeline, it is possible to
skip some chapters. In this section, I will suggest some alternative road
maps through the book.

Chapters 1 and 2 provide a comprehensive overview of operators and
add-ons, along with a plethora of strategies for systematically converting
Blender edits by hand into Python. I suggest you read Chapters 1 and 2
regardless of any prior experience with Blender Python, as they'll serve as
good refreshers and likely offer tips you've not seen elsewhere.

If you are primarily interested in mesh editing or procedural
generation but not UV mapping or texturing, you can read Chapters 1-5
and safely skip Chapters 7 and 8. If the reverse is true, you can read
Chapters 1, 2, 3, 7, and 8 and refer to Chapter 4 for an explanation on how
to handle imports for both scripts run from the Text Editor and packaged
add-ons. If you are not concerned with sculpting or retopology, you can
safely skip Chapter 6; however, Chapter 6 does cover how to configure the
Grease Pencil and process Grease Pencil input using Python.

INTRODUCTION

If you are not looking to sell your add-ons, you can skip the parts
of Chapter 9 that discuss marketing, promotion, and pricing strategies.
Even if you are not concerned with making time-lapse demos like those
mentioned in Chapter 9, they are built with modal operators that only run
when certain type(s) of events are detected (like timer ticks or keystrokes),
which may still be of interest and worth a read through.

xxii

CHAPTER 1

Getting Started on
Blender Scripting

Just about any action you perform by hand in Blender can be automated
with a script. In this chapter, I'll introduce you to Blender’s built-in
scripting interface, which includes the Python Console and the Text Editor.
The Python Console is a convenient way to experiment with individual
commands and see their effects in real time, whereas the Text Editor is
great for editing and running scripts from files. We’ll start by playing with
API functions from the Python Console and observe immediate feedback
happening in the viewport, followed by running one of Blender’s built-in
Template scripts in the Text Editor and observing its effects. Along the way,
I'will show you a variety of developer features that will help you discover
which Python operator is behind a Blender menu item or hotkey and how
to easily look up its implementation.

Introduction to Blender’s Scripting Interface

Blender comes equipped with a Scripting workspace, which can be
accessed by clicking the “Scripting” tab at the top of the screen as shown in
Figure 1-1. The Scripting workspace contains a Text Editor for editing and
running scripts from files, as well as an interactive Python Console that has
been customized around the Blender Python APL

© Isabel Lupiani 2025
I. Lupiani, Blender Scripting with Python, https://doi.org/10.1007/979-8-8688-1127-2_1

https://doi.org/10.1007/979-8-8688-1127-2_1#DOI

CHAPTER 1 GETTING STARTED ON BLENDER SCRIPTING

Click on the Scripting tab to
switch to the Scripting workspace

Text Editor

Python
console

Figure 1-1. Accessing the Scripting workspace (top). The Text Editor
and Python Console within the Scripting workspace (bottom)

Convenience Variables

Blender’s built-in Python Console is customized specifically around
Blender’s scripting API and provides many features not found in a native
Python installation. The first of these are convenience variables, which

CHAPTER 1 GETTING STARTED ON BLENDER SCRIPTING

are shorthand aliases for certain Blender modules. For example, the two
convenience variables C = bpy.context andD = bpy.data are already
defined for you inside the console.

A convenience variable is declared with the syntax <new alias> =
<name of variable>. So, any time you find the need to type bpy.context
at the prompt, you can enter C instead, which is a lot shorter and quicker

to type.

Automatic Imports and Autocomplete

Another feature of the built-in console is that some of the frequently used
Blender modules like mathutils as well as Python libraries like math are
automatically imported for quicker access.

Yet another feature (which is also my favorite) is Autocomplete. If
you're not sure what the name of a command is or are curious about what
functions are under a module, you can enter a partial command at the
prompt and use Console » Autocomplete to search for a list of options for
completing that command, as shown in Figure 1-2.

[-]v View Console

Clear All

Clear Line

Delete Previous Word
Delete Next Word

Copy as Script

Paste

Indent

Unindent

Backward in History
Forward in History '

Figure 1-2. The Autocomplete feature of the Python console

CHAPTER 1 GETTING STARTED ON BLENDER SCRIPTING

Let’s try this in an example. Inside the Python Console, type import
bmesh, and hit the enter key to import the bmesh module (which is a built-
in Blender Python module for mesh editing we’ll go over in Chapters 3, 4,
and 5). At the following prompt, type bmesh.utils.(be sure to include the
dot at the end), then, without hitting enter, click Console » Autocomplete.
You should see the list of available functions under bmesh.utils.
automatically brought up, as shown in Listing 1-1.

Listing 1-1. Retrieving the list of functions under bmesh.utils
using Console » Autocomplete

>>> import bmesh

>>> bmesh.utils.
edge rotate(
edge split(
face flip(
face_join(
face split(
face_split edgenet(
face vert separate(
loop separate(
vert _collapse edge(
vert collapse faces(
vert dissolve(
vert separate(
vert splice(

>>> bmesh.utils.

CHAPTER 1 GETTING STARTED ON BLENDER SCRIPTING

Tip If the list of results returned by Autocomplete is too long to read
without scrolling, you can use View » Area » Toggle Maximize Area
(Ctrl-Spacebar) to maximize it, then either hit Ctrl-Spacebar a second
time or click the “Back to Previous” button along the top menu bar

to bring it back down to size when you’re done. This functionality is
available in many other screen areas such as the 3D Viewport, Text
Editor, and so on.

If you have an idea of what a function or property’s name might be
but are unsure of the exact wording, you can type in a partial name as the
search term and utilize Autocomplete as a search tool. For instance, if you
remember that some of the debug settings are under the bpy.app module,
you can find their precise names by typing bpy.app.debug at the prompt,
and without pressing the enter key, click Console » Autocomplete, as
shown in Listing 1-2.

Listing 1-2. Searching for debug options under bpy.app using
Console » Autocomplete

>>> bpy.app.debug

_depsgraph
_depsgraph_build
_depsgraph_eval
_depsgraph_pretty
_depsgraph_tag
_depsgraph_time
_events

_ffmpeg
_freestyle
_handlers

CHAPTER 1 GETTING STARTED ON BLENDER SCRIPTING

_io
_python
_simdata
_value
_wm

>>> bpy.app.debug_events

False

The results from Autocomplete in this example suggest that bpy.app.
debug_events is a valid variable in the Blender API (note that you can
tell it’s a variable as opposed to a function, since its name does not have
a trailing pair of parentheses). To find out more about bpy.app.debug_
events’s usage, you can type it at the next prompt in the console and hit
enter. The console returns False, which indicates that bpy.app.debug
events is a boolean property with its current value set to False. If you had
typed bpy.app.debug_Events instead, which is the same term but with the
wrong capitalization (notice the E instead of e for event), Autocomplete
will fail to return any results and display an AttributeError instead:

>>> bpy.app.debug Events
Traceback (most recent call last):

File "<blender console>", line 1, in <module>
AttributeError: 'bpy.app' object has no attribute
"debug_Events'

If you spell out the full name of a function and hit Autocomplete, the
console will bring up that function’s entry in the documentation where
available. This is helpful for learning the correct usage of a function, like
the types and ordering of its input parameters and what values it returns.

If you need more information on how to use a method, you can always
look it up in the Blender Python API online documentation at https://
docs.blender.org/api/current/index.html. Notice, however, since

https://docs.blender.org/api/current/index.html
https://docs.blender.org/api/current/index.html

CHAPTER 1 GETTING STARTED ON BLENDER SCRIPTING

Blender is continuously in development, you might not see the same level
of support for all parts of the API, particularly those that are newer or have
recently undergone changes.

Caution Autocomplete’s search capabilities are rather limited since
the partial term’s capitalization and the ordering of the words both
need to be correct.

Example: Move Mesh Vertices in the Viewport
with the Python Console

Playing with commands at the built-in console with the help of
Autocomplete is a great way to learn your way around the Blender API. Let’s
try this with an example. You'll run a series of commands at the console to
move a corner vertex of the cube in the default startup blend file.

Switch to the Scripting workspace, and go over to the Python Console.
At the prompt, enter the following command:

>>> cube = bpy.context.scene.objects["Cube"]

This retrieves a reference to the cube by its name (“Cube”) from the
current list of scene objects and stores that reference in a variable called
cube. Later on, you'll make edits to the cube with script commands
through the cube variable.

We're going to use the built-in Blender module bmesh to manipulate
cube’s mesh data. As shown in the previous example, since bmesh is not
imported to the console by default, you'll need to explicitly import it by
entering the command

>>> import bmesh

CHAPTER 1 GETTING STARTED ON BLENDER SCRIPTING

Next, switch cube to Edit mode in the 3D Viewport, which will let you
create a bmesh instance bm based on the cube’s mesh data, cube.data, with
the following command:

>>> bm = bmesh.from edit mesh(cube.data)

Through bm, you'll have access to the edges, faces, and vertices of
cube’s mesh data. For example, bm.verts is a sequence containing all
of cube’s vertices. Since a cube has eight corners, you can verify that the
length of bm.verts is 8 with 1en(), which is a built-in Python function that
tells you how many items are in a container, like this:

>>> len(bm.verts)
8

Next, you'll randomly pick one of cube’s vertices and experiment by
moving it through script commands. Enter the following command to
select one of cube’s vertices—let’s say the vertex with index 3—and store a
reference to it in the variable v. You can verify that v's index is 3 by printing
it to the console with v.index.

>>> v = bm.verts[3]
>>> v.index
3

Note Sequences in Python (such as a 1ist) use zero-based
indexing, which means the first item of a sequence has index 0, the
second item has index 1, and so on. The last item has an index that is
one less than the total number of items in the sequence. For example,
if a sequence has five items, the last item has index 4.

CHAPTER 1 GETTING STARTED ON BLENDER SCRIPTING

The numerical indices of vertices, edges, and faces in Blender reflect
the order in which they are created (elements with smaller indices are
created first). Note that unlike editing meshes in the 3D Viewport by hand,
where you have to select a portion of the mesh with the mouse or keyboard
first, many script operations allow you to directly manipulate part of a
mesh without explicitly making a selection.

Next, we'll move v through commands at the console and verify its
movement in the viewport. v.co is a trio of X, Y, and Z coordinates (a
Vector) that represents V’s location in 3D. v.co[0] is its X coordinate,
v.co[1] its Y coordinate, and v.co[2] its Z coordinate. Enter v. co at the
prompt to display its current location:

>>> Vv.Co
Vector((1.0, -1.0, -1.0))

To move v, you can edit one or more components of v. co or assign
anew Vector to v altogether. Enter the following command to add 1 to
v.co[1], which moves v in the positive Y direction by one unit:

>>> v.co[1] +=1
>>> V.co
Vector((1.0, 0.0, -1.0))

In general, when you edit a mesh through a bmesh instance, the
changes are queued up on the bmesh instance and not reflected on the
mesh until you call the method bmesh.update_edit mesh(<name of
mesh>). Ensure that the cube is in Edit mode, then, type the following line
into the console to flush the change to v.co from bmto cube’s mesh data:

>>> bmesh.update_edit mesh(cube.data)

You can verify v’s movement in the 3D Viewport, which should look
like the right-hand side of Figure 1-3.

CHAPTER 1 GETTING STARTED ON BLENDER SCRIPTING

Figure 1-3. Left: The cube in the viewport in its original state. Right:
After its vertex at index 3 has been moved 1 unit in the positive Y
direction

Tip The Python Console in Blender acts very much like a typical
command line interface. If you are already familiar with one, you'll
pleasantly discover that many common shortcuts like the Up or Down
Arrow keys for cycling through command history also work in the
Python Console.

Transferring Console Contents into a Script

After experimenting with some commands in the console, you might

find yourself arriving at a pretty solid basis for a script or add-on. To copy
the console session in its entirety, with lines automatically formatted
according to Python syntax, go to the top of the console window and select
Console » Copy as Script (Shift-Ctrl-C), then, paste (Ctrl-V) into any text
editor. This will remove the >>> prompts and convert the console output
lines to Python comments by prepending them with “#~”.

10

CHAPTER 1 GETTING STARTED ON BLENDER SCRIPTING

Notice that within the Console menu, there are several additional
options for editing commands at the prompt, such as Indent/Unindent
for formatting a multiline function definition, Clear Line for erasing the
current line, and Clear All for erasing the entire console history so far.

Editing and Running Script Files

You can quickly load, edit, and run existing scripts as well as create new
ones in Blender’s built-in Text Editor. It provides some basic Python
programming support like line numbers and syntax highlighting. The main
advantage of using the Text Editor is you can quickly run a script, observe
its effects in the 3D Viewport or another area of Blender, make revisions to
the script as necessary, and repeat, without having to switch back and forth
between an external editor and Blender. Figure 1-4 shows the Text Editor’s
user interface when it first starts up without a file loaded.

Figure 1-4. Text Editor at startup without a file loaded. (1) Click the
button to show the list of newly created files or files loaded from disk.
(2) Create a new script file. (3) Open an existing script file on disk.
(4) Toggle the display of line numbers in scripts. (5) Toggle syntax
highlighting

Let’s open one of Blender’s built-in template script files in the Text
Editor. On the top menu bar, click Templates » Python » Ui Panel Simple.
You'll see the contents of the fileui_panel simple.py linked in as a new
text data block and displayed inside the Text editor, as shown in Figure 1-5.

11

