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Preface

This book has been written after more than two decades of teaching experience
in chemical reactor engineering. During these years, I have been collecting prob-
lems posed to undergraduate and master’s students, which are now compiled here
along with their solutions. This is not a basic chemical reactor engineering (CRE)
book; instead, it covers the design of nonideal, catalytic, multiphase, and biochemi-
cal reactors.

Following the publication of my book Chemical Reactor Design: Mathematical
Modeling and Applications in 2019, this book addresses aspects not covered in basic
textbooks dedicated to reactor design. The concepts introduced in my earlier book
are further developed here through solved examples. This approach aims to help
the reader gain a deeper understanding of reactor design procedures, especially in
the context of nonideal and heterogeneous reactors.

This collection of solved problems in advanced chemical reactor engineering pro-
vides in-depth coverage of complex reactor design issues, such as the design of cat-
alytic or biochemical reactors. It is not a basic book covering simple concepts.

The book is accompanied by electronic materials, including spreadsheets and
Matlab® programs, which can be downloaded from the Wiley website at http://
www.wiley-vch.de/ISBN9783527354115.

The tools used in this book are not complex, and the solutions are presented in a
simplified manner. I primarily use spreadsheets and occasionally incorporate Mat-
lab. Importantly, the programs are designed to be highly understandable.

Elche (Spain)
May 2024

Juan A. Conesa

http://www.wiley-vch.de/ISBN9783527354115
http://www.wiley-vch.de/ISBN9783527354115




xiii

Nomenclature

Suggested units are indicated for each variable.
Am×n matrix of convolution
C concentration (usually mol/m3, or kg/m3)
CAs concentration of A in the surface (mol/m3)
cp calorific capacity of the reacting flow (J/K ⋅ g)
Cp concentration of product “P” (mol/m3)
CT total concentration (mol/m3)
dp particle diameter (m)
D dilution rate (s−1)
DA diffusion coefficient of species A (m2/s)
DAB diffusion coefficient (diffusivity) of A in B (m2/s)
De effective diffusion coefficient (m2/s)
E (in the reaction rates context) → activation energy (J/mol)
E (in the RTD context) → residence time distribution function, RTD (—)
F integral form of the residence time distribution function (—)
gA generation term of a mole balance (mol/s)
h heat transfer coefficient (J/K ⋅ s)
H(s) transfer function (—) (Laplace space)
h(t) time-dependent transfer function (—)
k kinetic constant (units depend on the kinetic law)
k0 pre-exponential factor of the kinetic constant (units depend on the reaction

order)
kL mass transfer coefficient in the liquid phase (mol/s ⋅m2/(mol/m3) = m/s)
KM Michaelis constant (g/l)
KS Monod constant (g/l)
L characteristic length (m)
L{h(t)} Laplace transform of function h(t)
M tracer mass (g or mol)
N amount of substance (mol)
nA molar flow of component “A” (mol/s or mol/s ⋅m2)
Nad dimensionless adiabatic temperature increase (—)
Nc dimensionless cooling capacity (—)
nt number of tanks in the tanks-in-series model (—)



xiv Nomenclature

nT total molar flow (mol/s)
q heat flux (J/s)
Q volumetric flowrate (m3/s)
qC heat flux in cooling media (J/s)
R radius (m)
r′′′A reaction (or process) rate based on the volume of catalyst particles

(mol/s ⋅m3)
r′′A reaction (or process) rate based on the volume of reacting species

(mol/s ⋅m3)
r′A reaction (or process) rate based on the weight of catalyst (mol/s ⋅ g)
rA reaction (or process) rate based on the external catalyst surface (mol/s ⋅m2)
Rg universal gas constant (J/mol ⋅K)
s (in the Laplace transform context) → main variable in the Laplace space
S section (m2)
T temperature (K)
t time (s)
t average residence time (= V/Q) (s)
TC temperature of the cooling media (K)
tm first moment of the RTD; mean value of time (s)
U global heat transfer coefficient (J/K ⋅ s)
u linear velocity (m/s)
V volume (m3)
V d dead volume (m3)
V p volume with plug flow regime (m3)
W weight of catalyst (g)
We Weisz modulus (—)
X(s) stimulus function (—) (Laplace space)
x(t) time-dependent stimulus function (—)
XA molar conversion of reactant A (—)
Y (s) response to stimulus function (—) (Laplace space)
y(t) time-dependent response to stimulus function (—)

Greek Symbols

𝜏 tortuosity factor (—)
𝛼 fraction of volume of a subsystem (—)
𝛽 fraction of flow passing through a subsystem (—)
𝛿 dirac delta function (—)
𝜇 growth rate per unit of cell (1/s)
𝜀s solid load (m3 solid/m3 reactor)
𝜀G gas fraction (m3 gas/m3 reactor)
𝜀L liquid fraction (m3 liquid/m3 reactor)
𝜀b bed porosity (m3 void/m3 reactor)
𝜎

2 variance (s2)
𝜎 standard deviation (s)



Nomenclature xv

𝜂 effectiveness (—)
ΔHr enthalpy of a reaction (kJ/mol)

Subscripts

i actual position
i + 1 position of the following interval
i − 1 position of the preceding interval
S surface
0 inlet conditions
F fluid
C catalyst
R reactor

Superscripts

t actual time
t + 1 time of the following interval
t − 1 time of the previous interval
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Non-ideal Flow Characterization and Chemical Reaction
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1

Non-ideal Flow and Reactor Characterization

Summary of Residence Time Distribution Properties and
Most Important Models

Residence Time Distribution

In a reactor, C(t) is obtained by injecting pulse of tracer. From that:

E(t) = C(t)
∫ ∞

0 C(t) ⋅ dt

∫
∞

0
E(t)dt = 1

∫
t

0
E(t)dt = F(t)

I(t) = 1 − F(t)

Total amount of tracer injected is:

M0 = Q0 ∫
∞

0
C(t)dt

In a step tracer run:

E(t) = d
dt

[
C(t)
C0

]
step input

Mean residence time:

tm =
∫ ∞

0 t ⋅ C(t)dt

∫ ∞
0 C(t)dt

= ∫
∞

0
t ⋅ E(t)dt = ∫

∞

0
t ⋅ E(t)dt

Variance of the residence time distribution (RTD):

𝜎
2 = ∫

∞

0
(t − tm)2 ⋅ E(t)dt

The square root of the variance, 𝜎, is called standard deviation.
Average residence time:

t = V
Q

Problem Solving in Chemical Reactor Design, First Edition. Juan A. Conesa.
© 2025 WILEY-VCH GmbH. Published 2025 by WILEY-VCH GmbH.
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RTD in Ideal Reactors

For the plug flow reactor (PFR):

E(t) = 𝛿(t − t)

For the continuous stirred tank reactor (CSTR):

E(t) = 1
t
⋅ exp(−t∕t)

Tanks-in-series (TIS) Model

E(t) = tnt−1

(nt − 1)!t
nt
i

⋅ exp

(
− t

ti

)

𝜎
2 =

t2
m

nt

nt =
t2
m

𝜎2

Dispersion Model

Bo =
De

u ⋅ L

Bo<0.01

E = 1
t ⋅
√

4 ⋅ π ⋅ Bo
⋅ exp

⎡⎢⎢⎢⎣−
(

1 − t
t

)2

4 ⋅ Bo

⎤⎥⎥⎥⎦
tm = t = V

Q

𝜎
2 = 2 ⋅ Bo

Bo>0.01, Closed–Closed Recipient
E(t) is only integrable by numerical methods.

t = tm(
𝜎

tm

)2

= 2 ⋅ Bo − 2 ⋅ Bo2 ⋅
[
1 − exp

(
− 1

Bo

)]
Bo>0.01, Open–Open Recipient

E = 1√
4 ⋅ π ⋅ Bo ⋅ t∕t

⋅ exp
⎡⎢⎢⎢⎣−

(
1 − t

t

)2

4 ⋅ Bo ⋅ t∕t

⎤⎥⎥⎥⎦
tm = t ⋅ (1 + 2 ⋅ Bo)
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(
𝜎

tm

)2

= 2 ⋅ Bo + 8 ⋅ Bo2

Designing E1 to the E(t) given by the first expression (valid for Bo< 0.01) and E2
to the one predicted by the open–open (o–o) assumption, the differences between
these RTDs are small at low Bo, but at a high Bo number, E1 is not valid (for more
details, consult spreadsheet “dispersion model Bo fitting.xls”):
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Problem 1.1 A solution of potassium permanganate (KMnO4) was rapidly
injected into a water stream flowing through a circular tube at a linear velocity of
35.70 cm/s. A photoelectric cell located 2.74 m downstream from the injection point
was utilized to monitor the local concentration of KMnO4.

(a) By using the given effluent KMnO4 concentrations, calculate the average resi-
dence time of the fluid as well as the variance, E(t), F(t), and I(t).

(b) Determine the number of ideal tanks (nt), the variance, the dispersion number,
and the Peclet number.

Time (s) KMnO4 concentration

0.0 0.0
2.0 11.0
4.0 53.0
6.0 64.0
8.0 58.0

10.0 48.0
12.0 39.0
14.0 29.0
16.0 22.0
18.0 16.0
20.0 11.0
22.0 9.0
24.0 7.0
26.0 5.0
28.0 4.0
30.0 2.0
32.0 2.0
34.0 2.0
36.0 1.0
38.0 1.0
40.0 1.0
42.0 1.0

Solution to Problem 1.1

For details refer the Wiley website at http://www.wiley-vch.de/ISBN9783527354115

http://www.wiley-vch.de/ISBN9783527354115
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(a) To solve this problem, we should use a spreadsheet. First, data given in the state-
ment are introduced, and then we should do the following calculations:

t (s) C(t) C(t)dt E(t) t⋅E(t) t⋅E(t)⋅𝚫t
(t − tm)2⋅
E(t)

(t − tm)2⋅
E(t)⋅𝚫t F(t) I(t)

0 0 0 0.000 0.000 0.000 0.000 0.000 0.000 1.000
2 11 11 0.014 0.029 0.029 1.149 1.149 0.029 0.971
4 53 64 0.069 0.275 0.304 3.345 4.494 0.166 0.834
6 64 117 0.083 0.498 0.773 2.055 5.399 0.332 0.668
8 58 122 0.075 0.602 1.100 0.666 2.721 0.482 0.518

10 48 106 0.062 0.623 1.224 0.059 0.725 0.607 0.393
12 39 87 0.051 0.607 1.230 0.053 0.112 0.708 0.292
14 29 68 0.038 0.527 1.134 0.344 0.397 0.783 0.217
16 22 51 0.029 0.457 0.983 0.720 1.065 0.840 0.160
18 16 38 0.021 0.374 0.830 1.024 1.744 0.882 0.118
20 11 27 0.014 0.285 0.659 1.162 2.186 0.911 0.089
22 9 20 0.012 0.257 0.542 1.419 2.581 0.934 0.066
24 7 16 0.009 0.218 0.475 1.540 2.959 0.952 0.048
26 5 12 0.006 0.169 0.387 1.464 3.004 0.965 0.035
28 4 9 0.005 0.145 0.314 1.504 2.968 0.975 0.025
30 2 6 0.003 0.078 0.223 0.939 2.443 0.981 0.019
32 2 4 0.003 0.083 0.161 1.147 2.086 0.986 0.014
34 2 4 0.003 0.088 0.171 1.375 2.522 0.991 0.009
36 1 3 0.001 0.047 0.135 0.812 2.187 0.994 0.006
38 1 2 0.001 0.049 0.096 0.947 1.759 0.996 0.004
40 1 2 0.001 0.052 0.101 1.093 2.040 0.999 0.001
42 1 2 0.001 0.054 0.106 1.248 2.341

Σ(C(t)dt) = 771 tm = 10.98 s 𝜎
2 = 46.88 s2

We can calculate time increment as the difference between time in two
experimental data; in the third column, concentration and time increment are
multiplied. For a better calculation, instead of calculating C(t)⋅Δt for each time
directly, we can use the average value of C(t) between two consecutive data.
This is called Simpson’s rule for evaluating areas graphically. The sum of the
values in this column would give the area of the C(t) curve, so in the fourth
column, the following relationship is applied to calculate E(t):

E(t) = C(t)
∫ ∞

0 C(t) ⋅ dt
= C(t)

771
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In the next columns, the average value of E(t) between two consecutive data is
multiplied by time, by time increment, and the sum would represent mean time,
as we have:

tm = ∫
∞

0
t ⋅ E(t)dt =

∑
all points

t ⋅ E(t) ⋅ Δt = 10.98 s

In a similar way, variance is calculated:

𝜎
2 =

∑
all points

(t − tm)2 ⋅ E(t) ⋅ Δt = 46.88 s2

Finally, we can calculate F(t) and I(t) according to their definitions:

F(t) =
∑

all points at time<t
E(t) ⋅ Δt

I(t) = 1 − F(t)

We can check the form of the graphs showing the distributions:
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(b) From the calculated parameters, it is easy to find the number of tanks in the TIS
model:

𝜎
2 =

t2
m

nt

nt =
t2
m

𝜎2 = 10.982

46.88
= 2.57 tanks

For the dispersion model to be applied, first we should assume Bo< 0.01, and
then:

𝜎
2 = 2 ⋅ Bo

We obtain Bo = 11.24≫ 0.01, so this assumption is not valid.
Assuming now Bo> 0.01 and closed–closed recipient:(

𝜎

tm

)2

= 2 ⋅ Bo − 2 ⋅ Bo2 ⋅
[
1 − exp

(
− 1

Bo

)]
From that:

46.88
10.982 = 2 ⋅ Bo − 2 ⋅ Bo2 ⋅

[
1 − exp

(
− 1

Bo

)]
and we obtain Bo = 0.2413, and Pe = 1/Bo = 4.14.
On the other hand, if an o–o recipient is assumed:(

𝜎

tm

)2

= 2 ⋅ Bo + 8 ⋅ Bo2

Obtaining Bo = 0.127 and Pe = 7.85.
For checking which one of the conditions is fulfilled, data about average time
in the recipient is needed in order to test if the equation tm = t ⋅ (1 + 2 ⋅ Bo) is
satisfied.

t =
Length

Linear velocity
= 274 cm

35.70 cm
s

= 7.67 s
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So, we have that:

10.98 = 7.67 (1 + 2Bo)

Obtaining Bo = 0.215. This difference between tm and t indicates that probably
the recipient is open.

Problem 1.2 An experiment to characterize a tubular reactor was conducted using
a technique in which a tracer is continuously fed into the system. At a specific time,
the tracer supply is halted. From this point onward, the exit signal is recorded, resem-
bling what can be termed a “decreasing step input” (or negative step). In this exper-
iment, the following data were obtained:

t (min) 0 1 2 4 6 7 8 10
C (g/l) 0.5 0.5 0.5 0.4 0.1 0 0 0

(a) Calculate the RTD of this reactor.
(b) What fraction of the fluid spends more than 3 minutes in the reactor? Make a

plot of the procedure.
(c) What fraction of the fluid spends between 3 and 4 minutes in the reactor?

Solution to Problem 1.2
For details refer the Wiley website at http://www.wiley-vch.de/ISBN9783527354115

(a) Following this procedure, the exit signal will be related to the cumulative RTD
of the system, F(t), but the actual function obtained is the internal age function,
I(t). In the spreadsheet, we can do the following calculation:

t (min) C (g/l) C/Cmax I(t) F(t) E(t) = 𝚫F/𝚫t

0 0.5 1 1 0 0.00
1 0.5 1 1 0 0.00
2 0.5 1 1 0 0.10
4 0.4 0.8 0.8 0.2 0.30
6 0.1 0.2 0.2 0.8 0.20
7 0 0 0 1 0.00
8 0 0 0 1 0.00

10 0 0 0 1

In the table, I(t) is derived directly from the data, and:

F(t) = 1 − I(t)

http://www.wiley-vch.de/ISBN9783527354115
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For the calculation of E(t), a numerical derivative is done:

E(t) = Ft+1 − Ft

Δt
Obtaining:
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(b) For calculating the fraction of fluid that spends a time in the reactor, we use the
definition of E(t):

Fluid passing more than 3 minutes = f
>3 = ∫

∞

3
E(t)dt

This integration can be done numerically, in increments:

f
>3 = E(3) ⋅ Δt + E(4) ⋅ Δt + E(5) ⋅ Δt + E(6) ⋅ Δt + E(7) ⋅ Δt

where Δt is obviously 1 minute. Graphically, the approximation of the integral
would be the following:
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Obviously, this is a rough approximation. A better approximation would involve
using smaller time increments, but this is not possible with the obtained data.
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More precision is obtained if average value of the E(t) function is used, so:

f
>3 = E(3) + E(4)

2
⋅ Δt + E(4) + E(5)

2
⋅ Δt + E(5) + E(6)

2
⋅ Δt

+ E(6) + E(7)
2

⋅ Δt + E(7) + E(8)
2

⋅ Δt

=
(

E(3)
2

+ E(4) + E(5) + E(6) + E(7) + E(8)
2

)
⋅ Δt = 0.85

In this situation, we are doing the following approximation in the graph:
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(c) If we look for the fraction of fluid passing between 3 and 4 minutes:

f3−4 = ∫
4

3
E(t)dt = E(3) ⋅ Δt + E(4) ⋅ Δt = 0.5

Problem 1.3 This problem involves a reactor with a flow rate of 10 l/min. Con-
centration measurements were taken at the outlet during a pulse test at various time
intervals. The data obtained are as follows:

t (min) c ×105 (g/l) t (min) c ×105 (g/l)

0 0 15 238
0.4 329 20 136
1.0 622 25 77
2.0 812 30 44
3 831 35 25
4 785 40 14


