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Introduction

This book is a collection of independent mathematical studies, describing the

analytical reduction of complex generic problems in the theory of scattering and

propagation of electromagnetic waves in the presence of imperfectly conducting

objects. Their subjects are as follows:

– a global method for the scattering by a multimode plane;

– diffraction by an impedance curved wedge;

– scattering by impedance polygons;

– advanced properties of spectral functions in frequency and time domains;

– bianisotropic media and related coupling expressions;

– exact and asymptotic reductions of surface radiation integrals.

Each of our approaches can be qualified as analytical, when it leads to

exact explicit expressions, or, as semi-analytical, when it drastically reduces the

mathematical complexity of studied problems. Therefore, they can be used in

mathematical physics and engineering, to analyze and model, as well as in applied

mathematics, to calculate for a low computational cost, the scattered fields in

electromagnetism.

All of these works derive from original methods initiated in our publications that

we here detail, develop and extend.

The first chapter is devoted to original exact expressions of the diffraction

by a multilayered plane that can be partly composed of metamaterials. In whole

generality, we then determine the fields as depending on potentials attached to

arbitrary passive or active modes whose combination will give the passivity of

the complete system. Our expressions directly take account of primary sources
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composed of electric and magnetic dipoles with arbitrary orientations, and profit of

a novel exact development of incomplete Bessel function as an exact series of error

functions. This latter characteristic permits a complete uniform analysis for arbitrary

complex parameters, contrary to previous known results with error functions that were

only approximations. Exact and complete asymptotics (at any order) are described,

allowing us to particularly analyze the contribution of guided waves (forward and

backward) at any distance.

The second chapter concerns the diffraction of an impedance wedge with

curved faces of arbitrary angle that supports distinct surface boundary conditions

of impedance type. We then distinguish the domains above and below the tangent

planes at the edge. Our method permits an asymptotic evaluation at arbitrary order of

curvatures of both faces for arbitrary passive impedance parameters. The uniformity

at the crossing of the tangent plane is a characteristic remaining at arbitrary order,

permitting us to analyze reflected, guided waves, edge-diffracted waves, but also

waves originating from the edge that creep along the faces (creeping waves when

faces are convex).

The diffraction in free space of a imperfectly conducting polygons (finite or

with semi-infinite faces) is a particularly delicate problem that we study in third

chapter, using Sommerfeld–Maliuzhinets integral representation of fields in a novel

manner to rigorously consider several discontinuities, without any approximations.

Indeed, contrary to common methods which consider large facets to admit asymptotic

coupling between edges, we consider a rigorous development valid for arbitrary

dimensions of facets, by establishing novel spectral equations that we can solve

exactly or asymptotically, from a novel analysis of properties of spectral functions.

This is particularly permitted by using their single-face representations, which is

perfectly adapted to directly consider boundary conditions on faces with piecewise

smooth geometries, as in polygonal cases.

Chapter 4 explores spectral functions in Sommerfeld–Maliuzhinets integral

representation, their properties in the complex plane and new developments of them

and special functions, attached to the resolution of multiple problems concerning the

diffraction by a wedge with impedance boundaries conditions (passive or active). By

beginning the study in frequency domain, we also analyze the representation of fields

in time domain, in particular for an efficient explicit expression of causality in the

case of dispersive (not constant relatively to frequency) multimode faces.

The fifth chapter analyzes the coupling influence between two imperfectly

conducting objects in presence of a third one, all constituted by bianisotropic media.

After beginning with developments of integral equalities, in particular, a generalized

reciprocity one, we derive different properties of fields that will permit a complete

analysis of coupling influences. We then give an example of application for an efficient



Introduction xvii

and simple numerical post-process suppression of the influence of one object, that is,

its direct but also its coupling contributions, on a second object.

We conclude this book with the determination of explicit contour integral

expressions for an efficient evaluation of surface radiation integrals at arbitrary

distance. This reduction concerns radiation of plane or curved plates of arbitrary

contours, when the fields, highly oscillatory or not, are analytically defined on them,

which is particularly the case for physical optics radiation surface integrals, when the

surface fields are defined in closed form from geometrical optics.





1

A Global Method for the Scattering
by a Multimode Plane with Arbitrary

Primary Sources and Complete
Series with Error Functions

1.1. Introduction

In [1], we considered the field scattered by an arbitrary impedance plane in

electromagnetism, and we here exploit this formalism to analyze the scattering by a

structure composed of several homogeneous planar layers, with isotropy or uniaxial

anisotropy, illuminated by arbitrary bounded sources. In this study, the plane is

supposed to be either grounded, that is, a multilayer backed by an impedance plane,

or not grounded, that is, a multilayer slab in free space; this will lead us to generalize

our previous approach for a multilayer given in [2].

The field scattered of such structures is usually given by its plane wave expansion

(Fourier representation) [3]-[6], which presents the particularity to have reflection

coefficients that are meromorphic functions. Each one can be then modeled as a

rational function with a set of N simple poles {−gj}j=1,..,N , which permits us to

assume a multimode boundary condition of order N [2].

The Fourier expansion is well adapted in far field or for plane wave illuminations,

but is not suitable for an analysis at any distance or for complex incident waves.

Even when double Fourier integrals are reduced to single Fourier–Bessel integrals,

calculation is lengthy and delicate because of functions in the integral that remain

highly oscillating and, most often in literature [3]–[9], analytic expansions are not

strictly convergent but asymptotic. Besides, an additional difficulty comes from that,

and in multimode case, we have to take into account that the constants gj can have
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real parts of any sign, which signifies that passive but also active modes are present,

even if the complete system is strictly passive.

In this frame, after expanding potentials into a combination of Fourier–Bessel

integrals depending on each gj , we are led to transform them to derive a more efficient

integral representation, which is able to take account of active modes. Among other

specificities, the definition of a parameter ε, attached to each pole, is then particularly

important to permit complete exact and asymptotic series with error functions. These

series allow us to exhibit guiding waves terms near and far from the sources above the

multilayer, generalizing [1] and refining [2].

Otherwise, our approach, as in [1], uses a new representation of potentials for

the incident field, which possesses the originality to directly consider arbitrarily

oriented electric and magnetic primary currents sources. Thus, we have no more to

solve separately the problem for vertical or horizontal dipolar source as commonly

done in the literature for passive impedance planes [7]–[14], isotropic or uniaxial

slabs [15]–[17] or multilayers [3]–[6], [18]–[22]. In practice, the analytic method so

developed can be applied in whole generality to various problems, in particular for the

determination of coupling between antennas above an imperfectly reflective plane, or

for the calculus of Green’s functions for planar lines printed on a multilayer.

This chapter is organized as follows. In section 1.2, we give a discussion on the

representation of the field with potentials, on the boundary conditions and on the

positions of gj in the complex plane when metamaterials can be present. Next, we give

a global expression of potentials attached to the fields radiated by arbitrary bounded

sources in free space in section 1.3, and above the multilayer in section 1.4, which

we develop and expand for arbitrarily oriented dipoles in section 1.5. In sections

1.6 and 1.7, we then detail a compact expression of the special function involved

in the potentials attached to each mode, intimately depending on a parameter ε that is

necessary to correctly take account of active modes. The definition of ε will be useful

for the development of exact (section 1.6) and asymptotic (section 1.7) expansions

with error functions for arbitrary cases, allowing in particular a general analysis of

guided waves in section 1.8, including backward waves, near and far from the sources.

1.2. Potentials, reflection coefficients and multimode boundary
conditions

1.2.1. Fields and potentials

We consider the scattering by an imperfectly reflective plane when it is illuminated

by the field radiated by a bounded primary source, which is composed of arbitrary

electrical and magnetic currents J and M (see Figure 1.1). In the space of points r
with Cartesian coordinates (x, y, z), this plane is defined by z = 0. A harmonic time
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dependence eiωt, from now on assumed, is suppressed throughout. The constants ε0
and μ0 are, respectively, the permittivity and the permeability of the free space above

the plane, and k0 = ω(μ0ε0)
1/2 is its wavenumber. Each component of the scattered

field is assumed to be regular in the domain z > 0, and O(e−γ|r|) with γ > 0 as

|r| → ∞ when | arg(ik0)| < π/2 (note: no loss is a limit case).

The electric field E and the magnetic field H above the multilayer, following

Harrington [23, p. 131] (see also Jones [3, p. 19]), can be written with two scalar

potentials E and H, as follows:

E = −ik0curl(H ẑ) + (grad(div(.)) + k20)(E ẑ),

Z0H = ik0curl(E ẑ) + (grad(div(.)) + k20)(H ẑ), (1.1)

where the Helmhotz equations (Δ + k20)E = 0 and (Δ + k20)H = 0 are verified

outside the sources, Z0 = (μ0/ε0)
1/2. Thereafter, we denote (Ei,Hi) and (Es,Hs) the

potentials corresponding, respectively, to the incident field (incoming wave) (Ei, Hi)
and the scattered field (outgoing wave) (Es, Hs), and we write (1.1) in the compact

form:

(E,Z0H) = (L1(ẑE , ẑH),L2(ẑE , ẑH)) = L(ẑE , ẑH),

L1(u,v) = ((grad(div(.)) + k20)(u)− ik0curl(v)),

L2(u,v) = (ik0curl(u) + (grad(div(.)) + k20)(v)). (1.2)

Figure 1.1. Geometry: sources (J,M) and
observation point above the plane z = 0
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1.2.2. Multimode boundary conditions for a multilayer backed by an
impedance plane

Let us consider a multilayer plane composed of uniform isotropic (or z-axial

anisotropic) layers. Any plane wave (Ei, Hi), incident at angle β with the

normal ẑ, is then scattered as a reflected plane wave (Es, Hs) that satisfies

Es
z |z=0+ = Re,eE

i
z|z=0− (i.e. Hs

⊥|z=0+ = Re,eH
i
⊥|z=0− in TM polarization),

and Hs
z |z=0+ = Rh,hH

i
z|z=0− (i.e. Es

⊥|z=0+ = Rh,hE
i
⊥|z=0− in TE polarization)

[4], [5], [21] (see details in appendix A). If the multilayer is backed by a constant

impedance plane, the reflection coefficients Re,e and Rh,h are meromorphic functions

of the variable cosβ, which we can model as rational functions [2] with simple poles,

following:

Re,e(β) =

Ne∏
j=1

cosβ − gej
cosβ + gej

, Rh,h(β) =

Nh∏
j=1

cosβ − ghj
cosβ + ghj

, (1.3)

for which we have the basic equalities (without superscripts e and h):

N∏
j=1

cosβ − gj
cosβ + gj

= (±1)N +

N∑
j=1

aj
(− cos β

gj
)

1∓1
2

cosβ + gj
,

aj
2gj

= −
N∏
i 
=j

gj + gi
gj − gi

, (−1)N − 1 =

N∑
j=1

aj
gj

, (1.4)

whereN ≥ 1, and
∏1

i 
=j
gj+gi
gj−gi

≡ 1 for N = 1. The constants (±1)N refer to limit

values when | cosβ|±1 → ∞.

The g
e(,h)
j are constants attached to complex modes with Im(g

e(,h)
j ) �= 0, passive

when Re(g
e(,h)
j ) ≥ 0 or active when Re(g

e(,h)
j ) < 0, and ordered such that |ge(,h)j+1 | ≥

|ge(,h)j |, while, as considered in [26]–[28], we assume that:

when (1.3) applies, Ne and Nh and thus N are positive odd numbers, (1.5)

(note: this restriction on Ne(,h) will be removed in the more general case of extended

boundary conditions). Considering plane waves representation of fields (see appendix

A), we can then write a multimode boundary conditions at z = 0+ [2]:

Ne∏
j=1

( ∂

∂z
− ik0g

e
j

)
Es

z(z)|0+ =

Ne∏
j=1

( ∂

∂z
+ ik0g

e
j

)
Ei

z(−z)|0+ ,

Nh∏
j=1

( ∂

∂z
− ik0g

h
j

)
Hs

z (z)|0+ =

Nh∏
j=1

( ∂

∂z
+ ik0g

h
j

)
Hi

z(−z)|0+ . (1.6)



A Global Method for the Scattering by a Multimode Plane 5

From the symmetry at normal incidence, the condition Rh,h(0) = −Re,e(0) must

apply, which leads us to write:

Nh∏
j=1

±1− ghj
±1 + ghj

= −
Ne∏
j=1

±1− gej
±1 + gej

, (1.7)

and implies that Rh,h(π) = −Re,e(π). The condition (1.7) has crucial importance to

avoid non-physical behaviors of fields derived from potentials, as examined further

in this paper. Besides, the reader will notice that (1.7) implies ge1 = 1/gh1 when

Ne(,h) =1, as well known for monomode (impedance) boundaries conditions [1]. The

numbers Ne(,h) correspond to truncated infinite products, where the less significant

ge(,h) have been neglected, while some ge(,h) have to be modified so that Rh,h(0) =
−Re,e(0) remains.

Considering (1.1), we can use:

Ez =
∂2E
∂z2

+ k20E , Z0Hz =
∂2H
∂z2

+ k20H, (1.8)

in (1.6), and we are led to search scattered potentials Es and Hs, satisfying the

Helmholtz equation as z > 0, regular and exponentially vanishing as z → ∞ when

| arg(ik0)| < π/2, that verify as z > 0:

Ne∏
i=1

( ∂

∂z
− ik0g

e
j

)
Es(z) =

Ne∏
j=1

( ∂

∂z
+ ik0g

e
j

)
Ei(−z),

Nh∏
j=1

( ∂

∂z
− ik0g

h
j

)
Hs(z) =

Nh∏
j=1

( ∂

∂z
+ ik0g

h
j

)
Hi(−z), (1.9)

where Ei and Hi potentials are attached to radiation of arbitrary primary sources.

1.2.3. Extended multimode boundary conditions

More generally, we can consider an extended form when we want to include the

case of a multilayer slab in free space, which is composed of isotropic [4]-[5] (or

z-axial anisotropic [21]) layers. The reflection coefficients Re,e and Rh,h remain

meromorphic functions of cosβ, but we now model them in a more general form,

following:

Re,e(β) = Re
0

∏N ′
e

j=1(cosβ − gej
′)∏Ne

j=1(cosβ + gej )
, Rh,h(β) = Rh

0

∏N ′
h

j=1(cosβ − ghj
′
)∏Nh

j=1(cosβ + ghj )
, (1.10)

with simple complex poles −g
e(,h)
j , N ′

e(,h) ≤ Ne(,h), constants Re
0 and Rh

0 (this time

for odd or even Ne(h)), for which we notice the basic equalities (without supercripts e
and h):
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R0

∏N ′

j=1(cosβ − g′j)∏N
j=1(cosβ + gj)

− a0τ =

N∑
j=1

aj
(− cos β

gj
)

1−τ
2

cosβ + gj
=

N∑
j=1

τ
aj

gj

( cos βgj
)τ + 1

,

aj 
=0 = R0

∏N ′

i=1(−g′i − gj)∏N
i 
=j(gi − gj)

,
∣∣∣a0+=|=R0 if N′=N

=0 if N′<N

a0−=R0(
∏N′

i=1 −g′
i)/(

∏N
i=1 gi)

, (1.11)

where the constants a0τ refer to limit values when | cosβ|τ → ∞ with τ = +1 or −1.

We have N ≥ N ′, N ≥ 1, N ′ ≥ 0, and we can let
∏1

i 
=j(gi − gj) ≡ 1 for N = 1 and∏0
j=1(cosβ − g′j) ≡ 1 for N ′ = 0.

As in the previous section, we consider that Rh,h(0) = −Re,e(0), and assume

additionally that Rh,h(π) = −Re,e(π). This implies, after using (1.11) when

cosβ = ±1:

Ne∑
j=1

τe
ae
j

ge
j
(gej )

τe

(gej )
τe ± 1

+

Nh∑
j=1

τh
ah
j

gh
j

(ghj )
τh

(ghj )
τh ± 1

= −(a0τe + a0τh), (1.12)

with τe(,h) = +1 or −1. The condition (1.12), as previously noticed for (1.7), has a

crucial importance to avoid non-physical behaviors of fields derived from potentials.

Considering (1.10) and plane waves representation of fields (see appendix A), we

can write:

Ne∏
j=1

( −∂

ik0∂z
+ gej

)
Es

z(z)|0+ = Re
0

N ′
e∏

j=1

( −∂

ik0∂z
− gej

′
)
Ei

z(−z)|0+ ,

Nh∏
j=1

( −∂

ik0∂z
+ ghj

)
Hs

z (z)|0+ = Rh
0

N ′
h∏

j=1

( −∂

ik0∂z
− ghj

′)
Hi

z(−z)|0+ , (1.13)

which applies for any primary sources that illuminates the plane. Using (1.8), we can

solve (1.13)with (Es,Hs) that satisfy as z > 0:

Ne∏
i=1

( −∂

ik0∂z
+ gej

)
Es(z) = Re

0

N ′
e∏

j=1

( −∂

ik0∂z
− gej

′
)
Ei(−z),

Nh∏
j=1

( −∂

ik0∂z
+ ghj

)
Hs(z) = Rh

0

N ′
h∏

j=1

( −∂

ik0∂z
− ghj

′)Hi(−z). (1.14)

NOTE 1.1.– For z-uniaxial chiral layers [17], non-diagonal terms in (1.100) (see

appendix A on plane waves representation of fields) do not vanish, and(Pe
Ne

( ∂
∂z )Es(z)

Ph
Nh

( ∂.
∂z )Hs(z)

)
=

(
Qe,e

N ′ ( ∂.
∂z ) Qe,h

N ′ ( ∂.
∂z )

Qh,e
N ′ ( ∂.

∂z ) Q
h,h
N ′ ( ∂.

∂z )

)(Ei(−z)

Hi(−z)

)
, (1.15)
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applies with polynomials Pe(,h) and Qe(,h). By linearity, it can be solved by addition

of terms similar to ones derived for the solution of equations (1.14) (note: in this

case, adjoint characteristics have to be considered to apply the generalized reciprocity

principle).

NOTE 1.2.– Letting R = (cosβ − Z(cosβ))/(cosβ + Z(cosβ)), Z is a rational

function which is even as (1.3) applies [4], [5], [21] (see also Appendix A of [2]).

NOTE 1.3.– Considering (1.12), we can assume that, when a g
e(,h)
j → ∓1, it exists a

g
h(,e)
m such that a

e(,h)
j (g

e(,h)
j ± 1)−1 + a

h(,e)
m (g

h(,e)
m ± 1)−1 is bounded.

1.2.4. Properties of Re,e and Rh,h, and consequences on the g
e(,h)
j

The multilayer is characterized by permittivity ε(z) and permeability μ(z) as z
varies from z = 0 to −hL, which corresponds to a set of complex εj and μj specified

in each layer −hj ≤ z ≤ −hj−1 with 1 ≤ j ≤ L, h0 = 0. Considering the hypotheses

for (1.3) and (1.10), the last numbered layer shall be impenetrable or be bounded by

the free space at z = −hL. The plane wave spectrum of fields follows certain rules

(see appendix A), and the reflection coefficients, considered for an harmonic time

dependence eiωt, are analytic functions, called thereafter R to simplify, which have

some common elementary properties:

(a) R is an analytic function of the complex variables k0, cosβ, iωε, iωμ and

layers depths. In the domain of passivity Ωε,μ with Re(iωε) > 0 and Re(iωμ) > 0, R
has no singularity when β varies from 0 to i∞ + arg(ik0) as Re(ik0 sinβ) = 0, and

at infinity. This regularity applies in the whole domain with | arg(iω)| ≤ π/2 from

the causality principle. Its highest modulus is obtained for real ω from the maximum

modulus principle, while, from (1.104), |R| ≤ 1 when k0 is real and 0 ≤ β ≤ π/2.

(b) When iωε and iωμ are purely real positive (perfect lossy case), the multilayer

is purely resistive, and, in these circumstances, R is real when k0 and β are real.

(c) From (a) and (b), we can apply the Schwarz reflection principle (or

edge-of-the-wedge theorem) [24, sect.5] (see also [25]), and deduce that R satisfies

in Ωε,μ:

R((k0)
∗, (cosβ)∗, (iωε)∗, (iωμ)∗) = (R(k0, cosβ, iωε, iωμ))

∗. (1.16)

(d) Using (iε)∗ = i(−ε∗) and (iμ)∗ = i(−μ∗) in (1.16), we note, as we let

change ε and μ for their “anticonjugate” −ε∗ and −μ∗ (possible in practice with

metamaterials, or plasmas), that, for real ω and k0:

every pole cosβ = (−g
e(,h)
j ) of R in (1.3) and (1.10) for ε and μ,

gives us its conjugate (−g
e(,h)
j )∗ as a pole of R for − ε∗ and − μ∗. (1.17)
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(e) The set {ge(,h)j } has elements with positive and negative real parts [26]-[28],

and for the class of problems including metamaterials, the total set to be considered,

for real ω and k0, is {ge(,h)j } ∪ {(ge(,h)j )∗}; this leaves no quarter-plane of the

complex plane empty and explains why we have such a wide range of properties when

multilayers include metamaterials.

Let us now consider the examples of two lossless systems for real positive ω,

where, in the first case, ε and μ are with purely positive real values, and, in the second

case, with negative real values. As defined in (d), both cases then belong, respectively,

to anticonjugate classes. Pure imaginary g
e(,h)
j are generally of finite number. From the

analysis in [19] (respectively in [16]), the complex g
e(,h)
j with non-null real part are of

infinite number, and they are complex numbers with negative (respectively, positive)

imaginary parts, associated with improper (respectively, proper) modes. Therefore,

the domains of the g
e(,h)
j for both cases of these examples are conjugated with each

other, which plainly illustrates and confirms the property (d).

NOTE 1.4.– Considering appendix A, the conditions (a)–(e) also apply for anisotropic

multilayers, when ε and μ are tensors.

NOTE 1.5.– kj = ω(μjεj)
1/2, with (μjεj)

1/2 =
√
μj

√
εj , can be �= ω

√
μjεj , and

thus, a term like ((μjεj)
1/2/εj) tan(ω(μjεj)

1/2d) can be �=
√

μj/εj tan(ω
√
μjεjd).

1.3. Incident potentials (Ei,Hi) for arbitrary bounded primary sources

To solve problems with conditions (1.9) or (1.14), we need a correct explicit

expression of (Ei,Hi). We begin by considering the incident field (Ei, Hi) at point r
of coordinates (x, y, z), radiated by arbitrary electric and magnetic bounded sources

J and M in free space [3]:

Ei = curl(G ∗M) +
i

ωε0
(grad(div(.)) + k20)(G ∗ J),

Hi = −curl(G ∗ J) + i

ωμ0
(grad(div(.)) + k20)(G ∗M), (1.18)

where G(r) = − e−ik0|r(x,y,z)|
4π|r(x,y,z)| with |r| =

√
x2 + y2 + z2 verifies (Δ + k20)G = δ,

∗ is the convolution product, and J and M are generalized functions [29].

Considering arbitrary J and M in the domain ±z > 0, the potentials (Ei,Hi)
in the representation of fields Ei and Hi with (1.1), which satisfy the Helmholtz

equation as ∓z > 0 and exponentially vanish as ∓z → ∞ when | arg(ik0)| < π/2
can be written when ∓z > 0 [1]:

(Ei,Hi)(x, y, z) = [
ẑ

8πk20
.(L(Z0J,M) ∗W)](x, y, z), (1.19)
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where (A,B) ∗ C ≡ (A ∗ C,B ∗ C), L is defined as in (1.2):

L(Z0J,M) = (L1(Z0J,M),L2(Z0J,M)),

L1(u,v) = ((grad(div(.)) + k20)(u)− ik0curl(v)),

L2(u,v) = (ik0curl(u) + (grad(div(.)) + k20)(v)), (1.20)

and W has the remarkable compact form [1]–[2]:

W(r) = eik0|z|E1(ik0(|r|+|z|))

+ e−ik0|z|(E1(ik0(|r|−|z|)) + 2 ln ρ), (1.21)

with ρ =
√

x2 + y2, E1 being the exponential integral function [30], which verifies,

as ∓z > 0: ( ∂2

∂z2
+ k20

)W(r)

8πik0
= G(r), (Δ + k20)W(r) = 0. (1.22)

NOTE 1.6.– It is worth noticing that we have Δxy ln(ρ) = 2πδ(x)δ(y), which implies

that ln ρ in W has no influence on the expression of the field, except by its singularity

at ρ = 0.

NOTE 1.7.– Let us divide the primary sources J and M into the sources above and

below a plane z = z1, J±
z1 = Us(±(z − z1))J and M±

z1 = Us(±(z − z1))M , where

Us is the unit step function, with Us(z) = (sign(z) + 1)/2, Us(z) = 1 as z > 0,

Us(z) = 1/2 as z = 0 and Us(z) = 0 as z < 0. We can then write, for arbitrary

observation point at z = z1:

(Ei,Z0H
i)(x, y, z1) =

∑
±

(E±,Z0H
±)(x, y, z1 ∓ 0±), (1.23)

where (E±,H±) are the field radiated by the sources J±
z1 and M±

z1 , following

(E±,Z0H
±) = L(ẑE±,ẑH±) with (E±,H±) = ẑ

8πk2
0
.L(Z0J

±
z1 ,M

±
z1) ∗ W , from

(1.2) and (1.19).

1.4. Scattered potentials (Es,Hs) for arbitrary primary sources

1.4.1. A global expression of (Es,Hs) for a multimode plane

Considering the potentials (Ei,Hi) attached to the radiation of arbitrary sources

from (1.19), we can now express the scalar potentials Es and Hs, which satisfy the

multimode conditions (1.9) or (1.14), as z ≥ 0. From the method developed in [1]–[2],
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we have for conditions (1.9) (for odd numbers Ne(h)):

Es(x, y, z) = ±Ei(x, y,−z)

+
(( ẑ

ωε0

grad(div(J)) + k20J

8πk0
+

ẑ

k

(−ik0 curl(M))

8πk0

)
∗

∑
ε′=−1,1

(
(

Ne∏
j=1

ε′ + gej
ε′ − gej

∓ 1)Vε′ +

Ne∑
j=1

ε′aejKge
j

(gej − ε′)

))
(x, y,−z), (1.24)

and

Hs(x, y, z) = ∓Hi(x, y,−z)

+
(( ẑ

ωε0

(ik0curl(J))

8πk0
+

ẑ

k

(grad(div(M)) + k20M)

8πk0

)
∗

∑
ε′=−1,1

(
(

Nh∏
j=1

ε′ + ghj
ε′ − ghj

± 1)Vε′ +

Nh∑
j=1

ε′ahjKgh
j

(ghj − ε′)

))
(x, y,−z), (1.25)

while we have, for extended conditions (1.14) (for odd or even numbers Ne(h)):

Es(x, y, z) = ae0τeEi(x, y,−z)

+
(( ẑ

ωε0

grad(div(J)) + k20J

8πk0
+

ẑ

k

(−ik0 curl(M))

8πk0

)
∗

∑
ε′=−1,1

(
((Re,e|cos β=−ε′)− ae0τe)Vε′ +

Ne∑
j=1

ε′aejKge
j

(gej − ε′)

))
(x, y,−z), (1.26)

and

Hs(x, y, z) = ah0τh Hi(x, y,−z)

+
(( ẑ

ωε0

(ik0 curl(J))

8πk0
+

ẑ

k

(grad(div(M)) + k20M)

8πk0

)
∗

∑
ε′=−1,1

(
((Rh,h|cos β=−ε′)− ah0τh)Vε′ +

Nh∑
j=1

ε′ahjKgh
j

(ghj − ε′)

))
(x, y,−z), (1.27)

where Vε′ , Kg are given by,

Vε′(x, y,−z) = eε
′ik0z(E1(ik0(|r|+ε′z)) + (1− ε′) ln ρ),

Kg(x, y,−z) = eik0gzJg(ρ,−z), (1.28)


