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Preface

This book is based on courses taught by the authors at the École Centrale de Lyon

and at the Université de Lyon, both at the undergraduate and graduate levels. It has also

benefited from their interactions with the audience of professional training sessions,

held in particular at the Collège de Polytechnique.

The book is intended for undergraduate students and engineering students, as well

as graduate students and professionals in industry who are increasingly faced with the

need to consider acoustic constraints when developing new products. It is limited to

acoustics in fluids, with applications to atmospheric and underwater acoustics.

The book is divided into two volumes. The first is devoted to fundamental

elements, the knowledge of which allows for a good mastery of acoustics in fluids.

The second is an introduction to more advanced aspects, some of which are the

subject of active research and whose status is sometimes still evolving (aeroacoustics,

propagation in a moving medium, nonlinear acoustics). Some synthesis problems are

also presented, focusing on noise control issues.

Volume 1 consists of 10 chapters plus an appendix of fluid mechanics reminders

and a second one with some mathematical elements.

The first two chapters establish the equations of acoustics in homogeneous fluids

and describe the properties of plane waves and spherical waves, as fundamental

elements in the construction of more general solutions.

Chapter 3 is an interlude in the physical analysis offered throughout the book. It

is devoted to elements of signal processing useful to the acoustician, to the definition

of sound levels and decibel scales, and to notions of human sound perception and the

characterization of the associated nuisances.
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Chapter 4 describes the phenomena of reflection and transmission of plane and

spherical waves at the interface between two fluids or between a fluid and a solid. In

particular, the transmission of plane waves through a thin wall subjected to bending

vibrations is discussed.

In Chapter 5, volume acoustic sources associated with mass, force or heat

contributions within the fluid are introduced. The powerful method of Green’s

functions is then extensively discussed and used.

Integral methods, which complement the local formulations used so far, are

introduced in Chapter 6, as well as their application to radiation from vibrating

surfaces and diffraction by obstacles.

Chapter 7 describes these diffraction phenomena in more detail with their

application to the characterization of the efficiency of sound barriers. This is

followed by a description of wave scattering exerted by rigid obstacles, with

emphasis on low-frequency (Rayleigh scattering) and high-frequency (geometric

limit) behavior. The effect of fluid inclusions of low contrast relative to the

surrounding medium is addressed within the framework of the Born approximation.

Chapters 8 and 9 deal with guided propagation in ducts, first in the general form

using the notion of propagation modes, and then in the low-frequency version of

one-dimensional networks. This simplified formulation is very useful for defining

acoustic filters such as Helmholtz resonators and passive silencers for selective

reduction of sound levels.

Chapter 10 is devoted to the acoustics of confined spaces and applications in room

acoustics. The concept of diffuse field and the important notion of reverberation time

are introduced, as well as elements for characterizing the acoustic quality of rooms

from the point of view of human perception.

Each of these chapters is accompanied by a limited number of exercises, ranging

from the simple application of definitions and formulas to problems requiring more

advanced theoretical analyses or numerical solutions.

Throughout the book, we have striven to illustrate the theoretical results with

many figures obtained from measurements and numerical simulations resulting from

the evaluation of complex theoretical formulas or the use of a finite element solver.

The purpose of these illustrations is to facilitate the physical interpretation of the

phenomena involved by making our own Richard Hamming’s aphorism, “The

purpose of computing is insight, not numbers”. They do not, of course, replace the

theoretical developments that allow us to highlight the influence of the most

influential parameters. However, theoretical formulations are all too often limited

to highly simplified or asymptotic situations. Rather than resorting to too often
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unintuitive expressions using series of special functions, we have found it preferable,

for example, to plot maps of acoustic levels that are much more meaningful.

This aspect distinguishes our work somewhat from the vast existing bibliography.

The main works upon which we have relied while writing this book are listed in the

references section, which is of course very far from exhaustive. In the text, we

sometimes refer to some of these books or articles for additional elements or

computational details that we felt it was unnecessary to develop.

We would like to warmly thank all our colleagues at the Acoustic Center of the

LMFA at École Centrale de Lyon with whom we have had extensive interactions

during our teaching and research activities.

July 2024





1

Equations of Linear Acoustics

In this chapter, we establish the equations that govern the propagation of

small-amplitude acoustic waves in fluids under the simplest possible conditions. The

fluid is considered as perfect, that is non-viscous and non-heat-conductive. Acoustic

disturbances are regarded as small-amplitude perturbations of the ambient state of a

time-independent homogeneous fluid at rest. External forces, such as gravity, are not

taken into account.

These assumptions may seem very strong, and we will have to relax some of them

in later chapters. However, they offer considerable advantages in terms of simplicity,

while often remaining unrestrictive in practice. This simplicity makes it possible to

emphasize the fundamental properties of acoustic waves, which are generally only

slightly modified in more complex situations where, for example, the inhomogeneous

nature of the medium will have to be taken into account. They also allow the

construction of analytical solutions with very wide applications, which also serve as

references for the numerical simulations that become necessary when the geometries

of the problems under consideration become complex.

1.1. Validity of the assumptions of linear acoustics and a perfect fluid

It is important to form a first qualitative idea on the legitimacy of the assumptions

of a perfect fluid and linearization of fluid dynamics equations by performing

order-of-magnitude analyses in a simplified situation. We thus consider a wave of

frequency f chosen within the range of audible sounds, for instance, f = 1 kHz, and

propagating through the air in the x1 direction only.

To evaluate the validity conditions of the linearization process, we consider the

two components of acceleration in the Navier–Stokes equations (these equations are

recalled in Appendix 1):
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∂u1

∂t
+ u1

∂u1

∂x1

where u1 is the component in the x1 direction of the velocity associated with the

propagation of an acoustic wave. The partial derivative of velocity with respect to

time ∂u1/∂t is linear with respect to fluctuations, while its convective derivative

u1∂u1/∂x1 exhibits a quadratic nonlinearity. The order of magnitude of the linear

term is ωu1, where ω = 2πf is the angular frequency of the wave. That of the

nonlinear term is u2
1/λ, where λ is the spatial scale of the wave, called the wavelength.

The wavelength is related to the angular frequency by λ = 2πc0/ω, where c0 denotes

the speed of propagation of acoustic waves in the medium under consideration; in

air, the speed of sound is about 340 m.s−1. The ratio of the orders of magnitude of

the nonlinear term to the linear term is therefore u1/c0 = Ma; this ratio defines the

acoustic Mach number. We will see in Chapter 3 that a sound wave with a 94 dB

level, which is perceived by humans as very intense and painful, is only associated

with a root-mean-square (rms) value of pressure fluctuations of only 1 Pa. For this

wave, the acoustic Mach number is extremely low, being about 10−5. In the most

unfavorable situations, it will hardly exceed 10−3, which fully justifies why terms

composed of products of fluctuations in the equations of motion can be neglected, and

thus validates the linearization process of the equations.

To evaluate the validity of the perfect fluid assumption, we simply analyze the

influence of viscous terms, since the thermal effects are typically of the same order of

magnitude as them. The viscous term in the Navier–Stokes equations:

ν
∂2u1

∂x2
1

has an order of magnitude νu1/λ
2, where ν is the kinematic viscosity of the fluid. The

ratio of the linear acceleration term to the viscous term is therefore of the order c20/νω,

or c0λ/ν, some sort of local acoustic Reynolds number. For air, ν ≈ 15 × 10−6 m2.s−1

and for a 1 kHz frequency, this number is about 106. This very high value of the

Reynolds number ensures that viscous effects are negligible for the usual range of

frequencies.

It is important to note, however, that the above reasoning is qualitative and only

has a local value, that is to say on the scale of a wavelength. Viscous, thermal and

nonlinear effects are cumulative, and their consequences can be significant if the

distances traveled by waves correspond to a large number of wavelengths. As a case

in point, very high frequency acoustic waves (greater than a hundred kilohertz)

propagating in the air are very quickly attenuated by visco-thermal effects over

distances of only a few meters. It will therefore sometimes be necessary to take into

account dissipative effects, often in an approximate way by an a posteriori correction
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of a calculation made for a perfect fluid. This is, for example, the case in room

acoustics, as we shall see in Chapter 10.

1.2. Linearized equations of fluid dynamics

Since the fluid is now considered perfect and external forces are neglected, the

equations of fluid dynamics are reduced to the system of Euler’s equations (see

Appendix A1.4):

∂ρ

∂t
+

∂(ρUi)

∂xi
= 0 [1.1]

ρ
dUi

dt
= − ∂p

∂xi
[1.2]

ds

dt
= 0 [1.3]

p = p(ρ, s) [1.4]

where p, ρ, s and Ui denote fluid pressure, density, entropy and velocity, respectively1.

The propagation medium is assumed to be time independent, homogeneous and

at rest. The variables describing the ambient state (i.e. when there is no acoustic

disturbance) are therefore uniform; they will be expressed using a “0” subscript. Since

the medium is at rest, the ambient velocity is zero, U0 = 0. Acoustic disturbances,

which are time and space dependent, will be indicated by a “prime” symbol. During

the propagation of an acoustic wave, the different variables will thus be decomposed

according to:

p(x, t) = p0 + p′(x, t) [1.5]

ρ(x, t) = ρ0 + ρ′(x, t) [1.6]

Ui(x, t) = 0 + u′
i(x, t) [1.7]

s(x, t) = s0 + s′(x, t) [1.8]

The disturbances are assumed to be small enough so that the products of

fluctuations that will appear when the above decompositions are introduced into the

equations of fluid dynamics can be neglected. This constitutes the fundamental

assumption of linear acoustics.

1 The notations are specified in Appendix A1.1.
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We now outline the linearization procedure on the conservation of mass equation

(or “continuity equation”):

∂

∂t
(ρ0 + ρ′) +

∂

∂xi
(ρ0 + ρ′) (0 + u′

i) = 0 [1.9]

which reduces to:

∂ρ′

∂t
+ ρ0

∂u′
i

∂xi
+

∂

∂xi
(ρ′u′

i) = 0 [1.10]

The last term of the left hand side of [1.10] is of second order as the divergence of

a product of fluctuations. It is therefore neglected in the linear approximation, and the

linearized continuity equation is finally written as:

∂ρ′

∂t
+ ρ0

∂u′
i

∂xi
= 0 [1.11]

To linearize the equations in which the total time-derivative appears, it can be

observed that the total derivative of a fluctuation can be reduced to its partial derivative

with respect to time, because:

d()′

dt
=

∂()′

∂t
+ u′

j

∂()′

∂xj
≈ ∂()′

∂t
[1.12]

by neglecting terms of order greater than or equal to 2. To obtain the linearized

equations, thanks to the assumptions of homogeneity of the medium and the absence

of ambient flow, any total derivative can therefore be replaced by a simple partial

derivative with respect to time.

The system of linearized Euler’s equations is thus written as:

∂ρ′

∂t
+ ρ0

∂u′
i

∂xi
= 0 [1.13]

ρ0
∂u′

i

∂t
+

∂p′

∂xi
= 0 [1.14]

∂s′

∂t
= 0 [1.15]

The last equation shows that the entropy fluctuation associated with an acoustic

disturbance is identically zero, which leads to an important simplification. The
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pressure then depends only on the density and the equation of state takes the simple

form p = p(ρ, s0) = p(ρ).

For the equation of state [1.4], the process of linearization must be carried out

differently insofar as there is no explicit form for it, except for the special but important

case of ideal gases to which we will return later. The idea is to consider that the

presence of acoustic waves only slightly modifies the ambient state; the perturbed

variables can then be obtained through a Taylor-series expansion around the ambient

state that is limited to the first order. It thus follows that:

p(ρ0+ρ′, s0) = p0+p′ = p(ρ0, s0)+ρ′
(
∂p

∂ρ

)
s,0

+
ρ′2

2

(
∂2p

∂ρ2

)
s,0

+... [1.16]

Partial derivatives are taken at constant entropy (as recalled by the subscript “s”)

and evaluated at the ambient state. By definition, p(ρ0, s0) = p0 and only considering

the first order in the linearization assumption, a simple relation of proportionality

between pressure and density fluctuations is therefore obtained.

p′(x, t) =
(
∂p

∂ρ

)
s,0

ρ′(x, t) [1.17]

It is important to understand that the coefficient (∂p/∂ρ)s,0 is a thermodynamic

quantity characteristic of the medium in which acoustic waves propagate (but that it is

independent of them, since it is evaluated at the ambient state). In thermodynamics, it

is shown that this coefficient is strictly positive and it will later be seen that it is equal

to the square of the propagation speed of acoustic waves (the speed of sound), denoted

by c0:

c20 =

(
∂p

∂ρ

)
s,0

; p′ = c20ρ
′ [1.18]

1.3. The wave equation

We therefore have a linear system of three first-order equations for three variables,

p′, ρ′ and u′
i. These equations are generally rearranged to eliminate fluctuations in

density and velocity to form a second-order equation for the pressure fluctuation alone,

called the wave equation. To this end, the density fluctuation is eliminated using the

equation of state [1.18], and then the time derivative of [1.13] is subtracted from the

divergence of [1.14]. We obtain:

∂2p′

∂x2
i

− 1

c20

∂2p′

∂t2
= ∇2p′ − 1

c20

∂2p′

∂t2
= 0 [1.19]
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It can be verified that the density fluctuations ρ′ and each of the components of

the velocity vector fluctuations u′
i satisfy the same equation due to the linearity of the

equations and the homogeneity of the medium.

When one variable is known, it is possible to evaluate the other two using the

linearized equations [1.13]–[1.15] and [1.18]. The pressure field is often more directly

available than other variables, either experimentally or numerically, and the linearized

Euler’s equation [1.14] can then be used to determine the acoustic velocity.

1.3.1. The special case of ideal gases

Many applications focus on acoustic propagation in air. Since air can be

considered with an excellent approximation as an ideal gas under the usual pressure

and temperature conditions, the following explicit form can then be used for the

equation of state:

p = ρrT [1.20]

where r = R/M is the gas constant, ratio of the ideal gas constant R = 8.314 S.I.

(J.K−1.mol−1) to the molar mass M of the gas under consideration.

Since the behavior is isentropic, as implied by equation [1.15], we also have the

classical relation:

pρ−γ = constant = p0ρ
−γ
0 [1.21]

where γ = cp/cv is the specific heat ratio, that is, the ratio of the specific heats at

constant pressure and volume, respectively. Expanding this last relation to first order

and using [1.18] yields:

p′ =
γp0
ρ0

ρ′ = c20ρ
′ [1.22]

Therefrom the following relations are derived for the speed of sound:

c0 =

√
γ
p0
ρ0

=
√

γrT0 [1.23]

For air at a temperature of 20◦C (293.15 K), with γ = 1.4 and M = 29 g.mol−1,

the speed of sound is about 343 m.s−1.
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A simple and useful approximate formula, well adapted to the range of common

temperatures, makes it possible to express this speed as a function of temperature in

degrees Celsius Tc. By writing T0 = 273.15 + Tc and assuming that Tc/T0 � 1, it

follows that:

c0 ≈ 331 + 0.6Tc (m.s−1) [1.24]

This formula shows that there is an (approximately) linear relation between the

temperature Tc and the speed of sound. This approximation is excellent in the usual

temperature range, with the relative error not exceeding 0.3% over the range 0–40◦C.

The presence of an acoustic disturbance also causes a temperature fluctuation that

can be calculated using the equation of state and the linearized isentropic relation. One

obtains:

T ′

T0
=

γ − 1

γ

p′

p0
[1.25]

The ratio p′/p0 rarely exceeds 10−5, so the associated temperature variations will

always be extremely small, about a few millikelvin. This formula also shows that there

is a linear relationship between temperature fluctuations and pressure fluctuations. It

is therefore also possible to write a wave equation similar to [1.19] for the temperature

fluctuation.

1.3.2. The velocity potential

The linearized Euler’s equation [1.14], written as:

∂u′
i

∂t
= − 1

ρ0

∂p′

∂xi
[1.26]

and in vector notation as:

∂u′

∂t
= − 1

ρ0
∇p′ [1.27]

shows that the acoustic velocity derives from a potential.

Since the curl of a gradient is zero, taking the curl of [1.27] leads to:

∂

∂t
(∇× u′) = 0 [1.28]

from which it is deduced that ∇× u′ = 0 if the medium is initially at rest.
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Therefore, there exists an acoustic velocity potential φ defined by:

u′ = ∇φ [1.29]

and then

∂

∂xi

(
p′ + ρ0

∂φ

∂t

)
= 0 [1.30]

from which one can deduce:

p′ + ρ0
∂φ

∂t
= f(t) [1.31]

and finally

p′ = −ρ0
∂φ

∂t
[1.32]

as it is possible to choose a velocity potential such that f(t) = 0 without restricting

the generality.

The potential φ is a solution to the wave equation, just as all other acoustic

variables. Although it has no physical meaning of its own, it is a convenient variable

to use in a number of calculations. The physical variables acoustic pressure and

velocity can then be determined by a simple time and spatial differentiation,

respectively.

1.3.3. Validity conditions for the linearization of equations

Broadly speaking, the linearization of the equations of motion assumes that the

second-order terms are very small with respect to the first-order terms in each

equation. We saw in section 1.1 that an order-of-magnitude analysis of Euler’s

equations in which the time derivatives are assumed to be equivalent to a

multiplication by f and the spatial derivatives to a multiplication by 1/λ = f/c0
leads to u′/c0 = Ma � 1. By use of the linearized continuity and momentum

equations, it is verified that this imposes that ρ′/ρ0 = Ma � 1 and p′/ρ0c20 = Ma

� 1. For an ideal gas, the latter condition is equivalent to p′/p0 � 1, but this is not

the case for liquids, in which the condition p′/ρ0c20 � 1 is much less restrictive than

p′/p0 � 1. As an example for water, the product ρ0c
2
0 is about 2×109 Pa. An

underwater acoustic wave of amplitude 1 atm (105 Pa) is therefore still a “small”

signal for which the linearization process remains valid.
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1.4. Acoustic energy, acoustic intensity and source power

Since the fluid is assumed to be perfect, there is no mechanism in a volume of

fluid that can dissipate energy. Thus, in the absence of energy creation from volume

or surface sources (which we will introduce later) and of absorbing materials covering

surfaces, the total energy and that associated with fluctuations are conserved.

However, considering only linearized equations to construct an equation of

conservation of energy, which involves second-order quantities, raises theoretical

problems. Strictly speaking, a general equation for the total energy has to be written

and then expanded up to second order (see [PIE 89], section I.1). In the following, we

will however use the classic approach, based on a combination of the first-order

equations, which yields the correct result.

1.4.1. Definition of acoustic energy and acoustic intensity

To construct an acoustic energy conservation equation, we form the product of the

momentum equation by the acoustic velocity, that is symbolically the product of a

force by a velocity (and therefore a power):

ρ0u
′
i

∂u′
i

∂t
= −u′

i

∂p′

∂xi
= −∂(p′u′

i)

∂xi
+ p′

∂u′
i

∂xi
[1.33]

Using the linearized continuity equation and eliminating density fluctuations in

favor of pressure fluctuations leads to:

∂

∂t

(
1

2
ρ0u

′2
i +

p′2

2ρ0c20

)
+

∂(p′u′
i)

∂xi
= 0 [1.34]

This equation has indeed the general form of a conservation equation that can be

written in a condensed manner as:

∂e

∂t
+∇ · I = 0 [1.35]

with

e =
1

2
ρ0u

′2
i +

p′2

2ρ0c20
[1.36]

I = p′u′ [1.37]
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The quantity e is called the acoustic energy density. The first term of its expression

clearly corresponds to a kinetic energy density; the second can be interpreted as a

potential energy density associated with the compression-expansion that the medium

experiences when an acoustic wave passes through it. Its form is indeed similar to that

of the potential energy of a spring 1
2kx

2, if the following analogy is introduced: the

pressure disturbance p′ is identified with the deviation x from the equilibrium position

of the spring and 1/ρ0c
2
0 with the stiffness k of the spring. It should also be noted that

1/ρ0c
2
0 is none other than the adiabatic compressibility κs of the medium:

κs = − 1

V ∗

(
∂V ∗

∂p

)
s,0

=
1

ρ0

(
∂ρ

∂p

)
s,0

=
1

ρ0c20
[1.38]

where V ∗ denotes the specific volume, the inverse of the density ρ.

I is called the acoustic intensity (vector2). This vector is associated with the flux

of acoustic energy passing through a surface of unit area, as shown in the integral

version of equation [1.35]. If this equation is integrated over a fixed control volume

D, bounded by a surface Σ whose external unit normal is denoted n (Figure 1.1(a)),

it follows that:∫
D

(
∂e

∂t
+∇ · I

)
dV = 0 [1.39]

and using the divergence theorem (or Gauss’ theorem):

∂

∂t

∫
D

e dV +

∫
Σ

I · n dΣ = 0 [1.40]

This integral form shows that the change over time in the total acoustic energy

contained in the volume D is the opposite of the energy flux crossing its boundary Σ.

The acoustic intensity, whose normal component measures the energy transported

per unit area and time, is a key quantity for analyzing energy transfers from one spatial

region to another and for defining the notion of an acoustic source.

1.4.2. Acoustic sources

The acoustic energy conservation equation [1.40] shows that, on average, the flux

of acoustic energy through a closed surface is zero.

2 The term vector will often be omitted in the following.


