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Overview of the Work

Description

Electromagnetic Wave-Absorbing Materials: Fundamentals and Applications intro-
duces the fundamentals and basic concepts of the mainstream electromagnetic wave absorption 
materials, including MOF-derived materials, MXene-derived materials, and high-entropy 
materials. It covers the design and preparation of these wave-absorbing materials, including 
their characterization, properties, manipulation, and related research. The book provides a 
comprehensive description of the various microscopic electromagnetic wave loss mecha-
nisms (dielectric loss, magnetic loss) that are currently available, their causes of formation, 
and effects on the electromagnetic response properties of the materials. It also describes and 
summarizes the design, preparation, and application of the mainstream electromagnetic wave 
absorption devices, such as foam, gel, and film-based materials.

The book details the latest methods, technologies, and applications currently available 
in the field of electromagnetic wave absorption. It will support the studies of academic 
researchers and graduate students, as well as the many industrial research and development 
efforts of engineers and materials scientists. In addition, it will be of great value to those 
directly involved in industrial sectors related to electromagnetic wave absorption materials, 
as well as researchers in materials science, materials chemistry, nanomaterials, and other 
electromagnetic materials fields.

Key Features

Electromagnetic Wave-Absorbing Materials: Fundamentals and Applications mainly 
describes how to design and prepare high-performance electromagnetic wave absorption 
materials.

The book includes the synthesis of new wave absorption materials and the new technology 
of regulating the electromagnetic wave-absorbing properties of materials. The latest pro-
gress in the field of electromagnetic wave-absorbing materials is reviewed, which provides 
valuable insights for the future development direction of electromagnetic wave-absorbing 
materials.
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Electromagnetic Wave Absorbing Materials: Fundamentals and Applications, First Edition.  
Edited by Hongjing Wu, Jun Luo, and Meiyin Yang.
© 2024 John Wiley & Sons Ltd. Published 2024 by John Wiley & Sons Ltd.

1.1  Brief Introduction to Metal–Organic Frameworks

Metal–organic frameworks (MOFs), also known as porous coordination polymers (PCPs), 
first proposed by Yaghi and Li et al. in the 1990s, are a class of crystalline porous materials 
consisting of metal ions/clusters and organic ligands assembled in an orderly manner [1, 2]. 
MOFs are exquisite porous materials composed of metal ions or clusters and organic ligands. 
These components are meticulously arranged in a crystalline structure, held together by 
coordination bonds formed between the metal centers and the organic ligands. Addition-
ally, depending on the specific composition and structure, other forces such as hydrogen 
bonding, van der Waals forces, and π-π stacking also play a significant role. The compo-
sition of MOFs is diverse, covering almost all kinds of metal ions, such as main group, 
transition group, lanthanides, rare earth metals, and so on, while their organic ligands are 
mostly polyamines, carboxyl groups, pyridines, porphyrins, cyano groups, crown ethers, and 
phosphoric acid [3–7]. In recent years, MOFs have gained significant attention due to their 
remarkable characteristics, including the ability to design and control their components, 
achieve a regular and highly adjustable pore structure, exhibit high crystallinity, possess a 
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2 1  Metal–Organic Framework-Based Electromagnetic Wave Absorption Materials

large specific surface area, exhibit unique liquid and glassy properties, and showcase diverse 
topologies. Moreover, their environmentally friendly preparation aligns perfectly with sus-
tainable development strategies [8–11]. Therefore, MOFs and their derived materials have 
received extensive attention in the fields of catalysis [12, 13], clean energy [14, 15], gas stor-
age and separation [16, 17], sensors [18, 19], and medicine [20, 21]. Up to now, more than 
20,000 MOF materials have been synthesized through the selection of various metal centers 
and organic ligands. Common MOF materials  [5, 8, 22] include isotropic metal–organic 
frameworks (IRMOFs), coordination columnar layers (CCL), zeolitic imidazolate frame-
works (ZIFs), porous coordination networks (PhCNs) [23–25], and so on. With the develop-
ment of science and technology and the rising demand of the times, the types and quantities 
of MOFs and their derived materials will further increase, and their application scenarios and 
fields will further expand.

Due to their exceptional flexibility and diverse structural components, MOFs exhibit 
significant research value and hold great potential for development in the field of electro-
magnetic wave (EMW) absorption materials. The unique combination of metal and organic 
components, along with the highly adjustable microstructure, makes MOFs an ideal can-
didate for EMW absorption materials. Through careful control of the pyrolysis process, 
organic linkers can be transformed into a porous carbon network while preserving the origi-
nal porous skeleton. Simultaneously, metal ions/clusters can be reduced to metal composites 
such as metals, metal oxides, and metal carbides via the carbothermal reduction process. 
These metal composites are homogeneously embedded within the network structure of the 
porous carbon, resulting in carbon-based composites with abundant interfaces and defects, 
a continuous conductive network, and exceptional magnetic response properties  [26–29]. 
By precisely controlling the components, structural form, and composition, MOFs can be 
combined with other materials to optimize conductive loss, enhance dipole polarization, 
construct interface polarization, and improve magnetic response. This strategic approach 
ultimately leads to the development of MOF-based composite wave-absorbing materials that 
leverage a diverse range of microphysical loss mechanisms. Notably, when compared to 
other absorbing materials, MOFs and their derivatives offer exceptional versatility in modu-
lating magnetic loss, dielectric loss, and impedance match properties [30–34]. By incorpo-
rating diverse component structures and facilitating the in situ generation of metal/metal 
oxide nanoparticles (NPs) or clusters, MOF-based materials demonstrate an extraordinary 
ability to attenuate incident EMWs on a substantial scale. This achievement underscores 
the immense potential of MOFs in the field of EMW absorption [35–37]. In addition, the 
highly porous structure inherited from the pristine MOFs facilitates the multiple scattering 
of incident microwaves and the lengthening of the transmission path, thus promoting their 
absorption of EMWs. Therefore, MOF-based EMW absorption materials are prepared and 
studied in large quantities at present and are also moving toward more novel and microscopic 
directions, such as multidimensional design, quantum dot modification, supramolecular cross-
linking, and so on.

1.2  Preparation Method of MOF Materials

MOFs and MOF-derived materials have been synthesized by a variety of methods. Theoreti-
cally, the conditions for the synthesis of MOFs should be chosen so that metal–ligand bonds 
can not only be formed but also be broken and reorganized to prompt the structure propagation. 
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Dynamic bonds can induce changes in the morphology of the materials by breakage and 
reorganization of the structure under specific conditions. Therefore, dynamic bonds play an 
important role in the formation of crystals and ordered structures, where any faulty bonding 
that may lead to disorder or premature structural termination can be corrected [38–43].

1.2.1  Solvothermal Method

Solvothermal synthesis is a widely employed and straightforward method for the preparation 
of MOFs. Typically, this method involves the combination of metal salts with multipoint 
organic ligands in high-boiling solvents such as dimethylformamide (DMF), dimethyl sul-
foxide (DMSO), and dimethylformamide (DEF). The resulting mixture is heated in a PTFE-
lined stainless steel reactor or immersed in a nonflammable silicone-based oil bath on a hot 
plate within an oven or fume hood. Generally, the reaction is allowed to proceed for 12–48 
hours. When selecting a stainless steel reactor, it is important to consider factors such as the 
reaction size, solvent volume, and target temperature to ensure sufficient space for potential 
pressure buildup. The hydrothermal reaction method offers the ability to modulate the prop-
erties of synthesized MOF materials by systematically varying parameters including reaction 
temperature, time, solvent, reagent concentration, and pH. These parameters not only impact 
the material’s topology but also influence crystal size and phase purity. It is worth noting that 
the synthesis of MOFs is a dynamic process and is highly sensitive to even small changes in 
the reaction mixture. This sensitivity allows for an exceptionally high degree of tunability 
in MOFs prepared via the hydrothermal method. For instance, the use of a mixture of metal 
chloride (MCl) and a multipoint carboxylic acid linker can result in the formation of a lesser 
stoichiometric amount of HCl. This, in turn, can dissolve the forming MOFs and slow down 
crystal growth to a certain extent. Conversely, if metal acetylacetone (M(acac)) is employed 
as the metal salt, the resulting acetylacetone by-product does not exert a constraining effect 
on crystal formation. The hydrothermal method has been extensively utilized to synthe-
size numerous MOFs and MOF-derived materials, which have found applications in diverse 
fields. Wang and coworkers [38] synthesized carbon quantum dots (CQD)/Ni-MOF compos-
ites by a one-pot hydrothermal method using NiCl

3
-6H

2
O as the metal salt, p-phthalic acid 

(PTA) as the ligand, and DMF, ethanol, CQD solution, and deionized water as the solvents. 
By controlling the amount of CQDs, the conductivity and micro-morphology of Ni-MOF 
can be effectively regulated, and the number of active sites can be controlled, which in turn 
improves its electrochemical properties. Yuan and coworkers [44] used 2-amino terephthalic 
acid, tetrabutyl titanate (C

16
H

36
O

4
Ti), 1,4-benzene dicarboxylic acid (BDC), DMF, metha-

nol, sodium chloride (C
16

H
36

O
4
Ti), and methanol (CH

3
OH) as raw materials. Two different 

MOF materials, MIL-125(Ti) and amino-functionalized NH
2
-MIL-125(Ti), were success-

fully synthesized by a solvent-thermal method, and they relied on their valence-electron-
transferring properties and exhibited effective photocatalytic activity in visible light for the 
reduction of Cr(VI) in aqueous solution. Lang and coworkers [45] employed a large-scale 
bottom-up solvent-based solvatochromic approach to prepare Ni, Fe, Al, Co, Mn, Zn, Cd 
sulfates, N,N-dimethylacetamide (DMAC), N,N-dimethylformamide (DMF), formamide, 
N-2-methylpyrrolidinone (NMP), N,N-dimethylformamide (DEF), and Ni-NiMOFs using a 
large-scale bottom-up solvent-based solvatochromic approach. Ni-M-M-MOF (M = Fe, Al, 
Co, Mn, Zn, and Cd) nanosheets (NSs) prepared by a large-scale bottom-up solvent-thermal 
method, with a thickness of only a few atomic layers, are capable of directly acting as highly 
efficient electrocatalysts for oxygen precipitation reactions (as shown in Figure 1.1).
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1.2.2  Microwave-Assisted Synthesis Method

The microwave-assisted method can effectively transfer the energy generated by EMWs to 
the reactants for more efficient and faster heating. Microwave irradiation, as a more effi-
cient method of energy input than conventional heating methods, is expected to significantly 
reduce the reaction time without affecting the product yield or the quality of the finished 
product, and this means is suitable for industrial production. This effect has already been 
demonstrated by several researchers in laboratory-scale MOF synthesis. Unlike conven-
tional heating methods, during microwave-assisted synthesis, crystallization of the synthesis 
takes place on hot spots formed by direct heating of the solvent, enabling the formation of 
small-sized particles in a short period. The theory of efficient thermal conversion by micro-
waves is favorable for the high-yield synthesis of MOF, but the limited penetration depth of 
microwaves into the absorbing medium limits the size of the reactor, which then hinders the 
large-scale industrial production of MOF.

Piao and coworkers [46] synthesized FeMo-MIL-88B materials by an ultrafast microwave-
assisted method using FeCl

3
-6H

2
O, urea, DMF, terephthalic acid, and Na

2
MoO

4
·2H

2
O as 

raw materials, which facilitated the hydrogen-extraction reaction (HER), oxygen-extraction 
reaction (OER), and overall hydrolysis reaction. Huo and coworkers  [47] synthesized 
nickel-iron-based trimetallic MOF NSs through a simple microwave-assisted method using 
NiCl

2
·6H

2
O, CoCl

2
·6H

2
O, FeCl

3
·6H

2
O, terephthalic acid, and DMF as raw materials, which 

enabled simultaneous and rapid synthesis and activation of MOFs used for oxygen precipi-
tation reactions. Cai and coworkers [48] prepared a Zn-doped nickel-based metal–organic 
framework (Ni-MOF) material with a honeycomb-layered spherical structure through the 
microwave-assisted method using NiCl

2
·6H

2
O, PTA, Zn(Ac)

2
·2H

2
O, and DMF as the raw 

materials (as shown in Figure 1.2), and excellent electrochemical properties were obtained 
by regulating the doping amount of Zn.

Figure 1.1  Synthetic procedure for the production of ultrathin metal–organic framework nanosheets 
and their utilization for the oxygen evolution reaction. Source: Li et al. [45]/with permission of John 
Wiley & Sons.
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1.2.3  Electrochemical Synthesis Method

Cathodic deposition and anodic dissolution are the two main methods for the electrochemi-
cal synthesis of MOFs. In the cathodic deposition method, a solution consisting of metal 
ions, organic linkers, and metal salts is in contact with the cathode surface. In the anodic dis-
solution method, a metal electrode rather than a metal salt is used as the metal cation source 
to avoid corrosion by anions such as nitrates and acetates. This method provides the metal 
ions continuously required for MOF formation, while organic linkers and electrolytes can 
be added as needed. Due to the increase in pH near the cathode surface, an electrochemical 
reduction reaction is triggered, which in turn leads to the deposition of the MOF film. In 
electrochemical synthesis, the yield and structure of the material are influenced by the elec-
trolyte, solvent, voltage, density, and temperature. Compared to conventional methods, this 
method has the advantages of a fast reaction rate and low temperature, and the metal source 
is not salt. In addition, it is a discontinuous process that enables higher synthesis efficiency.

Easun and coworkers  [49] prepared Mn-MOF by electrochemical synthesis using 
2,5-diamino terephthalic acid and DMF as raw materials and obtained MOF materials with 
high CO

2
 uptake by regulating the crystal synthesis and yield through the parameters of 

electrochemical synthesis, such as current density, electrolyte dosage, and reaction time 
(as shown in Figure 1.3a). Limin and coworkers  [50] prepared ZIF-8 thin films by elec-
trochemical deposition, which possessed a three-dimensional ordered macroporous metal–
organic skeleton with a thickness of 4 cm and excellent optical, catalytic, and biosensing 
properties (as shown in Figure 1.3b). Liu et al. [51] proposed an electrochemical synthesis 
method for the preparation of large-area Cu

3
(HHTP)

2
 MOF films on single-crystal Cu anodes 

by charge-induced molecular assembly to achieve a surface reaction, and the synthesized 
MOF films possessed high electrical conductivity (as shown in Figure 1.3c).
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Figure 1.2  Schematic illustration of the overall formation process of the Zn-doped nickel-based metal–
organic framework (Ni-MOF). Source: Chen et al. [48]/with permission of Elsevier.
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(a)

(b)

(c)

Figure 1.3  (a) Crystal structure of the Mn-MOF. Source: Asghar et al. [49]/Royal Society of  
Chemistry/CC BY 3.0. (b) Illustration of the fabrication process of a macro-microporous MOF inverse  
opal film deposited on a fluorine-doped tin oxide (FTO) substrate. Source: Qin et al. [50]/with 
permission of Royal Society of Chemistry. (c) Electrochemical reaction cell for the preparation of a 
Cu3(HHTP)2 film on Cu foil and the schematic diagram of coordination reaction between Cu2+ and the 
HHTP ion. Source: Liu et al. [51]/with permission of John Wiley & Sons.
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1.2.4  Ultrasonic Method

The ultrasound (US)-assisted method is a simple, economical, and effective method for 
the preparation of MOFs. It has been found that US with a frequency of 20 KHz–1 MHz 
can cause chemical reactions of molecules in the solvent. The process of bubble formation, 
growth, and rupture during ultrasonication leads to an increase in the local temperature of the 
solution, which can result in homogeneous nucleation of the material, reduction of the crys-
tallization time, and formation of smaller crystal sizes. Dissolving metal ions and organic 
ligands in organic solvents and then synergistically preparing MOFs in the presence of US is 
also an extremely effective approach.

Heydari and coworkers [52] prepared a cerium-organic skeleton (Ce-UIO-66MOF) rapidly 
and efficiently with 1,4-benzene dicarboxylic acid, DMF, and (NH

4
)

2
Ce(NO

3
)

6
 as raw mate-

rials under high-density US-assisted radiation at 305 W. It showed good catalytic activity 
for aerobic oxidation reactions. Haque and Jhung [53] compared US-assisted, microwave 
(MW) irradiation and conventional electrical heating methods for the synthesis of isomeric 
CPO-27S. The ultrasonic method resulted in faster nucleation and crystallization than the 
other heating methods due to the strong hot spot of US irradiation. The US-assisted synthesis 
of CPO-27-Co crystals with the smallest size and the highest porosity demonstrated that the 
US-assisted method can obtain small-sized MOF crystals with low energy consumption (i.e. 
shorter reaction time and/or lower temperature). Ding and coworkers [54] investigated the 
US-assisted rapid synthesis of caffeic acid (CA)-loaded and antimicrobial-use cyclodextrin 
metal–organic skeletons (U-CD-MOF), which reduced the preparation time to a few minutes 
(as shown in Figure 1.4c). It was found that ultrasonic power, reaction time, and temperature 
affected the morphology and size of the resulting crystals and the antimicrobial properties 
of the materials.

Figure 1.4  Molecular docking simulations of caffeic acid molecules distributed in CD-MOF. 
 Source: Shen et al. [54]/with permission of Elsevier.
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1.2.5  Mechanochemistry Method

Mechanochemical synthesis refers to the process of grinding a solid to facilitate a quantita-
tive chemical reaction using grinding; this process usually does not use any solvent or uses 
only one solvent. This method enables faster and more efficient synthesis of MOFs than 
traditional hydrothermal methods. Impressively, MOF precursors with low solubility can 
also be adapted to this method. Typical mechanochemical methods include ball milling, 
pressure application, and extrusion. The ball milling method is the most common mecha-
nochemical synthesis method of MOFs, which usually adopts a high-energy ball milling 
process to make solid or solid–liquid mixtures chemically react in a short time. The syn-
thesis process of this method is simple, environmentally friendly, and low cost, which has 
good application prospects. However, this method still has some drawbacks, such as small 
yield, long equipment downtime, and difficult product cleaning. The pressurized synthesis 
method usually uses static/dynamic high pressure to pressurize the reactants to promote 
interface contact and improve reaction efficiency. This technique simplifies the synthesis 
process and reduces waste generation. However, this method suffers from low capacity in 
the large-scale preparation of MOFs because the feedstock is difficult to react completely. 
Extrusion is also an efficient and continuous mechanochemical method for the preparation 
of MOFs. The method requires little to no solvent; then the MOF synthesis can be achieved 
continuously. This mechanochemical technique offers the possibility of large-scale produc-
tion of MOFs. It should be noted that to make the synthesized MOF have higher structural 
properties, the chemical ratio of the precursors should be strictly controlled so that the 
precursors can be as fully reacted as possible, as well as to avoid clogging of the pores by 
unreacted precursors. In addition, for the mechanochemical synthesis method, to fully carry 
out the reaction or reduce the generation of by-products, it is necessary to select appropriate 
precursors to avoid the formation of complex by-products, thus reducing the impact on the 
pore structure.

Tao and coworkers  [55] proposed a simple and rapid mechanochemical synthesis of a 
series of HKUST-1, which can be used for the efficient adsorption of SF

6
. Experiments were 

carried out using trimeric hexanoic acid (H3BTC) and copper nitrate doped with three dif-
ferent hybrid ligands, namely imidazole (Im), 1,2,4-1H-triazole (Trtz), and tetrazole (Tetz), 
respectively, and three different hetero ligands were successfully prepared. X@HKUST-1 
(X = Im, Trtz, or Tetz) was successfully prepared. Notably, the water stability of the doped 
imidazole Im@HKUST-1 was significantly improved, compared to HUST-1. Xie and cow-
orkers [56] prepared Pt-doped Zn-MOF-74 (PtZn-MOF-74) from Pt-doped ZnO (Pt-ZnO) 
by mechanochemical transformation. The lack of a large number of solvents limited the 
solvation and diffusion of the growing substance during the mechanochemical transforma-
tion process, thus preventing the agglomeration of the Pt dopant in PtZn-MOF-74. Liu and 
coworkers [57] formed MOFs by rapid encapsulation of a series of substrates, such as imida-
zole, phosphonic acid, urea, and amino sulfonic acid, into the pores of MOF NENU-3 via a 
one-pot mechanochemical synthesis (as shown in Figure 1.5). The synthesis of MOFs loaded 
with functional guests, which used to take days and require multiple steps, can now be done 
in one step within minutes. The proton conductivity of the resulting composite is improved 
by two to three times of magnitude over NENU-3. Compared with other methods of synthe-
sizing MOFs, the mechanochemical technique has an extremely high synthesis efficiency, 
can significantly reduce the reaction time, and possesses great potential for large-scale and 
industrial production.


