Machine Learning in Biomedical Science and Healthcare Informatics

ARTIFICIAL INTELLIGENCE-BASED SYSTEM MODELS IN HEALTHCARE

Edited by A. Jose Anand K. Kalaiselvi Jyotir Moy Chatterjee

Artificial Intelligence-Based System Models in Healthcare

Scrivener Publishing

100 Cummings Center, Suite 541J Beverly, MA 01915-6106

Machine Learning in Biomedical Science and Healthcare Informatics

Series Editors: Vishal Jain and Jyotir Moy Chatterjee

In this series, an attempt has been made to capture the scope of various applications of machine learning in the biomedical engineering and healthcare fields, with a special emphasis on the most representative machine learning techniques, namely deep learning-based approaches. Machine learning tasks are typically classified into two broad categories depending on whether there is a learning 'label' or 'feedback' available to a learning system: supervised learning and unsupervised learning. This series also introduces various types of machine learning tasks in the biomedical engineering field from classification (supervised learning) to clustering (unsupervised learning). The objective of the series is to compile all aspects of biomedical science and healthcare informatics, from fundamental principles to current advanced concepts.

Publishers at Scrivener Martin Scrivener (martin@scrivenerpublishing.com) Phillip Carmical (pcarmical@scrivenerpublishing.com)

Artificial Intelligence-Based System Models in Healthcare

Edited by

A. Jose Anand

Dept. of Electronics and Communications Engineering, KCG College of Technology, Chennai, Tamil Nadu, India

K. Kalaiselvi

Dept. of Computer Applications, Saveetha College of Liberal Arts and Sciences, Chennai, India

and

Jyotir Moy Chatterje

Dept. of Computer Science and Engineering, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India

This edition first published 2024 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA © 2024 Scrivener Publishing LLC

For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

ISBN 978-1-394-24249-8

Cover image: Pixabay.Com Cover design by Russell Richardson

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

Printed in the USA

10 9 8 7 6 5 4 3 2 1

Cont	ents

Pr	eface		xxi
Pa	art I:	Introduction to Healthcare Systems	1
1	Role	of Technology in Healthcare Systems	3
	<i>A. H</i>	ency Juliet and K. Kalaiselvi	
	1.1	Introduction	4
	1.2	Transformation in Healthcare	7
		1.2.1 Digitalization and Health Tech Integration	7
		1.2.2 Patient-Centric Approach	8
		1.2.3 Telemedicine and Virtual Care	9
		1.2.4 Data-Driven Decision Making	9
		1.2.5 Preventive and Predictive Healthcare	10
		1.2.6 Value-Based Care	10
		1.2.7 Interoperability and Health Information Exchange	11
		1.2.8 Genomics and Personalized Medicine	11
		1.2.9 Population Heal Management	12
		1.2.10 Innovation and Collaboration	12
		1.2.11 Regulatory and Policy Changes	13
		1.2.12 Workforce Transformation	13
	1.3	Technology Transformation in Healthcare Industry	14
	1.4	Patient Care Improvement Using Healthcare Technology	16
	1.5	Importance of Technology in Healthcare	18
	1.6	Technology Impact on Healthcare	19
	1.7	Innovation and Digital Transformation	21
	1.8	Diagnostics' Role in Combatting Life-Threatening Diseases	23
	1.9	Role of Medical Technology in Healthcare	25
	1.10	Conclusion	27
		References	28

vi Contents

2	Hea	lth Sta	tus Estim	ation based on Daily Life Activities	31
	Jose	phine 1	Anitha A.	and Geetanjali R.	
	2.1	Intro	duction		32
	2.2	Inters	section of	Technology and Healthcare	34
		2.2.1	Historic	al Context	34
		2.2.2	Milestor	nes in the Integration of Technology	
			into Hea	lthcare Practices	35
		2.2.3	Wearabl	e Devices, IoT Technologies and their	
			Prevalen	ice	36
	2.3	Unve	iling the T	Technologies	38
		2.3.1	Wearabl	e Devices and Real-Time Biometric Data	38
		2.3.2	Smart H	omes and IoT in Healthcare	38
	2.4	Mach	ine Learn	ing Marvels: Unravelling Health Insights	
		From	Daily Life	e Activities	39
		2.4.1	The Lan	dscape of Daily Life Activities	39
		2.4.2	Key Mac	chine Learning Algorithms for Health	
			Status Es	stimation	40
	2.5	Data	Collectior	and Processing in Daily Life Health	
		Moni	toring		41
	2.6	Ethic	al Conside	erations, Data Privacy, and Regulatory	
		Com	pliance		44
		2.6.1	The Prop	mise and Risks of Health Status Estimation	44
		2.6.2	Ethical C	Considerations in Health Data Usage	45
	0.7	2.6.3	Protectii	ng the Health Data Usage	45
	2.7	Chall	tial Areas	of Improvement	46
	2.8	Chall	enges and	Opportunities	4/
	2.9	Defer			49
		Refer	ences		50
3	Dec	ision S	upport Sy	ystem in Healthcare Monitoring	55
	<i>V. S</i>	uganth	i and K. H	Kalaiselvi	
	3.1	Intro	duction		56
		3.1.1	Definitio	on and Overview	56
			3.1.1.1	Define Decision Support System	56
			3.1.1.2	Contextualize DSS in the Healthcare	
				Monitoring System	57
		3.1.2	Importa	nce of Decision Support in Healthcare	58
			3.1.2.1	Enhancing Patient Care	59
			3.1.2.2	Improving Diagnostic Accuracy	61
			3.1.2.3	Streamlining Healthcare Processes	63

3.2	Comp	onents o	f a Healthcare Monitoring System	65
	3.2.1	Patient	Monitoring Devices	65
		3.2.1.1	Overview of Wearable Devices	65
		3.2.1.2	Remote Monitoring Technologies	67
	3.2.2	Data Co	ollection and Storage	67
		3.2.2.1	Electronic Health Records	67
		3.2.2.2	Real-Time Data Streams	68
	3.2.3	Integrat	ion of Medical Sensors	69
		3.2.3.1	Overview of Sensor Technologies	69
		3.2.3.2	Interoperability Challenges	69
3.3	Role o	of Decisio	on Support System	70
	3.3.1	Data Pr	ocessing and Analysis	70
		3.3.1.1	Handling Large Datasets	70
		3.3.1.2	Data Preprocessing Techniques	71
	3.3.2	Machin	e Learning Algorithms	71
		3.3.2.1	Predictive Modeling for Early Detection	71
		3.3.2.2	Pattern Recognition in Patient Data	71
	3.3.3	Clinical	Decision Support	71
		3.3.3.1	Assisting Healthcare Professionals	
			in Decision Making	71
		3.3.3.2	Providing Evidence-Based Recommendations	71
3.4	Challe	enges in l	mplementing Decision Support Systems	72
	3.4.1	Privacy	and Security Concerns	72
		3.4.1.1	Patient Data Protection	72
		3.4.1.2	Compliance With Healthcare Regulations	72
	3.4.2	User Ac	ceptance and Adoption	72
		3.4.2.1	Training Healthcare Professionals	73
		3.4.2.2	Overcoming Resistance to Technology	73
	3.4.3	Technic	al Challenges	73
		3.4.3.1	System Integration Issues	73
		3.4.3.2	Scalability and Performance Considerations	74
3.5	Future	e Trends	and Innovations	74
	3.5.1	Advance	ements in Artificial Intelligence	74
		3.5.1.1	Integration of Deep Learning in Healthcare	74
		3.5.1.2	Evolution of Predictive Analytics	74
	3.5.2	Human	-AI Collaboration	74
		3.5.2.1	Enhancing Clinician Decision Making	
			With AI	75
		3.5.2.2	Ethical Considerations in Human-AI	
			Collaboration	75

	3.6	Conc	lusion	75
		3.6.1	Summary of Key Points	75
		3.6.2	The Future of Decision Support in Healthcare	
			Monitoring	75
		3.6.3	Call to Action for Healthcare Institutions	76
		Refer	ences	76
4	Visi	on-Bas	ed Management System in Healthcare Applications	79
	<i>K. E</i>	Balasub	rramanian, Anu Tonk, Seema Bhakuni, S. Anita,	
	Free	ddy Aji	la and S. Sathish Kumar	
	4.1	Intro	duction	80
		4.1.1	Causes of ADDE	81
		4.1.2	Immune-Mediated Lacrimal Gland Inflammation	81
		4.1.3	Conjunctival Cicatrization	83
		4.1.4	Neurogenic	84
		4.1.5	Alacrimia	85
		4.1.6	Diagnosing ADDE in Clinics	86
	4.2	Histo	ry	86
	4.3	Tear 7	Festing and Ocular Surface Analysis in a Clinical	
		Exam	ination	86
		4.3.1	Schirmer Test	86
		4.3.2	Tear Volume	87
		4.3.3	Lacrimal Gland Examination	88
	4.4	Other	r Ocular Surface Health-Related	
		Clinic	cal Examinations	89
		4.4.1	Ocular Surface Staining	89
		4.4.2	Tear Stability	90
		4.4.3	Meibomian Gland Health	91
		4.4.4	Examination for Ocular Surface Scarring	91
		4.4.5	Nerve Status	91
		4.4.6	Tear Osmolarity	93
		4.4.7	Cytokines and Biomarkers	93
		4.4.8	Tests for Cicatricial Etiology	94
		4.4.9	Blood Workup for Underlying Systemic Disease	94
	4.5	Mana	gement of ADDE	95
		4.5.1	Nonspecific Therapy in ADDE	96
			4.5.1.1 Lubricants	96
		4.5.2	Topical Immunosuppressants or Immunomodulators	96
		4.5.3	Secretagogs	97

		4.5.4	Autologous Serum	98
		4.5.5	Alternative Therapies	98
		4.5.6	Punctual Occlusion	99
	4.6	Disea	se-Specific Therapy in ADDE	99
		4.6.1	Systemic Immunomodulation in SS	99
		4.6.2	Systemic Immunosuppression in MMP	100
		4.6.3	Minor Transplantation of Salivary Glands for Severe	
			Cicatricial ADDE	100
	4.7	ADD	E With NK	101
		4.7.1	ADDE With Neuropathic Component to Pain	101
	4.8	Unme	et Needs and Future Directions	101
		4.8.1	Gut Microbiome Modulation in SS	101
		4.8.2	Mesenchymal Stem Cell Therapy for Lacrimal	
			Gland Regeneration	102
		4.8.3	Bioengineered Lacrimal Gland	102
	4.9	Conc	lusion	102
		Refer	ences	103
5	Sem	nantic I	Framework in Healthcare Systems	107
	Роо	ia Dab	howale. Mukesh Yadav. Nidhi Tiwari.	
	Ruc	hi Shai	rma. Jose Anand A. and Irshad Ahamad	
	5.1	Intro	duction	108
	5.2	Back	ground	109
		5.2.1	Challenges and Potential Outcomes	110
		5.2.2	Strengths and Weaknesses	110
	5.3	Interr	net of Things	111
		5.3.1	Adapting Existing Medical Practices 5G Network	113
		5.3.2	Modulation Schemes Actually	113
		5.3.3	Debugging Strategy	114
		5.3.4	Communications Spectrum	115
	5.4	Resea	rch Methodology	115
		5.4.1	Communication Speed	116
		5.4.2	Response Time	116
		5.4.3	Support of Network Operations	116
	5.5	Theor	retical Framework	117
		5.5.1	Semantic Technologies	117
		5.5.2	Ontology	117
		5.5.3	Overview of the Healthcare Semantic Frameworks	118
		5.5.4	Different Semantic Frameworks	118
		5.5.5	Method	120
		Dete	Analysis	120

		5.6.1	Confidentiality of Personal Information	120
		5.6.2	Removed Obstacles	121
		5.6.3	Exceptionally Superior	121
		5.6.4	Current Wireless vs. 5G	122
			5.6.4.1 5G IoMT Health Monitoring	122
			5.6.4.2 5G Network Architecture	122
			5.6.4.3 Interventional Surgical Procedures	
			Performed by Robots	125
	5.7	Concl	usion	125
		Refere	ences	127
Pa	art I	I: AI-	Based System Models in Healthcare	
A	ppli	cation	15	131
6	Pre	dictive	Analysis in Healthcare Systems	133
-	LSa	athva ai	nd F. Marv Harin Fernandez	
	6.1	Introd	luction	134
	6.2	Relate	d Work	136
	0.2	6.2.1	Data Mining Techniques in Biomedical Informatics	136
		6.2.2	Decision Support Systems in Biomedical Applications	137
		6.2.3	Biomedical Decision Support Systems	137
		6.2.4	Application of ML in Biomedical Informatics	138
		6.2.5	Integrating Artificial Intelligence and Clinical	
			Decision Support Systems in Biomedicine	138
		6.2.6	Decision Support Systems for Cyberbullying	
			Intervention	139
		6.2.7	Social Network Analysis of Cyberbullying Incidents	
			on Online Forums	139
		6.2.8	ML Approach for Cyberbullying Detection	139
		6.2.9	Detecting Cyberbullying on Social Media	
			Using ML Techniques	139
		6.2.10	Natural Language Processing Approaches	
			for Cyberbullying Detection on Social Media	140
		6.2.11	Anomaly Detection for Cyberbullying Detection	
			in Online Communities	140
		6.2.12	Cyberbullying Detection and Intervention Systems	140
		6.2.13	Cyberbullying Detection Using Ensemble ML	
			Techniques	141
		6.2.14	Multimodal ML for Cyberbullying Detection	141
	6.3	Propo	sed System	142
		6.3.1	Biomedical Data Collection	142

		6.3.1.1	Biomedical Data Analysis	143
		6.3.1.2	Role of Wearable Devices	143
		6.3.1.3	Biometric Monitoring Sensors	143
	6.3.2	Cyberbu	Illying Detection Systems	143
		6.3.2.1	Case Management Systems	144
		6.3.2.2	Risk Assessment Tools	144
		6.3.2.3	Legal Framework and Guidelines	144
		6.3.2.4	Expert Consultation	145
	6.3.3	Machine	e Learning	145
		6.3.3.1	Data Collection and Labeling	146
		6.3.3.2	Feature Extraction	146
		6.3.3.3	Feature Selection	146
		6.3.3.4	Data Splitting	146
		6.3.3.5	Model Selection	146
		6.3.3.6	Model Training	146
		6.3.3.7	Model Evaluation	147
		6.3.3.8	Interpretability and Insights	147
		6.3.3.9	Integration into Decision Support System	147
		6.3.3.10	Continuous Improvement	147
6.4	Provid	de Suppoi	rt Tools and Visualizations to Aid	
	in the	Decision	-Making Process	148
	6.4.1	Sentime	nt Analysis for Emotional Assessment	148
	6.4.2	Context	ual Understanding and Entity Recognition	148
	6.4.3	Risk Ass	essment and Decision Making	148
	6.4.4	Early Int	tervention and Support Strategies	148
	6.4.5	Privacy	and Ethical Considerations	149
6.5	Concl	usion		149
	Refere	ences		150
Mad	chine L	earning i	n Healthcare System	153
AF	Hency In	uliet and	K Sathva	100
71	Introd	luction	R. Guillyn	154
/.1	7 1 1	Need for	r ML in Healthcare	154
	712	Importa	nce of ML in Healthcare Organizations	156
	713	Significa	ince of ML in Healthcare	150
	714	Rise of N	MI in Healthcare Settings	158
	715	ML and	IoMT in Healthcare	160
	716	Applicat	ions of ML in Healthcare	161
	717	Taske th	at ML in Healthcare Can Handle	163
	718	Ethics of	f MI in Healthcare	172
	710	Challen	tes of Adopting MI in Healthcare	172
	/.1.7	Chanelly	ses of Adopting will in Healthcare	1/3

7

		7.1.10) Future of ML in Healthcare	174
		7.1.11	Common ML Algorithms	175
		7.1.12	2 Conclusion	176
		Refer	ences	177
8	Dee	p Lear	ning Applications in Healthcare Systems	179
	<i>V. S</i>	heeja I	Kumari and Renjith Balu	
	8.1	Intro	duction	180
		8.1.1	Overview of Healthcare Challenges	180
		8.1.2	Role of Deep Learning in Addressing	
			these Challenges	181
		8.1.3	Importance of Integrating Deep Learning	
		_	into Healthcare Systems	181
	8.2	Fund	amentals of Deep Learning	182
		8.2.1	Artificial Neural Networks	182
		8.2.2	Types of ANN Architectures	184
		8.2.3	Deep Learning in Medical Imaging	186
			8.2.3.1 Detection of Medical Images Using DL	187
			8.2.3.2 Medical Image Segmentation Using DL	188
	8.3	Deep	Learning Architecture for Image Classification	194
		8.3.1	AlexNet	198
		8.3.2	Architecture Details	199
	8.4	Conc	lusion	200
		Refer	ences	201
9	Ima	ge Ana	alysis for Health Prediction	205
	Pull	la Suja	rani and K. Kalaiselvi	
	9.1	Intro	duction	206
		9.1.1	Image Analysis	206
	9.2	Over	view	208
	9.3	Image	e Preprocessing	209
		9.3.1	Digital Image Processing Characteristics	210
		9.3.2	Advantages in Digital Image Preprocessing	210
	9.4	Image	e Filtering	211
		9.4.1	Different Types of Filters	211
	9.5	Image	e Enhancement	213
	9.6	Image	e Segmentation	215
		9.6.1	Types of Segmentation Techniques	216
		9.6.2	Image Segmentation Techniques	216
	9.7	Featu	re Extraction	219
		9.7.1	Applications of Feature Extraction	219
		9.7.2	Principal Component Analysis (PCA)	220

		9.7.3	Gray Level Co-Occurrence Matrix (GLCM)	221
		9.7.4	GLCM Matrix Calculation	221
	9.8	Classif	ication	222
		9.8.1	Support Vector Machine (SVM)	222
		9.8.2	Logistic Regression (LR)	222
		9.8.3	Decision Tree (DT)	222
		9.8.4	Deep Convolutional Neural Network (DCNN)	223
		9.8.5	Classification Algorithm Applications	223
		9.8.6	Classification Model Evaluations	224
		9.8.7	Evaluation Process	225
	9.9	Conclu	asion	226
		Refere	nces	226
10	Mac	hine Le	earning in Biomedical Text Processing	229
	Shib	i Matha	ai and K. Kalaiselvi	
	10.1	Intro	duction	230
		10.1.1	1 Textual Data Characteristics in Biomedicine	231
	10.2	Fund	amentals of ML for Text Processing	232
		10.2.1	l Overview of ML	232
		10.2.2	2 Text as Data: Preprocessing Steps	232
		10.2.3	3 ML Algorithms Basics	233
	10.3	NLP	Techniques in Biomedicine	233
		10.3.1	Tokenization, Stemming, and Lemmatization	233
		10.3.2	2 Named Entity Recognition (NER) in Biomedical	
			Texts	234
		10.3.3	3 Relationship Extraction	235
		10.3.4	4 Ontologies in Biomedical NLP	235
	10.4	NLP	Techniques in Biomedicine	236
		10.4.1	Supervised vs. Unsupervised Learning	236
		10.4.2	2 Common Algorithms	236
		10.4.3	3 Deep Learning Approaches	237
		10.4.4	Pretrained Models	237
	10.5	Featu	re Engineering and Selection	
		in Bio	omedical Text	238
		10.5.1	Importance of Feature Engineering	238
		10.5.2	2 Techniques for Feature Extraction	238
		10.5.3	J Dimensionality Reduction in High-Dimensional	
			Text Data	239
	10.6	Appli	cations of ML in Biomedical Text Mining	240
		10.6.1	Literature-Based Discovery	240
		10.6.2	2 Clinical Decision Support Systems	241
		10.6.3	3 Drug Repurposing	241

		10.6.4	Predictive Modelling in Clinical Research	241
	10.7	Evaluati	on Metrics and Model Validation	243
		10.7.1	Performance Metrics	243
		10.7.2	Challenges in Evaluating Biomedical Text	
			Mining Systems	243
		10.7.3	Case Studies of Model Validation	245
	10.8	Ethical (Considerations and Data Privacy	245
		10.8.1	Ensuring Patient Confidentiality	245
		10.8.2	Biases in ML Models	246
		10.8.3	Ethical Implications of Automated Decision-	
			Making	246
	10.9	Future D	Directions and Challenges	246
		10.9.1	Integration of Heterogeneous Data Sources	246
		10.9.2	Transfer Learning and Multi-Task Learning	246
		10.9.3	The Future Role of AI in Personalized Medicine	247
	10.10	Conclus	ion	247
		10.10.1	Summary of Key Points	247
		10.10.2	The Potential Impact on Healthcare Outcomes	247
		10.10.3	Final Thoughts and Call to Action for Further	
			Research	248
		Reference	ces	248
11	Decis	ion Maki	ing Biomedical Support System	253
	V. She	eja Kum	ari, J. Vijila and Renjith Balu	
	11.1	Introduc	ction	254
		11.1.1	Importance of Decision Support Systems	
			in Healthcare	255
		11.1.2	Purpose and Scope of the Biomedical Decision	
			Support System	256
	11.2	System A	Architecture and Components	258
		11.2.1	Disease Databases	266
	11.3	Machine	e Learning Algorithms	268
	11.4	Expert S	ystems	269
	11.5	Statistica	al Analysis Tools	270
	11.6	User Inte	erface	272
	11.7	Interacti	ivity for Healthcare Professionals	274
	11.8	User-Fri	endly Design	275
	11.9	Summar	ТУ У	277
		Reference	ces	278

Pa Ap	rt II pplic	I: Modernization and Future – Healthcare ations	281
12	Medi M. So	cal Imaging and Diagnostics with Machine Learning wmiya, D. Bhanu, K. Shruthi, Punitha Jilt,	283
	D. D	Introduction	201
	12.1	Establishing a Smart Sansor Naturark With the Halp of AI	284
	12.2	Impact of Nanotechnology and IoMT in Healthcare	203
	12.5	Artificial Intelligence's Impact on the Surgery	292
	12.4	The Importance of Artificial Intelligence in Treating	2)1
	12.5	Diabetes and Cancer	300
	12.6	Challenges and Future Scope	304
	12.7	Conclusions	305
		References	306
13	Pred	icting Ventilation Needs in Intensive Care Unit	311
	Yash	ini Priyankha S., S. Sumathi, T. Mangavarkarasi,	
	Jose 1	Anand A. and Mithileysh Sathiyanarayanan	
	13.1	Introduction	312
	13.2	AI-Based Predictive Models for Healthcare Ventilation	
		Systems	313
	13.3	AI Based Ventilator Weaning Predicting Unit	319
	13.4	Predictive Applications of AI in Healthcare	321
	13.5	AI Impacts on Ventilation Requirements	323
	13.6	ICU and Healthcare Future With AI	324
	13.7	Conclusion	325
		References	325
14	Mod	ernized Health Record Maintenance	329
	К. Ва	llasubadra, Franklin Baltodano, Indira Pineda,	
	S. Ma	ayakannan, Eduardo Hernández and Navin M. George	
	14.1	Introduction	330
		14.1.1 Blockchain	331
		14.1.2 Types of Blockchain	333
		14.1.2.1 Public Blockchain	333
		14.1.2.2 Private Blockchain	334
		14.1.2.3 Consortium Blockchain	334
	14.2	14.1.2.4 Hybrid Blockchain	334
	14.2	Literature Survey	335
	14.3	Materials and Methods	336

	14.3.1	Blockcha	in Complexity	339
	14.3.2	High-Energy Consumption		340
	14.3.3	Scalability Challenges		
	14.3.4	Brain Drain for Blockchain		
	14.3.5	Healthcar	Healthcare Components of Blockchain	
		14.3.5.1	Healthcare Blockchain	341
		14.3.5.2	Securing Patient Data	341
		14.3.5.3	Healthcare Data Management	343
		14.3.5.4	Challenges in Healthcare Data	
			Management	344
14.4	Having	g a Proper S	Strategy	345
14.5	A Com	mon Datab	ase to be Maintained Like a Repository	345
14.6	The Da	tabase Mu	st Have Genuine Data	345
14.7	Case Study and Applications			345
	14.7.1	Methodo	logy	345
	14.7.2	Healthcare Data Management Using		
		Blockcha	in Technologies	348
		14.7.2.1	Pharmaceutical Sector	348
		14.7.2.2	Pharmaceutical Research and Drug	
			Discovery	349
		14.7.2.3	Supply Chain and Counterfeit Drug	
			Detection	349
		14.7.2.4	Prescription Management	349
		14.7.2.5	Precision Tracking	350
		14.7.2.6	Advantages	350
		14.7.2.7	Accessing and Sharing Health Data	351
		14.7.2.8	Data to Empower Patients	351
		14.7.2.9	Malpractice Concerns	351
		14.7.2.10	Institutional and Interpersonal	
			Competition	351
	14.7.3	Ethics an	d Dissemination	352
	14.7.4	Analytics		352
		14.7.4.1	Predictive Analytics	352
		14.7.4.2	Telemedicine	353
		14.7.4.3	Analytics With Centralized Server	353
	14.7.5	Blockchain to the Rescue		356
	14.7.6	Blockchain as a Service (BaaS)		357
		14.7.6.1	Baas Operations	357
14.8	Conclu	ision		357
	Referei	nces		358

15	Natu	ral Lang	guage Processing in Medical Applications	361
	V. Prasanna Srinivasan, Evelyn Rosero, P. Sengottuvelan,			
	Abhi	nav Sing	hal, Chandraketu Singh and S. Mayakannan	
	15.1	Introdu	action	362
	15.2	Related	l Studies on Medical Systems - Use of Machine	
		Learni	ng	363
	15.3	Health	Data Formats in Medical Systems	365
	15.4	Prototy	pe of Algorithms and Data Conversion	367
		15.4.1	Implementation Details and Problems	367
		15.4.2	Natural Language Processing Parser Details	368
		15.4.3	Testing Methods	370
	15.5	Results	and Discussion	371
		15.5.1	Data Transformation, Representation and NLP	
			Parser Details	371
		15.5.2	Accuracy of Algorithm	373
		15.5.3	Performance Impact of TWNFI Hyperparameters	378
		15.5.4	NLP Transformation Accuracy	379
		15.5.5	Results Discussion	383
	15.6	Conclu	isions	384
		Referei	nces	385
16	Chat Bots for Medical Enquiries			
	K. Sa	ravanar	ı, Indira Pineda, Franklin Baltodano,	
	Krun	al Visha	wadia, Vanessa Valverde and Jose Anand A.	
	16.1	Introdu	uction	390
		16.1.1	Challenges	392
		16.1.2	Motivation	393
		16.1.3	Chatbots Types: Application Aspect	395
	16.2	Artific	al Intelligence - Chatbot: Components	
		of Architecture		398
	16.3	Artificial Intelligence - Chatbot: Models for Generating		
		a Response		400
	16.4	AI Cha	tbots: Methods and Technologies	402
		16.4.1	Deep Learning (DL)	402
		16.4.2	Natural Language Processing	403
		16.4.3	Natural Language Understanding	404
		16.4.4	NLG	405
	16.5	A Deve	elopment of Conversational Agents: State-of-the-Art	
		Chatbo	ots	406
		16.5.1	Turing Test	406
		16.5.2	ELIZA	407

		16.5.3	PARRY	407
		16.5.4	Racter	407
		16.5.5	Jabberwocky	407
		16.5.6	Loebner Prize Competition	407
		16.5.7	Dr. Sbaitso	408
		16.5.8	ALICE	408
		16.5.9	SmarterChild	408
		16.5.10	MITSUKU	409
		16.5.11	Watson	409
		16.5.12	SIRI	409
		16.5.13	Google Now/Assistant	410
		16.5.14	ALEXA	410
		16.5.15	Dialogflow	410
		16.5.16	LUIS	411
		16.5.17	Amazon Lex	411
	16.6	AI Cha	tbots: Customer-Based Services	414
	16.7	AI-Cha	atbots: Public Administration-Based Services	417
	16.8	Chatbo	ot Performance Evaluation	419
	16.9	Conclu	sion	421
		Referer	nces	421
17	Secu	red Heal	th Insurance Management	425
	A. Ro	ivisanka	r, P. Manikandan, Iskandar Muda,	
	Shrin	iivas V. I	Kulkarni, Rolando Marcel Torres Castillo	
	and Jose Anand A.			
	17.1 Introduction			426
		17.1.1	Service Coverage Index (SCI)	427
		17.1.2	Financial Risk Protection	428
		17.1.3	Changes in India's Health Insurance System	428
		17.1.4	HIC and the Availability of Digital Health	
			Technologies	429
		17.1.5	Healthcare for Mothers and Children in India	431
	17.2	Metho	ds	431
		17.2.1	Study Setting	431
		17.2.2	Study Design	432
		17.2.3	Technology Adoption Models: A Conceptual	
			Framework	433
		17.2.4	Digital Health Intervention (MedStrat HIMS)	433
	17.3	Results		436
		17.3.1	MedStrat HIMS Clients	436

		17.3.2	State Health Agency Kerala	
			(https://sha.kerala.gov.in/)	438
		17.3.3	West Bengal Health Scheme (WBHS)	
			(https://wbhealthscheme.gov.in/)	438
		17.3.4	Accelerating UHC through Scaling the MedStrat	
			HIMS	438
		17.3.5	First Level Training	439
		17.3.6	Second Level Training	439
		17.3.7	Third Level Training and After-Deployment	
			Supervision Support	439
		17.3.8	The Proposed Structure for Expanding HIMS	439
	17.4	Discus	sion	440
		17.4.1	Scaling Up Digital Health Insurance Systems:	
			Lessons from MedStrat HIMS	442
	17.5	Conclu	ision	445
		Referei	nces	445
18	Futu	re of He	althcare Applications	449
	Vettr	ivel Aru	l. Hitendra Kumar Lautre. T. Priva.	
	Satis	h Kuma	r Verma, Freddy Ajila and Ramu Samineni	
	18.1	Introdu	uction	450
	18.2	A Histo	ory of Blockchain Technology (1991 - 2021)	454
		18.2.1	Technical Information of Blockchain Technology	456
		18.2.2	Types of Blockchain Technology	456
	18.3	Motiva	tions	457
		18.3.1	Data Security and Safety	458
		18.3.2	Data Integrity	458
		18.3.3	Data Privacy	458
		18.3.4	Authentication	458
		18.3.5	Interoperability	458
		18.3.6	Efficiency and Implementation	459
		18.3.7	Data Storage	459
	18.4	Торто	st Healthcare Projects in Blockchain Technology	
		Based of	on Market Capital	459
		18.4.1	MediBlock (MEDX)	459
		18.4.2	Dentacoin (DCN)	460
		18.4.3	Solve (SOLVE)	460
		18.4.4	Medicalchain (MTN)	460
		18.4.5	Aenco (AEN)	460
		18.4.6	Safe Insure (SINS)	460
		18.4.7	Humans Cape (HUM)	460

	18.4.8	MediShares (MDS)	461
	18.4.9	Lympo (LYM)	461
	18.4.10	Farma Trust (FTT)	461
	18.4.11	MediLedger	461
	18.4.12	Guardtime HSX	462
	18.4.13	MedRec	463
18.5	Healthcare Applications for Blockchain Technology		
	18.5.1	Applications for Healthcare Management Based	
		on the Blockchain	463
	18.5.2	Internet of Medical Things (IoMT)	471
18.6	Research Challenges and Future Direction		
	18.6.1	Security and Privacy of Data	476
	18.6.2	Managing Storage Capacity	477
	18.6.3	Interoperability and Scalability	477
	18.6.4	Related to Blockchain Size	478
	18.6.5	Related to Computing Power Limitations	478
	18.6.6	Related to Latency and Throughput Limits	478
	18.6.7	Standardization Challenges	479
	18.6.8	Confidence and Data Ownership	479
18.7	Conclusion		
	References		
			40.2

Index

483

Preface

This book is a groundbreaking exploration of the synergies between artificial intelligence and healthcare innovation. In an era where technological advancements are reshaping the landscape of medical practices, this handbook provides a comprehensive and insightful guide to the transformative applications of AI in healthcare systems. From conceptual foundations to practical implementations, this handbook serves as a roadmap for understanding the intricate relationships between AI-based system models and the evolution of healthcare delivery.

The first part, "Introduction to Healthcare Systems," delves into the fundamental role of technology in reshaping the healthcare landscape. With a focus on daily life activities, decision support systems, vision-based management, and semantic frameworks, this section lays the groundwork for understanding the pivotal role of AI in revolutionizing traditional healthcare approaches. Each chapter offers a unique perspective, emphasizing the intricate integration of technology into healthcare ecosystems.

The second part, "AI-based System Models in Healthcare Applications," takes a deep dive into specific applications of AI, ranging from predictive analysis and machine learning to deep learning, image analysis, and biomedical text processing. With a focus on decision-making support systems, this section aims to demystify the complex world of AI algorithms in healthcare, offering valuable insights into their practical implications and potential impact on patient outcomes.

The final section, "Modernization and Future – Healthcare Applications," addresses the modernization of healthcare practices and envisions the future landscape of AI applications. From medical imaging and diagnostics to predicting ventilation needs in intensive care units, modernizing health record maintenance, natural language processing, chatbots for medical inquiries, secured health insurance management, and glimpses into the future, the handbook concludes by exploring the frontiers of AI-driven healthcare innovations.

The editors and contributors hope this handbook serves as a valuable resource for researchers, healthcare professionals, and technology enthusiasts alike. By understanding the dynamic interplay between AI-based system models and healthcare, we aim to inspire the advancement of cutting-edge solutions that improve patient care, optimize processes, and contribute to the ongoing evolution of healthcare in the digital age. Our deepest thanks go out to Martin Scrivener and Scrivener Publishing for their assistance and the publication of this book.

Dr. A. Jose Anand

Department of ECE, KCG College of Technology, Chennai, Tamil Nadu, India **Dr. K. Kalaiselvi** Department of Computer Applications, Saveetha College of Liberal Arts and Sciences (SIMATS), Chennai, India **Mr. Jyotir Moy Chatterjee** Department of CSE, Graphic Era University, Dehradun, India

Part I

INTRODUCTION TO HEALTHCARE SYSTEMS

Role of Technology in Healthcare Systems

A. Hency Juliet* and K. Kalaiselvi

Department of Computer Applications, Saveetha College of Liberal Arts and Sciences, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India

Abstract

Today's technology is leaps and bounds ahead, transforming every industry. The healthcare sector is no different. The use of medical technology tools safeguards patient safety. Advancement in healthcare technology and hospital management tools has made patient care easy and efficient. Digital records allow repositories of patient data to be created that doctors and researchers can share and use for studying. These data help medical professionals better diagnose causes of illness and the best cure possible. Healthcare technology has made hospital management a lot easier as well. Hospital information system can be used to keep track of medicines in stock and in supply. Technology is not without its uses. When used properly, technology can improve medication safety, foster better communication between clinicians, lower the risk of medical errors, and increase the patient experience overall. New developments in healthcare technology have made it easier for healthcare organizations to communicate better. Information and communication technology has linked medical professional with patients. Numerous health applications have been developed as a result of the use of information technology in healthcare. Using mobile smartphones to quickly and accurately get medical information is beneficial for patients. This app provides doctors with access to medication information to help with diagnosis, problem-solving, and side effect prevention. Patients can consult with specialists anywhere in the world thanks to telemedicine. This chapter covers the importance of technology in healthcare, transformation in healthcare industry, technology impact on healthcare, how can healthcare technology improve patient care, benefits of information technology in healthcare, medical Technologies, groundbreaking advancements in technology in healthcare, innovation and digital transformation.

^{*}Corresponding author: hencyjulieta.sclas@saveetha.com

A. Jose Anand, K. Kalaiselvi and Jyotir Moy Chatterjee (eds.) Artificial Intelligence-Based System Models in Healthcare, (3–30) © 2024 Scrivener Publishing LLC

4 Artificial Intelligence-Based System Models in Healthcare

Keywords: Telemedicine, medical technologies, information technology, health apps, smartphones and digital transformation

1.1 Introduction

The part of technology in the healthcare system is transformative, encompassing a extensive range of tools, systems, and innovations that improve patient care, streamline operations, enhance research, and revolutionize the way healthcare is delivered. In recent decades, the healthcare sector has been undergoing a profound transformation, largely driven by the integration of advanced technologies. The role of technology in the healthcare system has transcended conventional boundaries, revolutionizing how medical services are delivered, managed, and experienced. From digitizing patient records to enabling precise diagnoses through Artificial Intelligence (AI), technology has become an indispensable tool that enhances efficiency, accuracy, accessibility, and patient outcomes. This evolving synergy between healthcare and technology not only streamlines medical processes but also opens up new frontiers of research, treatment, and patient engagement [1]. In this rapidly changing landscape, understanding the multifaceted role of technology in healthcare is pivotal for healthcare professionals, policymakers, and individuals alike, as it shapes the present and future of medical care. The intersection of technology and healthcare has given rise to a transformative era marked by innovations that have redefined the way healthcare is practiced, managed, and experienced. One of the most noteworthy influences is the digitization of patient records and medical data. EHRs have substituted cumbersome paper-based systems, allowing healthcare benefactors to access and share patient evidence seamlessly. This not only enhances efficiency in care delivery but also reduces the likelihood of errors arising from manual data entry [2].

Moreover, the application of AI and Machine Learning (ML) has introduced a new dimension of precision and predictive analytics to healthcare. These technologies can examine vast datasets, aiding in early disease detection, behavior planning, and personalized medicine. Medical imaging, for instance, has been greatly enhanced by AI algorithms that can detect subtle anomalies in X-rays and other scanned images, assisting radiologists in making more accurate diagnoses. Telemedicine and remote monitoring are other remarkable advancements made possible by technology. Patients can now consult healthcare authorities from the comfort of their homes, predominantly advantageous for individuals with imperfect mobility or those residing in inaccessible areas. Wearable devices equipped with sensors and connected to smartphone apps enable real-time monitoring of vital signs, chronic conditions, and fitness levels, permitting individuals to take proactive control of their health. Hospital administration, resource allocation, and inventory management have been streamlined through integrated software solutions [3]. This optimization not only improves operational efficiency but also contributes to cost savings and resource utilization, ultimately benefitting patient care. Patient engagement and education have been transformed by technology as well. Online platforms, health apps, and informational websites provide patients with valuable resources to learn about their conditions, treatment options, and preventive measures. This democratization of information empowers patients to make knowledgeable decisions about their health and treatment plans. However, the incorporation of technology in healthcare is not without its encounters. Ensuring data security and patient privacy in an increasingly interconnected environment is a critical concern. Cybersecurity measures must continuously evolve to safeguard sensitive medical information from unauthorized access and breaches. Here are some key aspects of the role of technology in the healthcare system [4].

Patient Care and Treatment: Advanced medical devices and technologies enable precise diagnostics and effective treatments, leading to improved patient outcomes. Telemedicine platforms allow remote consultations, expanding access to medical expertise and services. Sensors attached to wearable garments monitor the patient's physiological health parameters in real-time, facilitating proactive interventions for chronic conditions.

EHRs and Data Management: EHRs digitize patient records, making them simply reachable to authorized healthcare providers, improving care coordination and reducing errors. Health information systems and databases centralize patient information, enhancing communication and data sharing among medical teams.

Diagnostic Technologies: AI and ML algorithms process medical data to improve diagnostic accuracy and speed.

Personalized Medicine and Genomics: Genomic sequencing informs custom-made behaviour plans by considering an individual's genetic makeup and disease susceptibility. Precision medicine tailors therapies to patients' unique characteristics, leading to more effective and targeted interventions.

Robotics and Surgical Innovations: Robotic-assisted surgery enhances surgical precision, enabling minimally invasive procedures and quicker recovery times. Teleoperated robots allow expert surgeons to perform procedures on patients located remotely.

6 Artificial Intelligence-Based System Models in Healthcare

Drug Discovery and Development: High-performance computing and AI streamline drug discovery processes, identifying potential drug candidates and accelerating development. Computational modelling predicts drug interactions, efficacy, and adverse effects, reducing trial-and-error approaches.

Health Information Exchange (HIE): HIE schemes empower secure data distribution among healthcare organizations, ensuring continuity of care and improving patient outcomes.

Remote Monitoring and Telehealth: Remote monitoring platforms and telehealth solutions improve patient access to care, especially in underserved areas. Virtual care encompasses teleconsultations, remote monitoring, and digital health tools that enhance patient-provider interactions.

Healthcare IoT and Wearable Devices: Internet of Things (IoT) devices connect medical equipment, wearable devices, and sensors, enabling data collection and analysis for better insights. Wearable devices track physical activity, sleep patterns, and vital signs, promoting proactive health management.

Data Analytics and Population Health: Big data analytics identify health trends, disease outbreaks, and opportunities for preventive interventions at both individual and population levels.

Patient Engagement and Education: Digital platforms provide patients with reliable medical information, encouraging them to participate in their care decisions and adopt healthier lifestyles.

Data Security and Privacy: Technologies like blockchain enhance data security, protecting patient privacy and ensuring compliance with regulations.

Healthcare Administration and Operations: Administrative tasks are streamlined through automated billing, scheduling, and resource allocation systems, reducing administrative burden and errors.

Research and Clinical Trials: Technology accelerates medical research by analyzing large datasets and simulating biological processes. Clinical trials benefit from data-driven patient recruitment, monitoring, and outcomes assessment.

The role of technology in the healthcare system continues to expand and evolve, driven by ongoing innovation. Technology empowers healthcare professionals, improves patient outcomes, enhances operational efficiency, and fosters a patient-centric approach to healthcare delivery [5]. In conclusion, the role of technology in the healthcare system is a dynamic and multifaceted one that encompasses advancements across various fronts.