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On the First-Passage Area of a
One-Dimensional Diffusion Process
with Stochastic Resetting

For a one-dimensional diffusion process with stochastic resetting X(¢), obtained from an
underlying diffusion X (¢), we study the statistical properties of its first-passage time through zero,
when starting from = > 0, and its first-passage area, i.e. the random area swept out by X(¢) until
its first-passage time through zero. By making use of solutions of certain associated ODEs, we
find explicit expressions for the Laplace transforms of the first-passage time and the first-passage
area, and their single and joint moments.

1.1. Formulation of the problem and general results

This note deals with the first-passage area (FPA) of a diffusion process with
stochastic resetting. It is a continuation of Abundo (2013, 2023b), Abundo and Del
Vescovo (2017) and Abundo and Furia (2019), regarding the FPA of jump-diffusions,
drifted Brownian motion, Leévy process and Ornstein—Uhlenbeck process. In fact,
here we considered a one-dimensional diffusion process in the presence of stochastic
resetting X(t), obtained from an underlying diffusion X (¢); this kind of process is
treated, for example, in den Hollander et al. (2019) and Evans et al. (2020) (see
also the references in Abundo 2023a). We studied the statistical properties of the
first-passage time (FPT) through zero of X(¢), starting from = > 0, and its FPA,
namely the random area swept out by X(¢) until its FPT through zero. In some cases,
we explicitly obtained the Laplace transform of the FPT and FPA, and their single and
joint moments. Moreover, we provided the distribution of the maximum displacement
of X(t).

Chapter written by Mario ABUNDO.
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In the case that the underlying diffusion X (¢) is Brownian motion without
drift, the FPA was already studied in Singh and Pal (2022), although the results
found therein were obtained using special functions. In contrast, here we used
nothing but elementary functions: our arguments were based on classical results for
one-dimensional diffusions. In fact, the study of the distributions of the FPT and FPA
was carried out via solutions of certain associated ODEs. We focused on the case
when the underlying diffusion X (¢) is a Wiener process, i.e. a Brownian motion with
or without drift, but the results can be extended to other processes.

The FPT and FPA of a diffusion process with stochastic resetting have important
applications in many areas, for example, in biology, in the ambit of stochastic models
for the activity of a neuron subject to resetting (see, for example, Nobile et al. 1985 and
the references contained therein). Other important applications are found in queuing
theory, where the first hitting time to zero can be identified with the busy period, i.e.
the first instant at which the queue is empty, and the FPA is the total waiting time of
the “customers” during a busy period (see, for example, Kearney 2004).

Now, we precisely describe the process X(t) with stochastic resetting.

We consider a one-dimensional temporally homogeneous diffusion process X ()
driven by the SDE:

AX(t) = p(X ())dt + o (X (t))dB,, [1.1]

and starting from the position X (0) = x > 0, where the drift x(-) and diffusion
coefficient o(-) are regular enough functions, such that there exists a unique strong
solution of the SDE [1.1] for a given starting point, and B; is the standard Brownian
motion. We also assume that the FPT of the diffusion X (¢) below zero is finite with
probability one.

We assume that resetting events can occur according to a homogeneous Poisson
process with rate » > 0. Until the first resetting event R, the process X(t) coincides
with X (¢), and it evolves according to [1.1] with X((0) = X (0) = = > 0. When the
reset occurs, X(t) is set instantly to a position 2 > 0. After that, X(t) evolves again
according to [1.1], starting afresh (independently of the past history) from x p, until
the next resetting event occurs, etc. The inter-resetting times turn out to be independent
and exponentially distributed random variables with parameter r. In other words, in
any time interval (¢, + At), with At — 07, the process can pass from X(#) to the
position x p with probability » At +o(At), or it can continue its evolution according to
[1.1] with probability 1—rAt+o(At). The process X(¢) so obtained is called diffusion
with stochastic resetting. For any C? function f(x), its infinitesimal generator is given
by (see, for example, Abundo 2013):

1

Lf(x) = 50°@)f" (@) + (@) (z) + r(f(wr) = f(2))

= Lf(@) +r(F(ar) — f(2)), [1.2]
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where Lf(z) = 102(2)f"(z) + p(z) f'(z) is the “diffusion part” of the generator,
i.e. regarding the dlffusmn process X (t).

For an initial position z > 0, we are concerned with the FPT of X(¢) through zero,
namely:

r(z) = inf{t > 0: X(t) = 0| X(0) = X(0) = z}, [1.3]

and the corresponding FPA

7(x)
Alz) = / X (t)dt, [14]
0

which is the area enclosed between the time axis and the path of the process X () up to
the FPT through zero. We assume that both 7(x) and A(z) are finite with probability
one, for any = > (. Note that

7(2) = 7x (), if 7x () < 05 7(x) = 0 + 7(xR), if Tx(z) > 0, [1.5]

where 7x () is the first-hitting time to zero of X (¢) starting from z > 0 and o is an
exponentially distributed random variable with parameter r > 0.

In fact, we limit ourselves to study the case when the underlying process X () is a
Wiener process, i.e. Brownian motion with or without drift.

The main qualitative difference between the FPT of the process X(¢) and the FPT
of the underlying diffusion X () is that, for the process X(¢), the moments of the FPT
are finite, while for the second one, they may be infinite. This is, for example, the case
of Brownian motion starting from « > 0, where, as is well known, the first-hitting
time to zero is finite with probability 1, but it has infinite expectation.

For A > 0, let us consider the Laplace transform (LT) of fOT(m) U(X(s))ds,
U(z) = ax + b (a,b > 0) being a polynomial of degree one, i.e.

My(z) = E e—Afg('”) U(x(s))ds} . [1.6]

Taking U(x) = 1, we obtain the LT of the FPT 7(z), while for U(z) = x, we get
the LT of the FPA A(x). The following holds (see Abundo 2023a):

PROPOSITION 1.1.—The LT My(x) of fT(t X(s))ds satisfies the differential
problem:

LMy (z) — NU(z)Mx(x) — rMy(z) + rMx(zgr) = 0,

M(0) = 1, [1.7]
limy s 400 Ma(z) = My (400) < o0,
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where L denotes the infinitesimal generator of the underlying diffusion X (t), which is
given, for any C? function f, by

1
Lf(w) = 50 (2)f" (@) + p@) f (@), [1.8]
and [’ and " denote the first and second derivatives of f. O

REMARK 1.1.— Proposition 1.1 was already proved in Singh and Pal (2022) in the
case when X (t) is Brownian motion. Note that, for v = 0 (i.e. when no resetting is
allowed), we obtain equation (2.12) of Abundo (2013), provided that the jump part
in the infinitesimal generator is set to zero, while the second boundary condition is
My (400) =0.

If the n—th order moment of fOT(z) U(X(s))ds exists finite, it is provided by:

T(T) n n
(/O U(X(s))ds> ] — (1) {;WMA(J;)} =L
[1.9]

T.(z) =FE

By calculating the n—th derivative with respect to A, at A = 0, of both members
of [1.7], we obtain that, setting Ty (z) = 1, the n—th order moments T, () satisfy the
ODEs:

LT, (z) —rTyh(x) = —nU(z)Th-1(z) — rTn(xzr), > 0, [1.10]

with the constraint 7,,(0) = 0 and the addition of an appropriate further condition
(indeed, we need two conditions to obtain the unique solution of [1.10]). Note that for
r = 0, [1.10] becomes equation (2.19) of Abundo (2013). In particular, for U(z) =
1, [1.10] is nothing but the celebrated Darling and Siegert’s equation (1953) for the
moments of the FPT of a diffusion without resetting.

As regards the joint moments of 7(x) and A(z), we consider the joint LT of 7(x)
and A(z), i.e. Ele” 7@ =224@)] (), > 0):

7(x)
exp <_/O (M +/\23C(t))dt>] . [1.11]

As easily seen, we get:

M>\17>\2 (J?) =F

aM/\1,>\2 (.’E)
oM

aM)\17/\2 (SL’)

g b\1:>\2:0 = —E[A(J?)L

[1.12]

b\1:>\2:0: —E[T(J?)],
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and
82M>\1,/\2 (SL’)
OA10)o

Applying the same reasoning as before and taking U(x) = A1 + A2z, we obtain
that M}, »,(x) solves the problem

\=xp=0 = E[T(.’E)A([L’)] [1.13]

LMy, 5, (7) = 1My, 2, (2) = (A1 + Aaz) My, 2, (2) — 7 My, 3, (TR)
M>\1,>\2 (O) =1
limg 100 M>\17>\2 (x) = ZWAL)\2 (+OO) < 00.

[1.14]

Then, by applying %;& and calculating it for A\; = Ay = 0, we obtain that
V(z) := E[r(x)A(z)] is the solution of the problem:

[1.15]

{LV(x) —rV(z) = —2E[r(z)] — E[A(z)] — rV(zR)
V(0) =0,

with a suitable additional condition.

Note that for r = 0, [1.15] becomes the analogous equation, respectively, obtained
in Abundo and Del Vescovo (2017) and Abundo (2023b), in the case of drifted
Brownian motion and Ornstein—Uhlenbeck process without resetting. Of course, now
the boundary conditions are different.

1.2. Brownian motion with resetting

In this section, we consider Brownian motion with resetting X(¢), and we find
explicit expressions of the LT and single and joint moments of the FPT and FPA, as
solutions of certain differential problems. Note that for » = 0 the moments of the FPT
and FPA are infinite. This follows by the fact that the FPT density of Brownian motion
decays as t—3/2 at large time ¢. In contrast, both the FPT density and the FPA density
of Brownian motion with resetting decay exponentially fast at large values (see, for
example, Abundo 2023a and the references therein); and so, the moments of the FPT
and FPA are finite, for » > 0.

Since the underlying process of Brownian motion with resetting is X (t) = By,
for any C? function f(z), the infinitesimal generator L of X () is given by Lf(z) =

£ f(x) and from [1.7], we get that the LT of fOT(I) U(X(s))ds solves the problem:

%839 (x) = AU(2)Mx(z) — rMx(z) + 7Mx(zr) =0,
My (0) =1, [1.16]

limy s 400 Ma(z) = My (400) < o0,
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Taking U (x) = 1, we obtain that the LT of the FPT 7(x) is the solution of:

LMo (2) — (A + 1) My (2) + rMy(zr) = 0,
Mx(0) =1, [1.17]
limg s 0o My (z) = M (400) < 00,

By solving, we explicitly obtain (see Abundo 2023a for details) the LT of 7(z):

My(z)=F {e*)‘T(‘”)} =

_ eI r (=0 ART) _ (o) V)
A 4 re TRV 2(A+T)
[1.18]

REMARK 1.2.— Formula [1.18] extends to all x > 0 equation (44) of Singh and Pal
(2022) that holds for x = xr. For r = 0, namely when no resetting occurs, [1.18]

provides Ele™*(®)] = e~ V2 e the well-known formula of the LT of the FPT
through zero of Brownian motion starting from x > 0; this LT corresponds to the
inverse Gaussian density for the FPT.

As regards the LT of A(x), by taking U(z) = « in [1.16], we obtain that the LT of
A(x) is the solution of:
LOMy () — 1My (2) = AeM(z) — rMa(zR),
My (0) =1, [1.19]
limg s 0o My (z) = M (400) < 00,

Unfortunately, equation [1.19] cannot be solved in terms of elementary functions.
For & = xp, its solution, My (zr) = E[e~*(®#)]  can be written in terms of special
functions, precisely Scorer’s and Airy functions (see Singh and Pal 2022). For r» = 0,
i.e. for Brownian motion without resetting, equation [1.19] is the Schrodinger equation
for a quantum particle moving in a uniform field and it can be solved in terms of the
Airy function.

1.2.1. Moments of the FPT

Now we calculate the first two moments of 7(z) by solving the ODE [1.10] with
U(z) =1,and T,,(z) = E[t"(z)],n =1, 2.

As for the mean of 7(z), taking n = 1, we have that Ty (x) = E[r(x)] is the solution
of the problem:
{%T{’(m) —rTi(z) = —1 — 1Ty (zr)

[1.20]
T1(0) = 0, Ty (+00) < 400,
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0.0 0.4 0.8 1.2 1.6 2.0 24 2.8 3.2

Figure 1.1. Graph of E[r(z)], given by [1.21], as a function
ofx > 0 forr = xr =1 (on the horizontal axes x)

The appropriate additional condition is 77(c0) < oo. By solving, we get (see
Abundo (2023a) for details):

Ti(z) = Blr()] = LemnVr (1 e 27") : [1.21]

and for r = zR:
1

(e -1

Ti(zr) = ) [1.22]

Note that E[7(400)] = %e‘”R‘/ﬂ < +o0.

REMARK 1.3.— Formula [1.21] extends to all x > 0 equation (45) of Singh and Pal
(2022) that provides E[T(xR)] (see [1.22]). Note that, letting r go to zero in equation
[1.21], it follows E[1(x)] = 400, which matches the well-known result for Brownian
motion (see, for example, Abundo and Del Vescovo 2017).

Figure 1.1 shows an example of the shape of E[7(x)], given by [1.21], as a function
ofx >0forr =2 =1.

As regards the second-order moment of 7(x), by takingn = 2 and U(z) = 1 in
[1.10], we get that T5(x) = E[r%(z)] is the solution of the problem:

[1.23]

ITY(2) — rTo(x) = — 2677V (1 — e~ #V2) 1Ty (2R)
T5(0) =0, To(400) < +o00.
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0.0 0.4 0.8 1.2 1.6 2.0 24 2.8 3.2

Figure 1.2. Graph of E[7*(z)] as a function of z > 0
forr = xr =1 (on the horizontal axes z)

By solving (see Abundo 2023a for details), we get:

o2 ervar (2 azpvae 2 22R o
Tr(z) = E[r°(z)] = "7 <r—26R —ﬁ—rﬁ)(l—e )

2 1 T 2
_Z @r—z)Var [ 2 zrV2r 1.24
e (r—’_\/ﬂ)—i_ﬂe ’ 1241

and forz = zR :

- =2 . o 2 2xp
Bl o)) = e (e - 5 - 2R 1

Figure 1.2 shows an example of the shape of E[r%(x)], given by [1.24], as a
functionof x > 0 forr = xg = 1.

As regards the behaviors of the first two moments of the FPT 7(x) for z — 0T
and r — +o0, from [1.21] we get E[r(z)] = a1z + o(x), as x — 0T, where the

constant a; = %e”‘/ﬂ depends on r and z g, and lim,_, o F[7(z)] = a1/V/2r.
From [1.24], we get that E[r?(z)] = a2z + o(x), as @ — 0T, where

as = V2rE[r?*(zg)] + %em@ and E[r?(zg)] is given by [1.25]. Moreover,

lim, o E[T2(2)] = E[r?(zRr)] + r%e”‘/ﬂ. Therefore, Var[r(z)] = azz + o(z),
asz — 0%, and lim, o Var[r(z)] = E[r?(zRr)] + %emR@ - T%ezm\/?.
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1.2.2. Moments of the FPA

We recall that the FPA density of Brownian motion with resetting (i.e. for r > 0)
decays exponentially fast at large values, so the moments of the FPA are finite
(see, for example, Abundo 2023a and the references therein). The LT of the FPA,
Elexp(—AA(z)], was obtained in Singh and Pal (2022) for 2 = z g in terms of special
functions, and the first two moments of the FPA at x = xr were there obtained, by
calculating the first and second derivatives of E[exp(—AA(zg)] with respect to \ at
A = 0 (see equations (58) and (59) therein). Precisely, it results:

BlA(zg)] = ZesnV? = ¢, [1.26]

QewR@ 3 23 2
E[Az(.’bR)] . [ 7{% <4 -‘reIR\/ﬂ) + = 3 — Uis :| — 7‘_3 = Q9.
[1.27]

Now, we calculate the first two moments of the FPA A(z) for every x > 0 by
solving the ODE [1.10] with U (z) = z, and T),(z) = E[A"(x)],n = 1,2.

As regards the mean of A(x), taking n = 1, we have that T} (z) = E[A(z)] is the
solution of the problem:

{lT{'( @) —rTy(x) = —x — rTi(aR)

1.28
Tl(O) 0 Tl(.’ER) = O, [ ]

note that A(4+00) = 400, so in contrast with the case of the mean FPT, the appropriate
additional condition is T3 (zg) = a3.

By solving (see Abundo 2023a), we get:

Ti(z) = E[A(z)] = :”TReTRﬁ (1 —eT 2?) + % [1.29]

REMARK 1.4.— Formula [1.29] extends to all x > 0 equation (58) of Singh and
Pal (2022) which provides E[A(zR)] (see [1.26]). Note that, for r = 0, it follows
E[A(z)] = 400, which matches the well-known result for Brownian motion (see, for
example, Abundo and Del Vescovo 2017).

Forz — 07, we have E[A(z)] = (IR—;/Ee”ﬁ + %) x + o(z), while for large
positive z, it holds E[A(x)] ~ £.

Figure 1.3, shows an example of the shape of F[A(z)], given by [1.29], as a
functionof x > 0, forr = xp = 1.
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0.0 0.4 0.8 1.2 1.6 2.0 24 238 3.2

Figure 1.3. Graph of E[A(xz)] as a function of x > 0
forr = xr =1 (on the horizontal axes z)

As regards the second-order moment of A(x), by taking n = 2 in [1.10] with
U(z) = z, we get that Th(z) = E[A%(z)] is the solution of the problem:

{%Té’(m) —rTy(z) = —22E[A(2)] — rTs(zr)

[1.30]
TQ(O) = O, TQ(J?R) = (2,
where E[A(z)] is given by [1.29].
By solving, we obtain (see Abundo (2023a) for details):
2
_ 2 _ —x\2r
Tr(z) = E[A% ()] = (1 —e ) <a2 + 7“_3) +
2x \/2* TRT X 1 7( _ )\/2*
= TR r\ _ _ T—ITR r
+5 (o +agemny?r) - 22 <—@+2r>e . [1.31]

Equation [1.31] extends to all values of = > 0, the formula found in Singh and Pal
(2022) for the expectation of A?(x ) (see equation (59) therein).

Figure 1.4 shows the shape of E[A?(x)], given by [1.31], as a function of z > 0,
for r = xr = 1. Note that the graph of E[A%(z)] is not globally concave or
convex, but it presents an inflection point. From [1.31], it follows that, for z —
0%, E[A%(@)] = [V2r (a2 + 3) + £ eV | 2 4 ofz), and Var[A(z)] has the
same behavior, at the first order in z. Moreover, for large z > 0, E[A%(z)] ~ T%x2,
and Var[A(x)] ~ ‘;f—z
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Figure 1.4. Graph of E[A?(x)] as a function of z > 0
forr = xr =1 (on the horizontal axes z)

REMARK 1.5.— From the previous calculations, we conclude that the following growth
conditions (upper bounds) hold:

E[A(z)] < const -z, E[A?(z)] < const’ - 2°, for large z > 0. [1.32]

Similar bounds hold for Brownian motion with a negative drift p (without resetting,

i.e. v = 0), because in that case, the moments of A(x) grow at most polynomially in
x (see Abundo and Del Vescovo 2017).

1.2.3. Joint moment of A(xz) and 7(x)

In this section, we find an explicit expression for E[A(x)7(z)], i.e. the
joint moment of A(x) and 7(z). The joint LT of 7(x), A(x) is My, x,(x) =
E [e_’\”(m)e_’\?“‘(z)] ,A1, A2 > 0. By reasoning as before, we find that it satisfies
the differential equation:

(L — ’I“)MAl)\Q (x) = ()\1 + )\QJT)MALM (x) — ’I“]W)\l’)\2 (.IR) [1.33]

Then, by taking ﬁg/\? in both members of equation [1.33] and calculating it at
A1 = A2 = 0, we obtain that V(z) := E[r(x)A(x)] satisfies the differential problem:

(L—r)V(z) = —zE[r(z)] — E[A(z)] —rV(zr), V(0) =0, [1.34]

with a suitable additional condition.

In fact, since E[A(z)7(z)] < /E[A2(z)]\/E[r?(z)], by taking into account
the behaviors of the moments of the FPA at large x (see [1.32]), we obtain that the
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additional condition for the ODE [1.34] must be:
V(z) = Elr(z)A(x)] < const - z, for large x > 0. [1.35]
By solving, we obtain (see Abundo 2023a for details):

xRe'““/%

s l T V()| eV 4 V), [1.36]
’62
where V() = /% | (5% 1) 5 = 510k .
= e VI -
V(z) = V(zr)+ ("R :2 +1)z+xReTI22\/7 e~ (a—zR)Vr (25% I (1+QZ§;/5)I) .

Therefore, the expressions of Cov[A(x), 7(z)] := V(x) — E[r(x)] E[A(x)] and of the
correlation coefficient
Covlr(x), A(z)]

Priz)a@) = \/Var[r(x)]Var[A(x)}’ [1.37]

follow soon. As easily seen, pr(,) A(z) turns out to be positive for every z > 0, i.e.
7(x) and A(x) are positively correlated. Moreover, lim,_,o+ p7(2),A(z) = Po > 0,
and limy s 1 o0 P7(2),A(x) = Poo < po- The graph of pr(4) a(s) increases from pg to
a maximum value; after that, it decreases to poo < po, as £ — —+o0o. This kind of
behavior for p; (), a(s) Was also observed for the drifted Brownian motion without
reset (see Abundo and Del Vescovo 2017) and Ornstein—Uhlenbeck process without
reset (see Abundo 2023b).

Figure 1.5 (top panel) shows the graph of p.(;) A(x), as a function of = > 0 for
r = xr = 1 (on the horizontal axes z); the existence of the maximum is revealed by
an enlargement around x = 0.1 (bottom panel). Figure 1.6 shows another example of
the graph of pr(z), A(x), Obtained forr = 1 and zg = 2.

1.2.4. Maximum displacement

We define the maximum displacement of Brownian motion with resetting X(t),
starting from 2 > 0, as the random variables M, = max;c(o,r(x)) X(t) (obviously, we
have M,, > ). Note that the event {M,, < z} occurs if and only if X(¢) first exits the
interval (0, z) through the left end 0. Therefore, for z > x, we get that the distribution
function Fy, (2) = P(M, < z) is the solution of the differential equation (see, for
example, Abundo 2013, 2023b):

[1.38]

{Lw(m) = 1w"(x) + rw(zgr) — rw(z) =0, z € (0,2)
w(0) =1, w(z) =0,

where £ is the infinitesimal generator of X () (see [1.2]).
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Figure 1.5. Graph of p- (), a(2) @s a functionof x > 0 forr = zp =1
(on the horizontal axes x); the second panel shows an
enlargement around z = 0.1
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Figure 1.7. Left panel: distribution function of the maximum displacement M,
of Brownian motion with resetting, forx = 1,xr = 0.5 andr = 1; right
panel: the corresponding density (on the horizontal axes z > x = 1)

By solving, we get (see Abundo 2023a for details):

0 z<x
F z2)=PM, <z)= ’
Mm( ) ( > ) {cl(z)e_m@+02(Z)€m\/§+a(z), 2>z,
[1.39]
where
e1(2) = (VF — 1)L (e VI 4 o-2envE) -l
CQ(Z) = _e*QzRﬁcl 2 [1.40]

(2)
a(z) =1—c1(2) — ca(2).

As seen, the distribution function of M, — z appears to have a tail that decays
exponentially fast, and so the expectation E[M,] results to be finite. By calculating
the solution of [1.38] for » = 0, we obtain that, for Brownian motion without resetting,
the distribution of the maximum displacement is:

FMm(z)zl—g, 2>, [1.41]
and it is zero for z < z. This implies that the expectation of the maximum
displacement of Brownian motion without resetting is infinite. Figure 1.7 shows an
example of the distribution function of the maximum displacement M, of Brownian
motion with resetting, and the corresponding probability density, obtained by taking
the derivative in [1.39], forx = 1,z = 0.5and r = 1.
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1.3. Drifted Brownian motion with resetting

In this section, we consider drifted Brownian motion with resetting X(¢), namely
X(t) = x + B; + ut, and we find explicit expressions of the LT, the moments of
the FPT and FPA, and the maximum displacement of X(¢), as solutions of differential
problems. We omit the details, and we limit ourselves to report only the results which
can be obtained without using special functions (for more details, see Abundo 2023a).

Note that the FPT through zero of Brownian motion with non-zero drift 4 (without
resetting), starting from = > 0 is finite with probability one, only if the drift is
negative. Instead, the FPT through zero of drifted Brownian motion with resetting
X(t) is finite, irrespective of the sign of the drift ;. and the moments of the FPT are
also finite, for any 0 < r < 400 (see, for example, Pal et al. 2019). The infinitesimal

generator of X (¢) is now given by Lf(x) = %%% + M%; by proceeding as in

the case of undrifted Brownian motion with resetting, the solutions of the various

equations can be obtained by taking p + /u? + 2(A + r) in place of \/2(A + ) in

the corresponding formulae.

1.3.1. The Laplace transform of v(x)

The LT of 7(x) turns out to be

My(z) = E [e=>®)] = o (phr20a ) |

+Mx(2R) x5 <1 - e_'t(/H_ WAH2(E) )> , Where

Y xeT wuo)
My (zr) = (M—r)e,w a V2 200t 1) )
Are r(s+VEZH200) )

REMARK 1.6.— The above formula is new, because only the undrifted Brownian
motion with resetting was studied in Singh and Pal (2022).

1.3.2. Moments of the FPT

The mean of the FPT is:
Blr(a)] = TernViREm) (1 emrler/hn ) [1.42)
T

For = 0, we again obtain [1.21].
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As for the second-order moment of 7(z), we have:

B[r*(z)] =

— err(pt+y/u2+2r) zemR(/H-\//L?-F%) _2_ 2R (1 _ e—r(u+\/u2+2r)>
2 2/ + 2r

CZeneeyiEen (L) 2 enterien, [1.43]
; Pt )

For © = 0, we again obtain [1.24].

1.3.3. Mean of the FPA

The mean of the FPA turns out to be:

Pl = Bl (10T ) L LI (e (o)),

,
[1.44]
where
Bla(en)] = e (V) [Ty L (1 menlen ]
[1.45]
For 4 = 0, we again obtain E[A(zg)] = ITReﬁIR and E[A(z)] =

2reV2ren (] — VM) 4 2 (see [1.26] and [1.29].

1.3.4. Maximum displacement
The distribution function of the maximum displacement M, turns out to be:

0, z<T

1.46
c1(2)eM® 4 co(2)e®?® + a(z), 2 > . [1.46]

Fae,(2) = PO, < 2) = {

where dy = —pu — /2 +2r < 0, do = —p + /p? + 2r > 0, and the functions
¢i(z) and a(z) are given by:

e1(2) = — |e (RVIFR ) Ly ren /i (1 . e(um)zﬂ

(
ca(2) = —c1672‘”3\/’m
a(z) =1—c1(z) — ca(2).

-1

[1.47]



