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Preface

Decarbonization of the energy system requires an integrated approach across all
different sectors, such as electricity, heating, cooling, and transportation. Sector cou-
pling, through the integrated use of different energy carriers, both at the supply
side (e.g. by converting (surplus) electricity into other forms, such as hydrogen)
and at the demand side (e.g. by using residual heat from power generation pro-
cesses for district heating), is represented as a key for reaching the ambitious climate
neutrality by 2050. The main benefit associated to sector coupling is related to the
increase of flexibility of the energy system through the coordinated management and
operation of different sectors and the exploitation of interplay of multiple energy
carriers and related technologies. On the other hand, the ongoing transition from
traditional centralized energy systems to decentralized schemes brings new oppor-
tunities for distributed energy resources integration and for the evolution of the role
of final users from passive consumers to active users through energy communities.
Combining sector coupling at the local level with energy communities leads to the
innovative concept of integrated local energy communities (ILECs), which repre-
sent an effective way of managing available energy resources at local level by also
fostering consumer engagement and empowerment. The ILEC concept may refer
to a set of energy users deciding to make common choices in terms of satisfying
their energy needs, in order to maximize the benefits deriving from this collegial
approach, thanks to the implementation of a variety of electricity and thermal tech-
nologies and energy storages and the optimized management of energy flows. The
aim of this book is to present in a thorough and comprehensive way all the critical
aspects that are needed when designing, planning, and operating an ILEC from end
to end. This book’s objective and ambition are timely, as the integrated energy system
is an important means to achieve the energy transition and minimize dependence
on fossil fuels.

To this end, the following key topics are comprehensively discussed throughout
the book:
● Conceptualization of ILECs with analysis of key features, enabling technologies

including ICT, actors, business models and key issues for their implementation,
and validation of ILEC solutions through simulation and testing in a lab environ-
ment and real-world applications.
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● Presentation of innovative approaches for the coordinated planning and opera-
tion of ILECs, with integrated flexibility identification and employment, and for
peer-to-peer (P2P) energy trading.

● Analysis of key social aspects related to the reorganization of the energy system
according to the energy community paradigm.

● Definition of guidelines and recommendations for optimal implementation of
ILECs.

The book supports readers in finding innovative solutions and detailed insights for
the planning and operation of ILECs while fostering research advances to the state
of the art on this topic. The book does this by presenting approaches, methodologies,
critical assessments, real-time applications, as well as efficient optimization models
and algorithms for MCES and emerging technologies/carriers including hydrogen
and electric vehicles. The proposed optimization frameworks are scalable and flex-
ible for adaptation to several real contexts thus representing valid tools to provide
support to decision-makers for ILECs planning and operational aspects.

August 2024 Marialaura Di Somma
University of Naples Federico II

Christina Papadimitriou
Eindhoven University of Technology-TU/e

Giorgio Graditi
ENEA

Koen Kok
Eindhoven University of Technology-TU/e
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1

Introduction: The Need for Sector Coupling and
the Energy Transition Goals
Marialaura Di Somma1, Christina Papadimitriou2, Giorgio Graditi1, and
Koen Kok2

1Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department
of Energy Technologies and Renewable Sources, Lungotevere Thaon di Revel, 76, 00196, Rome, Italy
2Eindhoven University of Technology, Electrical Engineering Department, Groene Loper 3, 5612 AE,
Eindhoven, the Netherlands

1.1 Introduction

1.1.1 The Needs and Challenges of the Current Energy System

The present energy system faces several pressing needs. With a growing demand for
energy driven by population growth, industrialization, and improved living stan-
dards, there is an urgency to meet it in a sustainable manner. Simultaneously,
addressing climate change requires a transition to low-carbon or carbon-neutral
energy sources. However, integrating renewable energy sources (RESs) poses chal-
lenges due to their converter-based, intermittent, and variable nature. To ensure a
reliable and resilient power system, aging infrastructure needs to be upgraded and
modernized. Grid resilience must also be enhanced to withstand extreme weather
events, cyberattacks, and other disruptions. Furthermore, supporting the electri-
fication of different sectors, e.g. heating, cooling, and transportation, necessitates
infrastructure development and adequate grid capacity that is now lacking. To this
end, advancements in energy storage technologies are also crucial. Lastly, improv-
ing energy efficiency across sectors is vital to reduce overall energy demand and
greenhouse gas (GHG) emissions, which requires a combination of technological
advancements and policy measures.

Addressing the aforementioned needs is not trivial and numerous challenges are
present. Balancing energy supply with the ever-increasing demand is a hard task as
it does not only presuppose upgrades in related infrastructure and equipment but
also changes on how the operators schedule and manage the grid. Transitioning
to low-carbon energy sources while ensuring a reliable and uninterrupted power
supply poses a complex task that requires careful planning and investment. Inte-
grating RES into the grid requires addressing the intermittency and variability
associated with them, by necessitating innovative solutions for effective integration.

Integrated Local Energy Communities: From Concepts and Enabling Conditions to Optimal Planning and Operation,
First Edition. Edited by Marialaura Di Somma, Christina Papadimitriou, Giorgio Graditi, and Koen Kok.
© 2025 WILEY-VCH GmbH. Published 2025 by WILEY-VCH GmbH.
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Moreover, upgrading and maintaining aging infrastructure presents financial and
logistical challenges. Safeguarding the power grid against risks such as extreme
weather events and cyberattacks requires robust strategies and investments
in cybersecurity measures but also affects the “business as usual” in the operational
planning of the operators. Advancing energy storage technologies is crucial for both
dealing with the excess renewable energy and providing flexibility for balancing
supply and demand. The electrification of various sectors presents several chal-
lenges that impact the power system overall. First, to satisfy all types of energy
demands resulting from electrification, a significant amount of additional power
network capacity is required. This includes accommodating the increased electricity
consumption from transportation, buildings, and industry. Second, contingencies
in the power system can have far-reaching consequences. Any disruption or failure
can lead to power outages, affecting not only the resilience of the power system and
of the electrified sectors but also the overall functioning of society. Grid stability
and management become crucial factors in ensuring a reliable and resilient power
supply in this case. As electrification changes the energy landscape, operators face
new challenges in planning and scheduling. They must consider the increased
complexity of managing diverse energy sources, grid capacity, and demand patterns
to optimize system performance and ensure uninterrupted power supply.

As such, the distribution operators’ planning and scheduling processes need to
adapt to the evolving requirements of an electrified system to maintain efficient oper-
ations. Promoting energy-efficient practices and technologies across sectors requires
changes in consumer behavior as well as supportive policies and incentives.

Finally, creating and implementing effective policies and regulations to facili-
tate the transition to a sustainable and resilient power system necessitates balancing
the interests of different stakeholders and ensuring fair market competition.

Addressing these needs and challenges requires collaborative efforts from gov-
ernments, energy providers, technology developers, researchers, and consumers to
create a sustainable, secure, and affordable energy power system for the future.

1.1.2 What Is Sector Coupling?

Sector coupling originally referred to the electrification of end-use sectors such as
heating, cooling, and transport, aiming at increasing the RES share in these sectors,
based on the assumption that the electricity supply can be mostly renewable. More
recently, the concept has been widened by also including supply-side sector cou-
pling, integrating, for instance, power and gas sectors through power-to-gas (P2G)
technologies. It must be highlighted that sector coupling is very similar to that of
integrated energy systems, introduced by ETIP SNET Vision 2050 [1–3], defined
as a system of systems. Namely, an integrated energy system is an integrated infras-
tructure for all energy carriers with the electrical system as a backbone, character-
ized by a high level of integration between all networks of energy carriers, coupling
electrical networks with gas networks, heating, and cooling, supported by energy
storage and conversion processes. The creation of these systems is based on the
coordination of the planning and operation key processes. Within these processes,
different types of energy systems across multiple geographical scales are considered



1.1 Introduction 3

Supply

End-use

Households Industry Services Transport

Fossil Hydro Solar Wind Bioenergy

Energy

networks

Heating

CoolingHydrogen

Geothermal

Storage

Electricity

Thermal

Gas as

hydrogen

CO2

Electricity

Figure 1.1 Representation of sector coupling concept. Source: Adapted from
Van Nuffel et al. [4].

to foster reliability and efficiency in energy services while also minimizing nega-
tive environmental impacts [4]. The different sectors that can be involved under the
concept of sector coupling are represented in Figure 1.1.

Two different strategies are considered under the concept of sector coupling,
namely [5]:

● “End-user” sector coupling aiming at the electrification of end-use sectors and
consisting of energy conversion technologies for electrification of final users’
energy demand, thus enabling flexibility at the final users/prosumers level. An
example of these technologies is well represented by electric vehicles (EVs)
allowing for the electrification of the transport sector.

● “Cross-vector” sector coupling aiming at integrating multiple energy carriers
mainly linking electricity and gas sectors through P2G technologies that can
be used to produce hydrogen or synthetic methane when excess renewable
electricity is available. The produced gas can be then stored for later re-conversion
into electricity when renewable electricity supply is insufficient (and hence
high electricity prices), by using the so-called power-to-gas-to-power process.
On the other hand, electricity can be produced by hydrogen through fuel cells.
Another alternative is that the hydrogen produced can be processed into methane
or liquid fuel like methanol by making it reacts with CO or CO2, the so-called
power-to-liquid route. These fuels can be used in transport sectors such as
shipping.

The combination of these two strategies allows increasing the flexibility of the
energy system, while also supporting RES integration through optimal use strategies.



4 1 Introduction: The Need for Sector Coupling and the Energy Transition Goals

A good example was already provided above, but there is another key example rep-
resented by Power-to-Heat technology such as heat pumps. These latter, especially
when combined with thermal storage, allow for thermal energy production in
periods with excess renewable electricity which can be then stored and re-used in
periods with insufficient renewable electricity, thereby representing a cost-effective
and efficient solution.

1.2 Opportunities for Sector Coupling to Contribute to
Decarbonization

1.2.1 Electrification and Sector Coupling

Electrification in power systems refers to the process of transitioning from tradi-
tional, fossil fuel-based energy sources to electrical power for various applications.
It involves replacing the direct use of fossil fuels, such as gasoline and natural gas,
with electricity as the primary source of energy.

The concept of electrification has gained significant attention in recent years due
to its potential to reduce GHG emissions and combat climate change. So, electrifica-
tion is one of the main drivers of energy transition as it is perceived nowadays and a
reliable solution for effective decarbonization at the end user’s side.

Therefore, the electrification scenario can be applied in different sectors. Some
examples that can foster electrification are given below:

Transportation: Electrification of transportation involves transitioning from con-
ventional internal combustion engines (ICEs) to EVs. This shift reduces reliance
on fossil fuels, decreases air pollution, and offers opportunities for smart charg-
ing and integration with the grid, e.g. with vehicle-to-grid (V2G) services. EVs
can expand services to other vectors/domains as well through the so-called V2X
services. For example, in a V2Home scenario, EVs can supply power to homes
during power outages or peak demand periods.

Residential and commercial buildings: Electrifying buildings involves replacing
fossil fuel-based heating systems, such as oil or natural gas furnaces, with electric
heat pumps. An instance is provided in Figure 1.2. This approach reduces carbon
emissions, improves energy efficiency, and enables demand response programs.

Industrial processes: Electrification can also be applied to various industrial
processes. For example, using electric furnaces instead of traditional fuel-based
furnaces in manufacturing reduces emissions and provides more precise temper-
ature control. Electrification can also power other industrial equipment, such as
pumps and motors.

Although electrification presents direct benefits such as reduced GHG emissions
and air quality improvement, it also presents challenges that are difficult to over-
come. The most persistent challenges of electrification are discussed below.

One significant challenge is the need for additional power network capacity to
accommodate the increased demand from electrified sectors related to transporta-
tion and buildings. This requires substantial investments in grid infrastructure,
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such as new transmission lines, substations, and distribution networks, to ensure
a reliable and resilient electricity supply. Another challenge lies in maintaining
stability in the power system, as the integration of RES and the growth of decen-
tralized generation introduce variability and uncertainty. Robust contingency plans
and advanced grid management techniques are necessary to handle potential
disruptions and ensure system reliability. Grid stability and energy balancing also
become crucial considerations, as the intermittent nature of RES and the varying
electricity consumption patterns of electrified sectors can impact the balance
between electricity supply and demand. Effective energy storage solutions, demand
response programs, and grid control mechanisms are required to stabilize the
grid and optimize energy utilization. Finally, operators’ planning and scheduling
become more complex due to the increased number of distributed energy resources,
EVs, and flexible loads. Advanced modeling, forecasting, and optimization tools are
essential for operators to efficiently plan, schedule, and manage the operation of
the power system while considering factors such as demand fluctuations, charging
infrastructure availability, and grid constraints.

Nevertheless, if electrification is enhanced by the sector coupling approach that
fosters coordinated management and operation of different sectors, then the chal-
lenges identified above can be lifted to a certain extent. In Figure 1.2, the current
energy system is compared with the electrified and the integrated energy system
paradigm. In specific, an example of electrifying the heat demand is shared. In
the present, heat demand is covered by gas-fired boilers, whereas in an electrified
future the heat demand is covered by electric heat pumps powered by the electricity
network. Through the sector coupling approach, the electrified system is further
enhanced. In fact, in such a system, multiple hybrid energy technologies are
managed with high synergy to satisfy the multi-energy demand, and services can
be provided with the most convenient energy carrier and sector. Moreover, sector
coupling allows increasing efficiency in the energy resources use through exploiting
synergies coming from interplay of different energy carriers and reduction of RES
curtailment. In practice, for instance, in case of excess electricity from RES, it can
be converted into gas as hydrogen or synthetic methane through P2G technologies,
stored and/or transported by existing gas infrastructures for immediate or later
usage, or re-converted again into electricity when renewable electricity supply is
insufficient to satisfy the loads.

1.2.2 Enhancing System Stability and Reliability at the Grid Level
Through Sector Coupling

As mentioned, sector coupling refers to the seamless integration, coordination, and
operation of different energy sectors, leveraging the synergies between them. By
combining the power grid with heating/cooling systems, transportation infrastruc-
ture, and other sectors, sector coupling offers numerous benefits that contribute to
enhanced power system stability and reliability. An integrated grid can be seen in
Figure 1.3. Five different carriers (water, electricity, heating, cooling, and gas) are



ICE engines

Industry

Industry

Tertiary sector

Residential

Industry

Water

EV

FCEV

Tertiary sector

Thermal

desalination

RO

desalination

Electrolyser

Fuel cell

Compressors

Electric

chiller

Electric

boiler

Heat

pump

Pumps

Pumps

Compressors

External natural gas grid

Natural gas network

Cooling energy network

Absorption

chillers

Cold

energy

storage
Thermal

storage

External electricity grid

CCHP

CC
Gas

Solar

energy

Wind

PV

Solar

thermal

Wind turbine

Hydroelectric Electricity

storage Water

storage

External water network
Water network

Electric network

Thermal energy network

Hydro

Geothermal

Waste heat

Liquid

fuel

Biofuel

Biogas

biomass

CHP

Boiler

Primary

energy Energy conversion and storage technologies

Pumps

Hydrogen

storage

Residential

Industry

Tertiary sector

Residential

Industry

Demand

Tertiary sector

Residential

Figure 1.3 Overview of an integrated grid through sector coupling. Source: Adapted from Papadimitrou et al. [6].



8 1 Introduction: The Need for Sector Coupling and the Energy Transition Goals

seen integrated through the existence of conversion and hybrid technologies along
with storage (thermal, electrical, hydrogen, EVs), allowing the interaction and col-
laboration of the different carriers when needed.

One of the key advantages of sector coupling is improved grid stability through
flexibility and redundancy. The integration of diverse energy sources, such as wind
and solar, with complementary technologies like heat pumps or combined heat
and power (CHP), enables the balancing of fluctuating supply and demand. This
flexibility allows for more efficient management of energy flows and reduces the
risk of grid instability, ensuring a reliable power supply even in the presence of
intermittent RES.

Additionally, sector coupling enhances power quality and resilience. By integrat-
ing energy storage systems into the grid, excess renewable energy can be stored and
released when needed to the electricity grid or other carrier as already explained,
smoothing out variations and mitigating voltage fluctuations. Furthermore, the
coupling of heating, cooling, and power systems enables the utilization of waste
heat from power generation, improving overall energy efficiency and reducing
reliance on fossil fuels.

Another benefit of sector coupling is its ability to facilitate demand response
schemes and load balancing. By integrating intelligent demand response mecha-
nisms, consumers can adjust their energy consumption from technologies residing
in different carriers based on grid conditions, helping stabilize the system during
peak demand periods. This dynamic interaction between the power system and
end-users – that can expand to all carriers – contributes to grid reliability and
reduces the need for costly infrastructure upgrades.

Furthermore, the integration of EVs plays a crucial role in sector coupling. EVs
can act as mobile energy storage units, offering grid support through V2G technol-
ogy. During times of high electricity demand, EVs can supply power back to the
grid, supporting grid stability and reducing stress on the power system. This bidirec-
tional flow of energy optimizes resource utilization and enhances the reliability of
the grid.

However, the successful implementation of sector coupling is not without its chal-
lenges. Interoperability and system integration pose significant technical hurdles.
Different sectors often use diverse technologies, protocols, and communication
systems, requiring seamless coordination and interoperability to ensure efficient
energy sharing and control. Standardization efforts and collaboration among stake-
holders are crucial to overcome these barriers. Furthermore, the maturity of
technologies and the availability of sustainable business models are critical consid-
erations. While some sector coupling technologies, such as heat pumps or CHPs,
have matured, others, like P2G, may still be in the early stages of development. Pol-
icy and regulatory frameworks also need to adapt to support sector coupling. Clear
guidelines and incentives are required to encourage cross-sector integration and
investment. Additionally, social acceptance and public engagement are vital to
address concerns, educate the public, and promote behavioral changes necessary
for successful sector coupling implementation.
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In conclusion, by integrating different sectors and leveraging the synergies
between them, sector coupling enables flexibility, resilience, and optimized resource
utilization. Overcoming technical, regulatory, and social challenges will be crucial
to realizing the full potential of sector coupling and building a more stable, reliable,
and sustainable power system for the future.

1.2.3 Decarbonization of Heating and Cooling in Building Environment
(End-User Level) Through Sector Coupling

Today, energy consumption for heating and cooling in the building environment
at the end-user level is responsible for a notable share of GHG in industrialized coun-
tries such as Europe. Sector coupling offers a great opportunity for decarbonization
of final energy use for heating and cooling purposes through several technologies
that can be classified into three categories: (i) technologies making direct use of
renewable energy such as solar thermal, geothermal energy, or biomass heating;
(ii) technologies making indirect use of renewable energy through electrification,
such as electric heat pumps; and (iii) cross-vector integration technologies such as
CHP or combined cooling heat and power (CCHP). According to Ref. [4], electric
reversible heat pumps represent the best option for decarbonizing this specific sec-
tor in European countries, and this is mainly due to the good technical performance
of this technology represented by a high coefficient of performance, being then fol-
lowed by CHP for large applications and district heating. The latter also represents
one of the main solutions for the decarbonization of heating demand in the building
environment especially when based on RES as biomass heating or solar thermal,
while also offering a great potential for the sector coupling strategies presented in
Section 1.2. In fact, heat pumps and CHPs can be used with optimized strategies
in a complementary manner, with the former operating in periods with low electric-
ity prices and the latter operating in periods with higher electricity prices. However,
the lack and inadequacy of existing infrastructures is the main barrier to deployment
of this technology as it may require significant investments in new assets.

Another benefit represented by heat pumps and CHPs when coupled with thermal
storage is represented by the provision of ancillary services to the electrical network
[7]. A practical example is given by heat pumps decreasing the produced thermal
energy without compromising the user’s comfort due to building thermal inertia,
thereby providing ancillary services. On the other hand, CHPs also can provide flex-
ibility services to the power system, by decoupling the production of electricity and
heat through thermal storage depending on the demand [8].

Another promising option to electric heating for decarbonization of this sector is
represented by small-scale micro-CHP that allows for the reduction of distribution
network costs, by replacing gas-fired plants. This technology can provide firm capac-
ity (assuming it is able to be managed to provide capacity during non-curtailable
or non-shiftable peak demand occurrences) while improving conversion efficiency,
since the thermal energy produced recovered from electricity generation is not
wasted but used to meet local heat demand.
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1.3 European Energy Legislation and Initiatives
Supporting Sector Coupling

The European energy legislation on energy transition sets forth a visionary path,
aiming to foster the transition from traditional fossil fuel-based energy sources
to cleaner, renewable alternatives. Toward this, directives at the European Union
(EU) level on energy transition were issued some years ago and have been reg-
ularly updated ever since. Directives are assumed to be transpositioned at the
EU member state level and put in context. Policy measures and initiatives that
are supportive are also propelling Europe toward a sustainable and low-carbon
future. In the next subsections, the most recent developments that are sector
coupling supportive are briefly discussed, whereas Chapter 2 dives deeper into the
EU policy.

1.3.1 Directives

Clean Energy for All Europeans Package [9]: Since 2018, the EU adopted the Clean
Energy Package, which consists of several directives and regulations aimed at
accelerating the clean energy transition. The package includes measures promoting
sector coupling by encouraging the integration of renewable energy in various
sectors and promoting energy storage and demand response technologies. In
specific, the package includes the Renewable Energy Directive (RED II) [10].
The RED II sets binding targets for renewable energy consumption in the EU.
It promotes sector coupling by establishing a framework for supporting the use
of renewable energy in heating and cooling as well as in the transport sector. It
encourages the production and use of advanced biofuels and renewable gases,
such as biomethane and hydrogen. The Energy Efficiency Directive (EED) [11] sets
out binding energy efficiency targets and measures to promote energy efficiency
across different sectors. It encourages the use of energy-efficient technologies and
promotes the integration of energy systems through the utilization of waste heat,
CHP systems, and district heating and cooling networks. Energy Performance
of Buildings Directive (EPBD) [12]: The EPBD focuses on enhancing the energy
performance of buildings by promoting energy-efficient renovations and setting
minimum energy performance standards for new constructions. The new smart
readiness indicator (SRI) for buildings addresses sector coupling through the
promotion of flexibility and mobility integration in buildings. In addition, the
Energy Market Directive – EMD II [13] aims to create a competitive and integrated
electricity market within the EU. It emphasizes the integration of RESs and the
improvement of cross-border electricity trading. Energy Infrastructure Regulation
(TEN-E) aims to facilitate the development of cross-border energy infrastructure,
including electricity and gas projects, to strengthen energy security and support the
integration of RESs. The Alternative Fuels Infrastructure Directive (AFID) aims to
facilitate the deployment of alternative fuels infrastructure, such as EV charging
stations and refueling stations for hydrogen and natural gas.


