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Foreword

Evolutionary algorithms and other population-based metaheuristics have become
increasingly popular for solving hard optimization problems for the last 40 years.
However, in spite of their apparent simplicity, their proper use faces several chal-
lenges, including the initialization of their parameters and their proper tuning and
control, as well as finding the proper balance between exploitation and exploration
during the search process. This book presents a comprehensive overview of these and
other relevant topics related to metaheuristic improvement, with the aim of achieving
a better effectiveness and efficiency in their use.

The book is divided in twovolumes. Thefirst volume consists of three chapters that
focus on: algorithm initialization, the tradeoff between exploration and exploitation,
and using distributions and functions to guide the optimization process. Next, I will
provide a brief description of each chapter.

In Chap. 1, the authors discuss the importance of the initialization of parameters
for the performance of metaheuristic algorithms. The authors consider two types of
initialization methods: (1) those oriented toward uniformity of the distribution of
solutions and (2) those that bias the initial solutions toward promising regions of the
search space. On the one hand, the uniformity of initial solutions aims to ensure that
the individuals are scattered evenly. This task can be achieved using computationally
efficient methods (e.g., random initialization, probability distribution initialization,
and sub-space-based initialization). On the other hand, biasing the initial solutions
toward promising regions of the search space may increase the convergence rate
as well as solution accuracy. The approaches adopted in this case are sub-divided
into four categories: (1) location-based initialization, (2) hybrid initialization, (3)
initialization methods related to machine learning and mathematical programming,
and (4) initialization based on a specific application. In spite of their advantages, as
the authors properly indicate, these approaches may involve the use of considerable
computational resources since they require a pre-optimization process.

Chapter 2 discusses one of the oldest andmost difficult problems facedwhen using
evolutionary algorithms (and other similar population-based metaheuristics): how to
produce a proper balance between exploration and exploitation during the search.

v



vi Foreword

The chapter discusses aspects related to producing good tradeoffs between explo-
ration and exploitation, including randomization, memory allocation, and individual
update mechanisms, as well as diversity, fitness landscape analysis, and hybridiza-
tion. Randomization is a key aspect of metaheuristics and the authors indicate that
there are normally two options to be applied in an algorithm: (1) modifying the
magnitude of randomization, which affects the trajectory of individual solutions in
different paths or (2) performing randomized moves which determine the probability
condition that leads to different paths or moves of a portion of the population (such
portion is defined using a probability factor). In either case, randomization is intended
to improve exploration in a broader portion of the search space as well as to explore
in an exploited area that could potentially lead to a promising solution.

The second section of Chap. 2 discusses memory allocation and individual update
mechanisms. The authors indicate that memory usage allows algorithms to be pro-
active during exploration and exploitation and serves as an intelligent tool to avoid
non-promising areas of the search space. The chapter discusses short-term, medium-
term, and long-term memory, analyzing how each of them has a different impact
on exploration and exploitation. Then, the integration of memory allocation into the
individual update mechanism is discussed. This integration aims to guide the search
toward better-memorized solutions in order to avoid getting trapped in local optima.

Chapter 2 also discusses diversity measures and fitness landscape analysis as
additional mechanisms that can improve convergence and provide a better balance
between exploration and exploitation. This chapter discusses several types of diver-
sitymeasures including fitness sharing, niching, crowding, and entropy.Additionally,
different features of fitness landscapes that can be considered during the optimiza-
tion process are briefly discussed, including basins, ruggedness, neutrality, gradient,
deception, and evolvability. The use of fitness landscape analysis for designing robust
novel algorithms and to assess performance is also discussed.

The final section of Chap. 2 focuses on hybridization, which consists of the combi-
nation of different methods or algorithms into a single metaheuristic. Two types of
hybrids are analyzed: collaborative and integrative. Collaborative methods combine
different algorithms and run in sequence or in parallel in order to solve the problem,
whereas integrative approaches combine the concepts from two or more algorithms
in order to form a single integrated algorithm.

Chapter 3 discusses probability distributions and the way in which they help to
locate individuals in a broader section of the search space, as a means to prevent
them to get trapped in local optima. Several probability distributions are discussed,
including Lévy, Cauchy, beta, extreme value, generalized extreme value, generalized
Pareto, gamma, inverse gamma, half-normal, inverse Gaussian, logistic, and chaotic
map distribution. The authors also discuss how the exploration and exploitation can
be dynamically shaped using functions related to the iterations rate (e.g., logarithmic,
trigonometric, sigmoid, exponential, spiral, or combinations of them). Finally, the
authors also indicate that the degree of exploration can be adjusted using random
perturbations (e.g., following a spiral path).
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VolumeTwo consists of twomain chapters. Chapter 4 discusses factors that belong
to the location, size, and capacity for optimization. Such factors include search space
reduction, population models, opposition-based learning, and algorithm selection
methods. The authors argue that these factors are further enhancements to those
discussed in Chap. 3 for balancing the exploration and exploitation mechanisms and
they provide detailed discussions of each of them.

Chapter 5 focuses on parameter adaptation and discusses two topics: (1) parameter
tuning in which the values and algorithm settings are adjusted prior to the execu-
tion of the algorithm, and (2) parameter control, in which the parameters values and
algorithm settings are adjusted during the algorithm’s execution. A number of tech-
niques for parameter control are discussed in this chapter, including response surface
methods, Taguchi method, meta-optimization, and machine learning methods.

Overall, this book provides a very comprehensive study on techniques aimed
to improve the performance of population-based metaheuristics and it constitutes a
valuable source for students, researchers, and practitioners interested in using meta-
heuristics for optimization. Because of that, I highly recommend its use both as a
reference and as a textbook in graduate courses.

July 2024 Carlos A. Coello Coello
Editor-in-Chief, IEEE Transactions on

Evolutionary Computation
Department of Computer Science

CINVESTAV-IPN
Mexico City, Mexico



Preface

The developments ofmetaheuristic algorithms date back to the 1960s, and since then,
metaheuristic algorithms have grown to extend, especially since the year 2000. These
significant increases show that there is a growing number of researchers who have
contributed to various studies, including engineering, medical, logistics, networks,
artificial intelligence, and many more (Velasco et al. 2024). Most of the meta-
heuristic algorithms are inspired by various sources of nature (Yang 2017, Lones
2020), including the theory of evolution, creatures, sciences, and humans (Rajwar
et al. 2023). Driven by the success of solving numerous problems, including NP-
hard problems (non-deterministic polynomial-time hardness problems) (Tomar et al.
2023), more and more such algorithms are being proposed by numerous researchers
and algorithm developers in an exponential trend. The motivation for establishing
new algorithms is in hot pursuit of new journals and conference publications, as this
chapter was written at the time.

Generally, metaheuristic algorithms are mostly prominent and can overcome
shortfalls in many deterministic methods, specifically in nonlinear problem space or
black-box problems (Kvasov andMukhametzhanov 2018; Stojanović et al. 2017). In
addition, deterministic algorithms may easily fall into local optima and be ineffec-
tive for solving multi-modal, high-dimensional, and highly constrained engineering
optimization problems (Zhang et al. 2018, Rajwar et al. 2023). There are mainly
three aspects that differing metaheuristic algorithms with respect to deterministic
counterparts (Khajehzadeh et al. 2011):

• Search agents based on the population of individuals that reduce the likelihood
of local optima. The deterministic approach searches from one point to another
based on the deterministic rule.

• Metaheuristics uses fitness information of individuals instead of function deriva-
tives or other related knowledge.

• Metaheuristics searches are probabilistic and drive the search iteratively at random
with fitness dependence. This led the search toward regions that are likely to have
better fitness. Such a search paradigm is referred to as stochastic.

ix



x Preface

Metaheuristic optimization algorithms are practically proficient yet disreputably
hard to analyze and to understand. The stochastic nature lies in the metaheuristic
properties that generally search the optimized solution based on the trial and error
attempt, suggesting the fundamental characteristic of exploration and exploitation
searches. The stochastic mechanism of the search procedure made the algorithm
effective in finding a correct solution, thus catalyzing the intensive development of
such an algorithm at an increasing rate (Dokeroglu et al. 2019).

As mentioned, most metaheuristic algorithms are inspired by nature. The algo-
rithm was initially introduced with the idea from evolution theory in the 1980s and
followedbynumerous inspirations later on.Among themost currently inspired nature
are the swarming behaviors of creatures, followed by physics-based and human life.
To date, numerous metaheuristic algorithms are introduced with the ability to solve
continuous and discrete problems in many applications (Greiner et al. 2018).

Amidst various nature-inspiring methods, there is still room for improvement for
better algorithm performance with the aim of reproducibility of solutions and faster
convergence. The most common terminology used in the optimization approach of
metaheuristic algorithms is exploration, exploitation, or intensification and diver-
sification, respectively. The terms are used extensively and interchangeably in the
literature, especially in the vast majority of articles of leading journals related to
metaheuristics (Blum and Roli 2003), indicating that the terms are significant to the
field of metaheuristics optimization (Rajwar et al. 2023).

In essence, exploration refers to the algorithm’s ability to explore in the search
space in order to find the better solution. The exploration method has more influence
in ensuring global optimum results for any optimization problem, and it is merely
related to the search process with randomized characteristics. The main feature of
exploration is a higher probability of finding the global solution and escaping from
the local optima. However, the drawback of exploration is slower convergence and
expensive computational efforts since many newly explored solutions may be far
from the global optimum. On the contrary, exploitation is an approach to finding
the next solution based on the information acquired from the current problem of
interest with the aim of getting toward a better solution. The benefit of this method
is a higher convergence rate, whereas the main drawback is a higher probability
of being trapped in local optima. An example of algorithm search with exploration
and exploitation mechanisms is demonstrated in Fig. 2. In this example, the Tree
Physiology Optimization (TPO) algorithm (Halim and Ismail 2017) attempts to find
the global optimum of the Bird function (Jamil and Yang 2013) that is composed
of multiple local optima (fLocal) and two global optima (fGlobal = − 106.7645).The
three-dimensional plot of the function is depicted in Fig. 1.

The algorithm is executed with a total of 100 function evaluations (FEV). The
exploration and exploitation search of the algorithm’s individuals is shown in Fig. 2.
The figure depicts a contour plot of the test function with smaller dotted points
representing the population individuals and the star points as the best candidates
found so far during the search. The top figure indicates the location of individuals in
the early FEV, followed by the location of individuals at the 50th FEV in the middle
figure, and finally, the location of individuals at the 100th FEV in the bottom figure.
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Fig. 1 Bird function with several local optima and two global optima

Note that in the initial and the middle stages, the individuals are explored throughout
the search space and finally exploited toward the best solution in the last stage of the
optimization.

Both strategies need to be balanced in order to achieve a good performance of
optimization algorithm (Salleh et al. 2018). The tradeoff between exploration and
exploitation is vital that affects the accuracy of solution and convergence speed of the
algorithm. Thus, an effective tradeoff reduces the computational cost and improves
the efficiency of optimization (Chen et al. 2009). To date, the question of better
tradeoffs between exploration and exploitation is still open and being studied by
many researchers. Moreover, there is no algorithm that can be proven to be the most
effective compared to others on all possible problem instances. Some algorithms
may perform better on a specific problem, while the other algorithms may able to
find feasible solutions to other problems; this is known as the no-free-lunch (NFL)
theorem (Wolpert and Macready 1997). It implies that the efficacy of an optimiza-
tion algorithm is inherently tied to the specific characteristics of the problem being
addressed. Therefore, a fine balance between exploration and exploitation is neces-
sary as it improves any algorithm’s efficiency and effectiveness toward finding the
best solution within tolerable speed. Various methods of balancing the exploration
and exploitation searchmechanisms are being proposed in copious literature. Further
and detailed details on the concept and fundamental principles of exploration, as well
as exploitation mechanisms, are discussed in Chap. 2.

This book is dedicated to providing and reviewing the state-of-the-art modes of
optimizing the exploration and exploitation tradeoffs for metaheuristic algorithms
and offers a better understanding of the improvement potentials that may enhance
the optimization with higher solution quality and faster convergence. For this reason,
various concepts of the tradeoff’s improvements are discussed and divided into chap-
ters as summarized in Fig. 3. The discussion on the exploration and exploitation
concepts in this book is generally organized according to the phases of the algo-
rithm, which are the (1) initialization and (2) optimization phase, as shown in the
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Fig. 2 Exploration and
exploitation mechanism of
TPO

figure with the dashed-line section. The initialization phase is referred to the begin-
ning stage of the algorithm, whereas the optimization phase belongs to the rest of the
optimization procedures after the initialization process ends until the optimization is
terminated.
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Fig. 3 Book overview

Chapter 1 discusses the initialization phase ofmetaheuristic algorithms and devel-
opment options under the scope of exploration and exploitation mechanisms with the
objective of improving or preparing the candidate solution of the algorithm before
entering into the later stage of optimization search (optimization phase). The chapter
focuses on two main principles: improving the uniformity of individual distributions
throughout the search space and biasing the candidate solutions toward a presumed
near-optimal solution. The rest of the chapter discussed various techniques that
are applicable for balancing the exploration and exploitation mechanisms and are
primarily concerned with the optimization phase. Nonetheless, some of the methods
are also applicable in the initialization phase. Chapter 2 introduces the concept of
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exploration and exploitation mechanisms in more detail and further presents the
essential methods for the tradeoffs, including randomization, memory features, indi-
vidual update mechanism that incorporates memory, diversity maintenance for better
convergence-divergence of the search agents, fitness landscape analysis, and hybrid
methods.

Chapter 3 highlights potential improvements related to distributions and function
driven. The distributions essentially serve as a medium for the individuals to wander
throughout the search space during the optimization. Thus, proper implementation
of distribution functions may improve the algorithm’s effectiveness and efficiency
in finding the optimum solution. Various types of distributions as discussed in the
chapter are applicable to explore and exploit the search space. In addition, a unique
type of distribution due to its ergodic and random characteristic; denoted as chaotic
map is discussed in detail with varieties of maps that can be integrated in the opti-
mization search process. The chapter also discusses the implementation of function
dynamics that potentially drives the candidate solutions and proficient to intensify
or diversify the optimization search process.

Chapter 4 discusses further options of attaining good tradeoffs using elitemethods
that belong to the location, size, and capacity of the algorithm during the optimiza-
tion search. This includes the search dynamics that focuses on the optimization
search space, population model concerning on the size of the candidate solutions,
opposition-based learning that attempts to accelerate the search via opposite or rela-
tive location of individuals, and algorithm selection approach that promotes the use
of multiple algorithms for problem instances.

Chapter 5 brings forward another unique and smart enhancement strategies that
potentially further improve the algorithm’s capability on balancing the tradeoffs
between exploration and exploitationmechanisms. Due to theNFL theorem (Wolpert
and Macready 1997) as well as the notion of algorithm’s sensitivity to the value or
setting of their parameters (Birattari 2009), proper fine-tuning of the parameters
with respect to the problem instances and optimization state typically improves the
optimization performance. This chapter investigates in-depth method of algorithm’s
parameter improvement that is based on offline- and online tuning (also termed
as parameter tuning and parameter control respectively) with numerous examples
from copious literatures. Among the highlighted categories for this area includes the
statistical methods, hyperheuristics, machine learning as well as various adaptive
and self-adaptive methods.

Chapter 6 summarizes the chapters of the book and discusses the future potential
prospects that researchers in the field of metaheuristic algorithms can venture for
further improvement of optimization process. The book project is divided into two
volumes with Introduction, Chaps. 1–3 in the first volume, whereas Chaps. 4 and 5
to the Conclusion Chapter is discussed in the second volume.
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It is hoped that this book project be an ideal textbook for vast levels of applicants
from undergraduate, graduate courses, researchers to professionals or practitioners
that interested in algorithm improvement or involved in algorithm development.
As some of the tradeoff’s concepts such as the parameter tuning and control are
the forefront of the current extensive research and are far from being satisfactorily
solved for multiple optimization problems, this book hopefully may serve as source
of motivations and benchmark toward a better improvement of existing and future
algorithms.

Seri Iskandar, Malaysia
Kolkata, India
Seri Iskandar, Malaysia

Abdul Hanif Abdul Halim
Swagatam Das

Idris Ismail
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Chapter 1
Algorithm Initialization: Categories
and Assessment

This chapter dedicates the essential principle and improvement options for meta-
heuristic algorithms during the initialization of the optimization search. All meta-
heuristic algorithms must follow the initialization procedure before the primary opti-
mization search process, as highlighted in Fig. 1.2. As also understood among algo-
rithm developers and researchers, good tradeoffs between exploration and exploita-
tion mechanisms are fundamental in metaheuristic algorithms to ensure a good opti-
mization process concerning solution quality and faster convergence. The initializa-
tion phase is one of the main factors contributing to a better exploration–exploitation
balancingmechanism.This chapter discusses the initialization phase ofmetaheuristic
algorithms and development options proposed in numerous pieces of literature to
improve the algorithm later in the optimization search. The outline of this chapter is
summarized in Fig. 1.1.

The chapter begins with the fundamentals of initialization in metaheuristic algo-
rithms with the idea of better initial solutions that may lead to superior algorithm
performance in solving problems, especially with high complexity and dimensions.
Based on the overall methods of algorithm initialization, this chapter then divides
the main category of initialization into two perspectives: the uniformity of solution
distribution and biasing towards a good presumption of initial solutions. Each cate-
gory is discussed separately in Sects. 1.2 and 1.3, respectively. Several sub-categories
are further addressed in each section of the initialization method. The chapter ends
with concluding remarks based on the findings from both main methodologies and
their respective advantages and disadvantages.
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Chapter 1: Algorithm initialization

1.1) Fundamental of metaheuristic algorithm initialization

1.2) Uniformity of solution distribution

1.3) Biasing of good presumption

1.4) Concluding remark

Fig. 1.1 Summarized outline of this chapter

Fig. 1.2 Good characteristics of the initial population

1.1 Fundamental of Metaheuristic Algorithm Initialization

The initialization of parameters for the metaheuristic algorithms, especially for the
population-based algorithms, plays a vital role in the overall algorithm performance.
The method of metaheuristic algorithm initialization has a profound impact on its
exploration and exploitation abilities. Improper diversification of initial solutions
may lead to premature convergence as the search progress is trapped in the local
optima. Alternatively, initialization with low quality solutions may consume a larger
number of iterations to converge. In this regard, the diversity and good quality of the
initial solutions need to be preserved. In ideal circumstances, the initial solution is
usually independent of the final optimal solutions converged by the algorithm. This
may apply only to problems such as convex optimization or linear programming.
Nonetheless, this dependency may be tricky in other cases, especially for real-world
problems that are nonlinear and complex. In addition, the degrees of dependency can
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differ by different algorithms and problems (Kondamadugula et al. 2016; Li et al.
2020) even within the same problem domain but with different types of instances
such as truss-structure optimization (Contreras-Bejarano andVillaba-Morales 2024).
In essence, the algorithm initialization is related to the number of individuals or
candidates, sometimes termed search agents of the population. Due to the nature of
the Markov process, the locations of current individuals are highly associated with
the previous position, formulated as follows:

xj(i + 1) = xj(i) + �xj(i), (1.1)

where xj(i) is the state of jth individual in the ith step or previous step and � is the
step function that varies by different introduced algorithms. Therefore, as simplified
in Fig. 1.2, individuals with either good educated guess or equivalently scattered
throughout the search space may enhance the search process in the next step of
the algorithm iterations especially in the population-based algorithms towards better
convergence rate and optimum solution.

Initialization of individuals that are not uniformly scattered or with locations
further from the global optimum definitely led to higher algorithm computation as
well as the potential of premature convergence as the algorithm is not able to locate the
optimum solutionwithin a prescribed number of iterations. In the initialization phase,
the location of each search agent by default (in most of metaheuristic algorithms)
is usually defined randomly within a defined lower and upper boundary of problem
space with X = LB + rand(UB − LB), where LB and UB are the lower and upper
bound, respectively, and rand(x) as the randomization move that creates a random
value around the x individuals. Besides this default random localization of indi-
viduals, other initialization methods are introduced in the literature that potentially
improve the sound characteristics of the initial population.

The main motive for proper initialization is due to the unknown optimum solu-
tion before the optimization search and the stochastic characteristic of the algo-
rithm. Moreover, improper population size and search iterations with respect to the
search dimension may bias the search, potentially leading to sub-optimal solutions.
Consider test function problems with either multimodal or deceptive landscape. The
population-based algorithm may easily be trapped in the local optimum merely due
to the vast area of local optima, as shown in Fig. 1.3a. In the deceptive landscape
from Fig. 1.3b, however, the challenge is slightly different, in which the problem
consists of the deceptive attractor as the local optimum and one global optimum
(Whitley 1991; Deb and Goldberg 1994). Improper population initialization may
attract the search candidates to the deceptive area just after a few iterations, which
is far from the global optimum. Therefore, the population initialization needs to be
properly rationalized to ensure that the individuals cover all possible search space or
to estimate the better optimal location to converge towards the true optimum solution.

Due to this reason, many works attempted some efforts on the improvement of
initial stage with better diversity of the initial population (exploration) or concen-
trated in the promising region (exploitation) in order to obtain guaranteed optimal
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Fig. 1.3 Example of test functions

solutions. There are also several published review papers related to population initial-
ization methods in metaheuristic algorithms, such as Zhang et al. (2023), Sarhani
et al. (2023), Agushaka and Ezugwu (2022a), Hasanzadeh and Keynia (2021b) and
Kazimipour et al. (2014). Based on these review papers, the initialization methods
can be categorized into several types. Kazimipour et al. (2014) differentiate the
initialization methods into three major perspectives, including randomness, compo-
sitionality, and generality. Each type is defined based on the manner in which the
population of individuals is initialized. The randomness is related to the randomized
initialization method. Depending on the nature of random initialization, this branch
is further divided into two types: deterministic that derived the randomness based on
deterministic rule and stochastic that is derived from some stochastic features. Under
deterministic randomness, another two sub-branches are defined: low discrepancy
randomization and uniform experimental design (UED). The randomness is supple-
mentary and divided into random number generator and stochastic for the stochastic
complements. The secondmajor perspective, the compositionality is sub-categorized
into non-composite (which is based only onone stepmethod) and composite (which is
based on two or more steps for the initialization purpose). The third major perspec-
tive, the generality, is clustered into generic and application specific. The generic
method is referred to as the initialization technique that can be directly applied to
all kinds of optimization problems, whereas the application-specific method refers
to the initialization method special only for a specific problem and is not applicable
to all optimization problems.

Hasanzadeh and Keynia (2021b) also characterized the initialization categories
similar to the previous review but with further elaborations of each specific method,
such as the type of number generators, chaotic maps, opposition-based learning, and
many more. Another recent review paper (Agushaka and Ezugwu 2022a) catego-
rizes the initialization methods into eight variants, including pseudo-random gener-
ator, quasi-random generator, probability distributions, hybridization with other
metaheuristics, chaos, ad-hoc knowledge, Lévy flights, and others.
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The metaheuristic algorithms can also be initialized under the machine learning
approaches. In essence, Machine learning (ML) is a branch of artificial intelligence
that uses algorithmic and statistical approaches to give computers the ability to learn
from data and improve their performance in solving tasks without being explicitly
programmed for each one (Bishop 2006). There are numerous learning methods
under the ML umbrella. Proper ML techniques can be applied in the initializa-
tion phase of metaheuristic algorithms with the objective of maintaining the diver-
sity of initial solutions as well as with good quality. The ML contribution in the
initialization of metaheuristic algorithms can be divided into three main strategies
(Karimi-Mamaghan et al. 2022), which are discussed below.

(1) Complete generation: The ML approaches can be implemented to construct
complete initial solutions and replace the default individual generation strate-
gies (such as pseudo-random generation) from an empty solution. Among
the ML approaches under this category are the Reinforcement Learning (RL)
or precisely the Q-learning method, Artificial Neural Network (ANN), and
Opposition-based Learning (OBL).

(2) Partial generation: ML approaches can be used to generate partial initial solu-
tions via the prior knowledge of good solutions from past experience or data.
The remaining solutions can then be generated using other non-ML initializa-
tionmethods. In this case,ML extracts knowledge from previous good solutions
and integrates it into the new initial solutions. Among the ML techniques under
this category is the Case-Based Reasoning (CBR) and Association Rule (AR).

(3) Decomposition: This category can be carried out in the data or search spaces. In
data space decomposition, the ML approach can be used to decompose the data
or population into several sub-spaces to generate the initial solutions with less
computational cost. In the search space decomposition, the ML approach can
be used to diversify the initial solutions over the search space by prioritizing
the region of the search space that potentially leads to the optimum solution.
Among the examples of applicable ML techniques is the Multi-Armed-Bandit
(MAB), where each arm corresponds to the search space region; thus, each arm
learns and reveals which section of the search space is worth exploring.

This chapter compiles and summarizes the initialization approaches introduced
in the literature, taking into consideration the review of the above papers. Unlike
the categorization presented by Kazimipour et al. (2014) as well as Hasanzadeh and
Keynia (2021b), this section divides the initialization methods into another perspec-
tive of view driven by the objective of the initialization as highlighted in Fig. 1.2,
which are either oriented towards (1) uniformity of distribution or (2) biasing of
reasonable presumption.Dependingon thenature of categorization, themethodunder
the ML perspective is also integrated into both of the groups. Each of the categories
is discussed briefly in the following subsections. Figure 1.4 summarizes the main
branch and sub-categories of the initialization methods. It is also to be noted that not
all initialization methods are applicable in each metaheuristic algorithm. The sensi-
tivity of algorithms is problem-dependent, hinting that the option of an initialization
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Fig. 1.4 Some of the main initialization approaches

approach potentially substantially influences the overall performance for particular
problems (Garcia et al. 2023; Agushaka et al. 2023).

1.2 Uniformity of Solution Distribution

As mentioned in the first section of this chapter, most of the standard and traditional
metaheuristic algorithms are initialized with random distribution to ensure that the
individuals are scattered in the search space such that some or one of themmay drive
the search towards the optimumpath as the optimizationphase started.Theuniformity
of solution is referred to as the degree of evenness of the individual scattered in
the search space. The more even the scatter is, the more uniform the distribution.
Apart from the default random initialization, there are several methods proposed
in the literature that tried to improve the uniformity of the distribution. This section
compiled threemain categories related to uniformity including random initialization,
probability distribution initialization, and sub-space-based initialization. Each of
them is discussed with examples from the literature.

1.2.1 Random Initialization

A random number generator is defined as a sequence of numbers that portray the
properties of complete unpredictability, incompressibility, and irregularity (Ergün
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and Özog̃uz 2010). According to Kazimipour et al. (2014) and Hasanzadeh and
Keynia (2021b), random initialization can be further divided into stochastic and
deterministic depending on the initial seed generation for the random generator.

Stochastic methods

Stochastic random initialization is defined as a random sequence that generates
different populations with different initial seeds. The corresponding initial seed
mainly causes the randomness and is usually provided by an external source. The
stochastic random can be further divided into the pseudo-random number generator
and the chaotic number generator. Each of these sub-groups is discussed briefly in
the following sub-topic.

Pseudo-random initialization

The pseudo-random initialization is the most applied method in numerous meta-
heuristic algorithms. This method (or also denoted as the Monte Carlo method)
generates uniform random sequences based on the uniform probability distribution
in order to specify the initial location of individuals of the population. The pseudo-
randomgenerators can be evaluated based on several indicators such as the cycle time,
which is defined as the smallest integer that the pseudo-random generator repeats the
previously defined numbers and equi-distribution, which is also referred as the points
that have equal frequency. Another factor of evaluation is the empirical comparison
of diffusion capacity between the old and the new random generator (Panneton et al.
2006).

There are various types of pseudo-random generators, such as KISS (Marsaglia
and Zaman 1993), Mersenne Twister algorithm (Matsumoto and Nishimura 1998),
Lagged Fibonacci generator (Knuth 1998), and WELL algorithm (Panneton et al.
2006). These pseudo-random generators need to pass several stringent statistical
tests, such as DieHard, TestU01, and NIST, to be acknowledged as random number
generators (Lorek et al. 2020). An example for Mersenne Twister algorithm, the
algorithm is asserted to attain longer period of 219937 − 1 and larger distribution
properties of 632-dimension of equal distribution, which revealed faster and better
randomness than the other pseudo-random generators and passed the DieHard test as
shown in the findings fromMatsumoto andNishimura (1998). ThisMersenneTwister
algorithm is a 64-bit algorithm; there is also a 32-bit Mersenne Twister algorithm
applicable as a pseudo-random generator. Both generators are the same in terms
of flow and basic logic but mainly differ by the number of integers for generating
numbers: 32-bit uses unsigned 32-bit with respect to unsigned 64-bit integers for 64-
bitMersenne Twister algorithm. The advantage of the later pseudo-random generator
is better statistical properties with a higher degree of uniform distribution and higher
quality of random sequence; however, it requires more memory and computational
resources due to its large state size (Gulić and Žuškin 2023).

An example of an application using the Mersenne Twister generator in algorithm
initialization can be referred to Sacco and Rios-Coelho (2019). The paper combined
this random generator with opposition-based learning in Differential Evolution (DE)
(Storn and Price 1997) initialization. Figure 1.5 demonstrates the distribution of the
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(a) Mersenne Twister algorithm (b) Lagged Fibonacci generator

Fig. 1.5 Pseudo-random generator

Mersenne Twister algorithm and Lagged Fibonacci generator over 500 individuals.
As shown in the figure, the distribution is randomly scattered, however some clusters
of points are observed, and some areas are empty.

Despite its randomness and themajor attractions ofmetaheuristic algorithmdevel-
oper, this method did not efficiently cover the entire search space with the high
inconsistency of random sequences, as also indicated in Fig. 1.5. The inconsistency
of random sequence is referred as the random distributed solutions are not really
random throughout the search space, which then lead to convergence of the algo-
rithm towards local optimum after a number of iterations (Niederreiter 1992). After
a few iterations, the individuals generated by the pseudo-random will be clustered
rather than scattered around the search space. This indicates the shortcomings of a
pseudo-random generator for population initialization.

In an improvement attempt to use the random generator for population initializa-
tion, Pan et al. (2014) proposed an adaptive randomness, which modifies the random
initialization by controlling the individuals of the initial population. Themethod aims
to ensure that the individuals are not too closely located to the other individuals and
are distributed uniformly throughout the search space. For this purpose, the method
is divided into two sets of individuals: partial initial population (PP) and trial indi-
viduals (ST ). PP is the partial population from the total number of P individuals
in the population with a with PP ⊆ P. The trial individuals are composed of a set
of k individuals with ST ∩ PP = ∅ and each trial individual is randomly chosen
from the search space that is not yet been added into PP. The Euclidean distance of
each generated trial individual is then compared with the individuals in PP, and the
trial individual with the farthest distance is added into PP. This process is repeated
until the number of individuals in PP is equal to the total number of individuals in
the P population. The author applied the proposed method in the DE algorithm and
compared it with otherDE-initialized variants, such as opposition-based and standard
pseudo-random generators, for solving 34 benchmark test functions. The proposed
method outperformed most of the test functions with a better success rate and final
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solution. In the scalability test, the proposed method showed similar performance
as the dimensionality D is increased from 0.5D to 2D. However, the performance
deteriorates in some functions as the dimensionality increases.

Other example attempted to improve the randomization is using higher quality
of pseudo-random generator that exhibits larger period of repeating number of
sequences. Gulić and Žuškin (2023) integrated two pseudo-random generators,
namely 64-bit and 32-bit of SIMD-oriented FastMersenne Twister (SFMT) in hybrid
of Genetic Algorithm (GA) (Holland 1972) and African Buffalo Optimization (Odili
and Kahar 2016) for solving container relocation problems.

Another attempt to develop better uniformity from a pseudo-random generator is
based on a distancematrix fromKhajeh et al. (2019). In this approach, each individual
point is assigned within a defined distance such that each of them is separated evenly.
The paper devises five steps that modify the randomly generated points into better
uniform distributed individuals as follows:

(1) Generate a matrix m× n randomly according to the domain of variables with m
as the number of individuals and n as the number of variables.

(2) Compute the distance of each individual and saved as a matrix of m×m repre-
senting the ith row and jth column correspond to the ith and jth distance of
individual di,j with the following distance formulation:

di,j =
√
√
√
√

n
∑

k=1

(

xi,k − xj,k
)2

. (1.2)

(3) The radius of coverage rcov based on the size of the search space Stot . given
in the equations below with UBk and LBk as the upper and lower bound of kth

variable.

rcov = n

√

Stot
m

. (1.3)

Stot =
n
∏

k=1

UBk − LBk (1.4)

(4) The location of individuals with a distance less than the coverage radius is
eliminated.

(5) New individuals are then generated and added to thematrixwith distance greater
than the radius coverage.

The method is summarized as illustrated in Fig. 1.6. At the beginning of the step,
the individuals are randomly scattered throughout the search space (Fig. 1.6 left).
Then, the individuals that liewithin the defined radius are eliminated in Fig. 1.6 (mid),
and new individuals that are located greater than the defined radius are re-initialized
(Fig. 1.6 right). The last figure indicated more uniformly distributed individuals
compared to the beginning state of the population.
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Fig. 1.6 Illustration of uniform distribution concept adopted from Khajeh et al. (2019)

The proposed method from Khajeh et al. (2019) is demonstrated in Particle
Swarm Optimization (PSO) (Kennedy and Eberhart 1995) population initialization
and compared with standard PSO of pseudo-random initialization in solving bench-
mark test functions. Their results indicate a better convergence rate towards the global
optimum for different population sizes.

Chaotic function

The chaotic function is composed of ergodic properties that are sensitive to the
initial conditions and become chaos in the later stage depending on the specified
value of the control parameter. This chaotic characteristic introduces unpredictable
randomization patterns in the exploration process, which serves as an advantage for
searching effectively in the search space. The chaotic function is usually denoted
as a chaotic map with a function or multiple functions resembling a sequence map
from the first step towards the n number of steps. The chaotic map has a similar
randomness property with better statistical and dynamical properties (Gandomi and
Yang 2014). In the improvement of the exploration and exploitation mechanisms of
metaheuristic algorithms, the chaotic maps are applicable in the initialization phase
and optimization search process. Since the objective of integrating chaos in the
initialization phase is to enhance the uniformity of the individuals, a proper function
that is able to distribute the initial solutions regularly is crucial. The selection of
chaotic maps depends on the sequences that the map characterizes. This feature is
determined by the initial seed (initial value of chaotic sequence) and its specific
control parameter. Different initial seed and control parameters resulted in variations
of sequences due to the ergodic behavior of the chaotic function. Examples in Fig. 1.7
illustrate the difference of selection for initial seed (x0) and control parameter (μ) of
logistic map with 500 individuals. The first two charts in Fig. 1.7a and b demonstrate
the differences of individual locations by different selection of x0. The second and
third charts compare the individual distributions by different μ but with the same x0,
showing also different pattern of distribution and scale. The lower chart illustrates
the bifurcation diagram of logistic map generated with 10,000 numbers of iterations
within 2.6 ≤ μ ≤ 4.

As a brief background, the bifurcation diagram is a nonlinear dynamical system
used to demonstrate the asymptotic evolution of the map or oscillator represented



1.2 Uniformity of Solution Distribution 11

Fig. 1.7 Individual sequences and bifurcation diagram of logistic map

with a sample of steady-state values of one variable xi on the vertical axis with
respect to the control parar on the horizontal axis. The dynamic behavior of the
variable usually changes from fixed point, periodic to quasi-periodic (represented
with path of lines), chaotic and may also to hyperchaotic (represented with random-
like pattern). Detailed description of the bifurcation diagram can be referred to in
Chap. 3.

It is, therefore, necessary to select good values of the initial seed and control
parameter in order to obtain better uniformity of the individuals. There are various
chaotic maps that are applicable in the population initialization. Some of them are
listed in the Table 1.1. In this table, the individual sequences map is selected with the
initial seed, x0 equals 0.7 and defined control parameters specific for each chaotic
map for 500 individuals. The table also lists the dimensionality (D) of the function
either in one- or two-dimensions. The individual sequence for each chaotic map is
illustrated in Figs. 1.8 and 1.9.

It is to note that some of these chaoticmaps are normalizedwithin [0, 1] in order to
locate the individuals in this specified range. Some of these chaotic maps distribute
the individuals within [−1, 1] such as cosine map, square map, and Hénon map.
Others such as the Chirikov map and the Ikeda map scatter the individual points
within other range of values.


