
 Biostatistics and Microbiology



Daryl S. Paulson
BioScience Laboratories, Inc.
Bozeman, MT, USA

Biostatistics and Microbiology:
A Survival Manual





  

 
 

 

 

 

 

 
 

 

 

 

 

Acknowledgements 

Researchers do not need to be statisticians to perform quality research, but they do 
need to understand the basic principles of statistical analysis. This book represents 
the most useful approaches learned through my years of experience in designing the 
statistically based studies in microbial death-rate kinetics, skin biotechnology, and 
clinical trials performed by my company, BioScience Laboratories, Inc. 

while I wrote and rewrote the chapters in this book, in particular, my very capable 
and supportive wife, Marsha Paulson, Vice-President of BioScience Laboratories, 
Inc. I am especially indebted to John Mitchell, Director of Quality Assurance, for his 
many hours of challenging my assumptions, utilizing his vast knowledge of 
microbiology, and editing this work. Tammy Anderson provided valuable assistance 
in the development of this book by typing and retyping it, making format changes, 
editing, creating figures and diagrams, and basically, managing the entire book 
development process. Her abilities are astounding. 

I am truly grateful to my co-workers at BioScience, who kept the business running 

Finally, I thank the staff at Springer for their patience, flexibility, professionalism, 
and quality concerns.  

v



 

Contents 
 

Acknowledgements.............................................................................. v 

1 BioStatistics and Microbiology: Introduction ............................ 1 
 1.1 Normal Distribution................................................................................2 
 1.2 Mean………… .......................................................................................6 
 1.3 Variance and Standard Deviation...........................................................7 
 1.4 Mode of Sample Data.............................................................................8 
 1.5 Median of Sample Data ..........................................................................8 
 1.6 Using Normal Distribution Tables .........................................................8 
 1.7 Standard Error of the Mean ..................................................................12 
 1.8 Confidence Intervals.............................................................................13 
 1.9 Hypothesis Testing ...............................................................................14 

2 
 2.1 Estimation of a One-Sample Mean .......................................................15 
 2.2 Comparing One Sample Group Mean to a Standard Value..................20 
   2.2.1 Confidence Interval Approach ................................................20 

   2.2.2 Use of the Student’s t Test to Make the Determination  
of a Sample Mean Different, Less than, or Greater than  

 2.3 Determining Adequate Sample Sizes for One-Sample  

  2.3.1 Quick Sample Size Formula: Sample Set Mean  

 2.4 Detection Level ....................................................................................30 
 2.5 A More Accurate Method of Sample Size Determination ...................30 
 2.6 (Optional) Equivalency Testing ...........................................................32 
   2.6.1 Nonsuperiority Test .................................................................35 

   2.6.2 Confidence Interval Approach to Superiority/Inferiority  

 3.1 Requirements of all t Tests ...................................................................42 
  3.1.1 
  Assumed Equivalent, 2

2
2

1 σσ ≠

  3.1.2  Two-Sample Pooled 
2
2

2
1 σσ

  3.1.3  Paired t Test.............................................................................48 
  3.1.4 Sample Size Determination .....................................................52 

One-Sample Tests ....................................................................... 15 

3 Two-Sample Statistical Tests, Normal Distribution ................ 41 

a Standard Value......................................................................24 

Versus a Standard Value......................................................... 29 

Testing ....................................................................................37 

................................................ 42 

Statistical Tests .....................................................................................28 

 

Two-Sample Independent t Test: Variances are not  

=
t Test: Variances are  

Equivalent, ................................................................. 45

vii



 
 3.2 Other Topics .........................................................................................55 
  3.2.1 Proportions ..............................................................................55 
  3.2.2 Optional Two-Sample Bioequivalency Testing......................57 

  3.2.3 

  3.2.4 Confidence Interval Approach ................................................61 

4 Analysis of Variance ................................................................... 63 
 4.1 The Completely Randomized One-Factor ANOVA ............................64 
 4.2 Contrasts ...............................................................................................71 
 4.3 Confidence Intervals ............................................................................72 
 4.4 Sample Size Calculation.......................................................................73 
 4.5 Randomized Block Design ...................................................................74 
 4.6 Pair-wise Contrasts ...............................................................................79 
 4.7 100 (1 – α) Confidence Intervals..........................................................79 
 4.8 Sample Size Calculation.......................................................................81 

5 Regression and Correlation Analysis ........................................ 83 
 5.1 Least Squares Equation ........................................................................85 
 5.2 Strategy for Linearizing Data ...............................................................89 
 5.3 The Power Scale ..................................................................................90 
 5.4 Using Regression Analysis...................................................................90 
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 5.6 Predicting a Specific ŷ  Value from an x Value ..................................92 
 5.7 Correlation............................................................................................93 
 5.8 Correlation Coefficient: r .....................................................................94 
 5.9 Coefficient of Determination: r2...........................................................96 
 5.10 Predicting an x Value from a y Value ..................................................97 
 5.11 Confidence Interval for a Specific x̂ ..................................................99 
 5.12 Confidence Interval for the Average x  Value ..................................100 
 5.13 D-Value Calculation ..........................................................................100 

6 Qualitative Data Analysis......................................................... 101 
 6.1 

   6.1.1 
  
  6.1.2 
  
 6.2 Confidence Interval Estimation..........................................................102 
  6.2.1 Confidence Intervals on Proportions that are not Extreme 
  
  6.2.2 Confidence Intervals on Proportions that are Extreme 
  
 6.3 Comparing Two Samples ...................................................................105 
  6.3.1 Proportions: One Sample Compared to a Standard Value....105 
  6.3.2 Confidence Interval Approach ..............................................107 
 6.4 Comparing Two Sample Proportions .................................................109 

              Assumed Equal .......................................................................58 

(Not Close to 0 or 1): The Yates Adjustment........................104 

(Close to 0 or 1) .....................................................................104 

Table of Contents     

Two Independent Samples: Sample Variances  

Version I: Mean, Variance, and Standard Deviation 

Estimates for Predicting Proportions or Percentages ............102 
Version II: Mean, Variance, and Standard Deviation 

Binomial Distribution .........................................................................101 

Estimates for Predicting Outcome Events.............................101 

viii 



 
 6.5 Equivalence Testing: Proportions ......................................................112 

  6.5.1 Equivalence Testing: One Proportion Sample  

  6.5.2 Confidence Interval Approach ..............................................114 
  6.5.3 Nonsuperiority.......................................................................114 
  6.5.4 Two-Tail Test: Equivalence..................................................115 
  6.5.5 Confidence Interval...............................................................116 
 6.6 Two-Sample Equivalence: Proportions..............................................116 

7 Nonparametric Statistical Methods......................................... 121 
 7.1 Comparing Two Independent Samples: Nominal Scale Data............123 

  7.1.1 

  7.1.2 Comparing Two Related Samples: Nominal Scale Data ......126 
  7.1.3 
  

  7.1.4 Comparing More than Two Related Samples:  

 7.2 Ordinal Scale Data: Rankable ............................................................133 
  7.2.1 Comparing Two Independent Sample Sets: Ordinal Data....133 
  7.2.2 Comparing Two Related Sample Sets: Ordinal Data ...........138 

  7.2.3 Comparing More than Two Independent Samples:  

  7.2.4 Multiple Contrasts.................................................................146 
  7.2.5 Comparing More than Two Related Samples:  

 7.3 Interval-Ratio Scale Data ...................................................................152 
  7.3.1 

7.3.2 Comparing Two Related or Paired Samples:  

7.3.3 Independent Samples, n > 2: Interval-Ratio Data.................157 
7.3.4 Related Samples, n > 2: Interval-Ratio Data.........................157 

Appendix: Tables of Mathematical Values................................... 163 
 Table A.1 Student’s t table (percentage points of the t distribution) ............164 

Table A.2 Z-table (normal curve areas [entries in the body of the table  
give the area under the standard normal curve from 0 to z]) ........................165 

 Table A.3 Studentized range table ................................................................166 
 Table A.4 F distribution tables......................................................................168 
 Table A.5 Chi square table ............................................................................173 
 Table A.6 Quantiles of the Mann-Whitney test statistic ...............................174 
 Table A.7 Binomial probability distribution .................................................178 
 Table A.8 Critical values of the Kruskal-Wallis test ....................................207 
 Table A.9 Friedman ANOVA table ..............................................................209 
 Table A.10 Wilcoxon table ...........................................................................211 

Table of Contents 

Compared to a Standard........................................................112 

Nominal Scale Data ..............................................................132 

Ordinal or Interval Data ........................................................142 

Ordinal Data..........................................................................147 

Interval-Ratio Data ...............................................................154 

Comparing Two Independent Samples: 2 × 2 Chi  
Square Test............................................................................123 

Nominal Scale Data ..............................................................129 
Comparing More than Two Independent Samples: 

Data .......................................................................................152 
Comparing Two Independent Samples: Interval-Ratio 

Ind ex .... ..... ........................................................................................ 213 

ix



Chapter 1 
BioStatistics and Microbiology: Introduction 

To compete with the many books claiming to demystify statistics, to make statistics 
easily accessible to the “terrified,” or provide an eastern approach purporting to 
present statistics that do not require computation, as in the “Tao of Statistics,” is 
tough duty, if not utter fantasy. This book does not promise the impossible, but it 
will enable the reader to access and apply statistical methods that generally frustrate 
and intimidate the uninitiated. Statistics, like chemistry, microbiology, woodworking, 
or sewing, requires that the individual put some time into learning the concepts and 
methods. This book will present in a step-by-step manner, eliminating the greatest 
obstacle to the learner (not the math, by the way) applying the many processes that 
comprise a statistical method. Who would not be frustrated, when not only must the 
statistical computation be made, but an assortment of other factors, such as the α, β, 
and δ levels, as well as the test hypothesis, must be determined? Just reading this far, 
you may feel intimidated. I will counter this fear by describing early in the book a 
step-by-step procedure to perform a statistical method – a process that we will term 
“the six-step procedure.” All of the testing will be performed adhering to six well-
defined steps, which will greatly simplify the statistical process. Each step in the 
sequence must be completed before moving on to the next step. 
 Another problem that microbiology and other science professionals often must 
confront is that most of the training that they have received is “exact.” That is, 
calculating the circumference of a circle tacitly assumes that it is a perfect circle; the 
weight of a material is measured very precisely to n number of digits; and 50 mL is, 
all too often, expressed to mean 50.0 mL exactly. This perspective of exactitude 
usually is maintained when microbiologists employ statistics; however, statistical 
conclusions deal with long-run probabilities which, by themselves, are nearly 
meaningless. In the context of microbiology, statistics can be extremely useful in 
making interpretations and decisions concerning collected data. Statistics, then, is a 
way of formally communicating the interpretation of clinical or experimental data 
and is particularly important when a treatment result is not clearly differentiable 
from another treatment. Yet, and this is the big “yet,” the statistic used has much 
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influence on the conclusions that result. A very “conservative” statistic requires very 
strong proof to demonstrate significant differences, whereas a “liberal” one requires 
less. “Yuck,” you say already, “I just want to know the answer.” 
 To this, I respond, when in doubt, use a conventional statistical method, one that 
can be agreed on and accepted by most authorities. These conventional kinds of 
methods will be presented in this book. As you gain experience, choosing statistical 
methods will become almost an intuitive process. For example, for problems in 
which you have little experience, you will be very cautious and conservative. By 
analogy, this is similar to rafting a river for the first time. If you see rapids in the 
river, you will be more conservative as you approach them – wearing a life jacket 
and helmet, and using your paddle to avoid rocks – at least until you have experi-
enced them and developed confidence. You will tend to be more liberal when near a 
sandy shore in clear, calm, shallow water. For experiments in microbiology in which 
you have much experience, your microbiological knowledge enables you to be more 
statistically liberal, as you will know whether the result of statistical analysis is 
microbiologically rational.  
 Finally, statistics is not an end-all to finding answers. It is an aid in research, 
quality control, or diagnostic processes to support critical thinking and decision-
making. If the statistical results are at odds with your field knowledge, more than 
likely, the statistical method and/or the data processed are faulty in some way. 

1.1 Normal Distribution 

Let’s get right down to the business of discussing the fundamentals of statistics, 
starting with the normal distribution, the most common distribution of data. The 
normal distribution of data is symmetric around the mean, or average value, and has 
the shape of a bell. For example, in representing humans’ intelligent quotients (IQs), 
the most common, or prevalent IQ value is 100, which is the average. A collection of 
many individual IQ scores will resemble a bell-shaped curve with the value 100 in 
the middle (Fig. 1.1). 

 
Fig. 1.1 Bell-shaped curve of intelligence quotients 
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1.1. Normal Distribution
 
 IQ scores that are higher or lower than the mean are symmetrical around it. That 
is, values ten points above (110) and ten points below (90) the mean are equal distance 
from the mean, and this symmetrical relationship holds true over the entirety of the 
distribution. Notice also that, as IQ scores move farther from the mean in either 
direction, their frequency of occurrence becomes less and less. There are approxi-
mately the same number of 90 and 110 IQ scores, but far fewer 60 and 140 IQ scores. 
 Two values are important in explaining the normal distribution: the mean, or 
central value, and the standard deviation. When referring to an entire population, 
these values are referred to as parameters. When referring to a sample, they are 
referred to as statistics. The mean (average value) of a population is represented as µ, 
and the population standard deviation, as σ. For the most part, the values of the 
population parameters, µ and σ, are unknown for a total “population.” For example, 
the true mean (µ) and standard deviation (σ) of the numbers of Staphylococcus 
aureus carried in the nasal cavities of humans are unknown, because one cannot 
readily assess this population among all humans. Hence, the statistical parameters, µ 
and σ, are estimated by sampling randomly from the target population. The sample 
mean  and the sample standard deviation (s) represent unbiased estimates of the 
population parameters, µ and σ, respectively. 
 The mean x  is the arithmetic average of values sampled from a population.* The 
standard deviation, s, describes how closely the individual values cluster around the 
mean value. For example, if all the measured values are within ± 0.1 g from  
the mean value in Test A and are within ±20.0 g from the mean value in Test B, the 
variability, or the scatter, of the data points in Test A is less than in Test B. The 
standard deviation is the value that portrays that range scatter, and does so in a very 
concise way. It just so happens that, in a large, normally-distributed data set, about 
68% of the data are contained within ± one standard deviation (s) about the mean 
(Fig. 1.2). 

 
Fig. 1.2 Normally distributed data, ±  one standard deviation from the mean 

 So, for example, if the mean number ( x ) of Staphylococcus aureus colonies on 
100 tryptic soy agar plates is 100, and the standard deviation (s) is 20, then 68% of 
the plate counts are between 80 and 120 colonies per plate (Fig. 1.3). 
                                                           
 * Also, note that, for a theoretical normal distribution, the mean will equal the median and the 
mode values. The median is the central value, and the mode is the most frequently occurring 
value. 

( x )

3



 
Fig. 1.3 Standard deviation of plate count values 

 
 If a second microbiologist counted colonies on the same 100 plates and also had 
an average plate count of x  = 100, but a standard deviation (s) of 10, then 68% of 
the count values would be between 90 and 110 (Fig. 1.4). 

 
 The second microbiologist perhaps is more precise than the first in that the 
standard deviation, or scatter range of the data around the median, is smaller. On the 
other hand, he may consistently overcount/undercount. The only way to know is for 
both to count conjointly. Let’s carry the discussion of standard deviations further. 
 ± 1 standard deviation includes 68% of the data 
 ± 2 standard deviations include 95% of the data 
 ± 3 standard deviations include 99.7% of the data 
 Figure 1.5 provides a graphical representation. 

 
Fig. 1.5 Percentages of the area under the normal distribution covered by standard deviations 

Fig. 1.4 Standard deviation of a second set of plate count values  
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1.1. Normal Distribution
 
 So, if one reads in a journal article that the x  = 17.5 with an s of 2.3, one would 
know that 68% of the data lie roughly between 17.5 ± 2.3, or data points 15.2 to 
19.8, and 95% lie between 17.5 ±2(2.3), or 12.9 to 22.1. This gives a person a pretty 
good idea of how dispersed the data are about the mean. We know a mean of 15 with 
a standard deviation of 2 indicates the data are much more condensed around the 
mean than are those for a data set with a mean of 15 and a standard deviation of 10. 
This comparison is portrayed graphically in Fig. 1.6. 

 
Fig. 1.6 a 15=x  and 2=s , vs. b 15=x  and 10=s  

 
 There is much more variability in the B group than in the A group. But then, what 

 Variability is measured by subtracting the mean of the data from each data point, 
i.e., v = xi – x
30/6 = 5. The variability of the data around the mean is xxi − . 

xxi − = v
5 – 5 = 0
6 – 5 = 1
3 – 5 = –2
5 – 5 = 0
7 – 5 = 2
4 – 5 = –1
Sum = 0

 
 The variability is merely a measure depicting how far a data point is from the 
mean. Unfortunately, if one adds the individual variability points, v, they sum to 0. 

there should be the same value weights more than and less than the mean that cancel 
each other out. A correction factor will be introduced in the next section so that the 
variability points around the mean will not cancel each other out. Variability is often 
interchanged with the term statistical error. Statistical error does not mean a 
mistake, or that something is wrong; it means that a data point differs from the mean. 
 There are times when statistical variability can mean missing a target value. For 
example, suppose I cut three boards 36 inches long. Here, the variability of the board 
lengths is the difference between the actual and target value. Suppose the boards 
actually measure 35.25 in., 37.11 in., and 36.20 in..  
 

. Take the data set [5, 6, 3, 5, 7, 4].  The mean is (5+6+3+5+7+4)/6 = 

This makes sense in that, if the data are distributed symmetrically about the mean, 

is variability? It is the scatter around the mean of the specific values. 
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35.25 – 36.00 = –0.75 
37.11 – 36.00 = 1.11 
36.20 – 36.00 = 0.20 

 
 I guess this is why I am not a carpenter. The biggest difference between the 
variability of data around a mean and variability of data around a target value is that 
the sum of the individual points of difference, xx − , using the mean will add to 0, 
but using the x-target value usually will differ from 0. 

xi – x
i

 Let us now discuss the concepts of mean and standard deviation more formally. 

1.2 Mean

 
µ = [mu] is the population mean. That is, it is the average of all the 
individual elements in an entire population – for example, the population 
mean number of bacteria found in the lakes of Wisconsin, or the 
population mean age of all the microbiologists in the world. Obviously, it 
is difficult, if not impossible to know the true population mean, so it is 
estimated by the sample mean, x . 
 
x  = [x bar, or overline x] is the sample mean, or the arithmetic average of 
a sample that represents the entire population. Given the data are normally 
distributed, the sample mean is taken to be the best point estimator of  
the population mean. The calculation of the sample mean is 

n

the sample number. More technically, nxx
n

i
i∑

=

=
1

 

 
Σ = [sigma] means “summation of.” So anytime you see a Σ, it means add. 
The summation sign generally has a subscript, i = 1, and a superscript, n. 
That is, ∑

=

n

i
ix

1
, where i, referring to the xi, means “begin at i = 1” (x1), and 

n means end at xn. 
 

 The sub- and superscripts can take on different meanings, as demonstrated in the 
following. For example, using the data set: 
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 =  -0.93 + 0.92 + 0.01 = 0 

The mean, or arithmetic average, plays a crucial role. We are interested in two 

x  – target =  -0.75 + 1.11 + 0.20 = 0.56 

classes of mean value – a population mean and a sample mean. 

sample value, and . . .  x  = the last sample value. The subscript designates 
1 2( )nx x x x n= + + +… , where x1 = the first sample value, x2 = the second 
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1.3. Variance and Standard Deviation
 
 

i  xi 
1  6 
2  7 
3  5 
4  2 
5  3 

i = 1 through 5, and as the last i, 5 also represents n. 32576
1

++++=∑
=

n

i
ix ; 

i 3

325543

5

3
++=++=∑

=
xxxx

i
i  

Likewise, 

25764321

1

1
+++=+++=∑

−

=

xxxxx
n

i
i  

and 

576321

3

1
++=++=∑

=

xxxx
i

i  

Often, for shorthand, we will use an unadorned sigma, ∑ ,  to represent ∑
=

n

i 1
 with any 

changes in that generality clearly signaled to the reader. 
 

1.3 Variance and Standard Deviation 

As stated earlier, the variance and standard deviation are statistics representing the 
difference of the xi values from the x  mean. For example, the mean of a data set, 

 The individual data point variability around the mean of 128 is 
 

118 − 128 = −10

126 − 128 = −2
137 − 128 = 9
148 − 128 = 20

Sum = 0
 

makes sense – because the x  is the central weighted value, this summation will 
never provide a value other than 0. So, we need to square each variability value 

( )2xxi −  and then add them to find their average. This average, ( )
n

xxi∑ − 2

, is 
referred to as the variance of the data. 

and the sum of the variability points  is zero. As previously noted, this ( )xxi∑ −

however, if i = 3, then we sum the x  values from x  to n = 5. Hence, 

x  = (118+111+126+137+148)/5 = 128.  

111 − 128 = −17
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variance = ( ) ( ) 80.174
5

874
5

20921710 22222

==
++−+−+−  

entire population. 

2σ  = [sigma squared] = the true population variance 
( )

N
x∑ −

=
2µ

 

where µ = true population mean, and N = true population size. 
2σσ =  = [sigma] = true population standard deviation 

Again, because the entire population can rarely be known, the sample variance is 
computed as 

( )
1

2
2

−

−
= ∑

n
xx

s  

Note that we divide by n − 1, not n. This is because we lose a degree of freedom 
when we estimate µ by x . 

s = standard deviation = 2s  

 In hand-calculating s, a shortcut calculation is 
1

22

−

−
= ∑

n
xnx

s , which is generally 
faster to compute. 
 Two other important statistics of a data set are mode and median. 

1.4 Mode of Sample Data 

The mode is simply the most frequently-appearing numerical value in a set of data. 
In the set [4, 7, 9, 8, 8, 10], 8 is the mode. 

1.5 Median of Sample Data 

The median is the central numerical value in a set of data, essentially splitting the set 
in half. That is, there are as many individual values above it as below it. For data that 
are an odd number of values, it is the middle value of an ordered set of data. In  
the ordered data set [7, 8, 10], 8 is the median. For an ordered set of data even in the 
number of values, it is the sum of the two middle numbers, divided by 2. For the 
ordered data set [7, 8, 9, 10], the median is 8+9/2 = 8.5. This leads us directly into 
further discussion of normal distribution. 

1.6 Using Normal Distribution Tables

As discussed earlier, the normal distribution is one of the most, if not the most, 
important distributions encountered in biostatistics. This is because it represents or 
models so many natural phenomena, such as height, weight, and IQs of individuals. 
Figure 1.7 portrays the normal distribution curve. 

Likewise, the mean, the variance, and the standard deviation can be in terms of the 
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1.6. Using Normal Distribution Tables
 
 Because the normal distribution resembles a bell, it often is termed the “bell-
shaped curve.” The data have one central peak, that is, are “unimodal,” and are sym-
metrical about the mean, median, and mode. Because of this symmetry, the mean = 
median = mode.  

 
Fig. 1.7 A normal distribution, the “bell-shaped curve” 

 
 Most statistical methods associated with normal distributions utilize the mean and 
the standard deviation in their calculations. We already know that 68% of the data lie 
between µ +σ and µ − σ standard deviations from the mean, that 95% of the data lie 
between the mean and two standard deviations (µ + 2σ and µ – 2σ, or µ ± 2σ), and 
99.7% of the data lie within three standard deviations of the mean (µ ± 3σ). These 
relationships describe a theoretical population, but not necessarily a small sample set 
using the same mean ( x ) and standard deviation (s). However, they are usually very 
good estimators. So, whenever we discuss, say, the mean ± 2 standard deviations, we 
are referring to the degree to which individual data points are scattered around the 
mean (Fig. 1.8). 

 
Fig. 1.8 The mean ± 2 standard deviations for a set of data 

 
 In any given sample, roughly ninety-five percent (95%) of the data points are 
contained within sx 2± . 
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 The z Distribution is used to standardize a set of data points so that the mean will 
be zero, and the standard deviation, 1, or x  = 0, s = 1. The transformation is z = (xi – 
x )/s. A z = 2.13 means the value is 2.13 standard deviations to the right of the mean. 
A z = –3.17 means the value is 3.17 standard deviations to the left of the mean. The 
normal z Distribution table can be rather confusing to use, and we will use the 
Student’s t Distribution in its place, when possible. This will not always be the case, 
but for now, we will focus on the Student’s t Distribution. When the sample size is 
large, n > 100, the Student’s t Table and the normal z Distribution are identical. The 
advantage of the Student’s t Distribution is that it compensates for small sample 
sizes. The normal curve is based on an infinite population. Because most statistical 
applications involve small sample sizes, certainly fewer than infinity, the normal 
distribution table is not appropriate, for it underestimates the random error effect. 
The Student’s t table (Table A.1) compensates for smaller samples by drawing the 
tails out farther and farther (Fig. 1.9). 

 
Fig. 1.9 Student’s t Distribution versus the normal distribution 

 
 To use the Student’s t Table (Table A.1), we need two values: 
  1. Sample size (n), and 
  2. α (alpha) level. 
 As you are now aware, the sample size is the number of experimental observations. 
The confidence level, 1 – α, is the amount of area under the distribution curve with 
which one is working. Generally, that value is 0.95; that is, it incorporates 95% of 
the area under the curve. The α level is the area outside the confidence area. If one 
uses two standard deviations, or a 95% confidence area, the α level is 1 – 0.95 = 
0.05. The α = 0.05 means that 5% of the data are excluded. Note that there is nothing 
to figure out here. These are just statements. 
 In all the tests that we do using the Student’s t table, the sample size will always 
be provided, as will the degrees of freedom. The degrees of freedom will be design-
ated as df.  If df = n – 1, and n = 20, then df = 20 – 1 = 19. Or, if df = n1 + n2 – 2, and 
n1 = 10 and n2 = 12, then df = 10 + 12 – 2 = 20. The smaller the df value, the greater 
the uncertainty, so the tails of the curve become stretched. In practice, this means the 
smaller the sample size, the more evidence one needs to detect differences between 
compared sets of data. We will discuss this in detail later. 
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1.6. Using Normal Distribution Tables
 
 The df value is used to find the Student’s t tabled value at a corresponding α 
value. By convention, α is generally set at α = 0.05. So, let us use Table A.1, when 
α = 0.05 and for n = 20; hence, df = n – 1 = 19. 
Using the t table: 
 Step 1. Go to Table A.1. 
 Step 2. Find df in the left column labeled v. Here, v = 19, so move down to 

v = 19. 
 Step 3. When you reach the 19, move right to the column corresponding with the 

α value of 0.05. 
 Step 4. Where the v = 19 row and the α = 0.05 column meet, the tabled value = 

1.729. 

 
Fig. 1.10 The t tabled value = 1.729, an upper-tail value 

 
 The table, being symmetrical, provides only the upper (positive), right-side t tabled 
value. The 1.729 means that a t test value greater than 1.729 is outside the 95% 
confidence area (Fig. 1.10). This is said to be an upper-tail value. A lower-tail value 
is exactly the same, except with a minus sign (Fig. 1.11). 

 
Fig. 1.11 The t tabled value = –1.729, a lower-tail value 

 
 This means that any value less than –1.729 is outside the 95% region of the curve 
and is significant. Do not worry about the t test values yet. We will bring everything 
together in the six-step procedure. 
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1.7 Standard Error of the Mean

To this point, we have discussed the variability of the individual xi data around  
the mean, x . Now, we will discuss the variability of the sample mean, x  itself, as it 
relates to the theoretical (“true”) population mean, µ. The standard deviation of the 
mean, not the data points, is also termed the standard error of the mean. In most 
statistical tests, the means of samples are compared and contrasted, not the data 
points themselves. Error, in this sense, is variability. The computation for the 
standard error of the mean, xs , is: 

  
n
ssx =  or 

n
s 2

 

 What does the standard deviation of the mean represent? Suppose ten sample sets 
are drawn randomly from a large population. One will notice that the sample mean is 
different from one sample set to another. This variability is of the mean, itself. 
Usually, one does not sample multiple sets of data to determine the variability of the 
mean. This calculation is done using only a single sample, because a unique 
relationship exists between the standard deviation of the mean and the standard 
deviation of the data that is proportional to data scatter. To determine the standard 
error of the mean, the standard deviation value of the sample data is simply divided 
by the square root of the sample size, n. 

  
n
ssx =  
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Finally, a two-tail test takes into account error on the upper and lower confidence 

0.05 2 = 0.025. 

is 2.093. This means −0.2093 and 2.093. 

 

 
This table uses both values, −2.093 and 2.093. It is the upper and lower test 

Step 1. Go to Table A.1. 

Step 3. when you read the 19, move right to the column corresponding to a/2 = 

Step 4. Where the v = 19 row and the a/2 = 0.025 column meet, the tabled value 

Using the t table: 
levels. Here, you use two values of a, but you divide it, a/2. a = 0.05 = 0.05 2 = 0.25.

jointly, with a being divided by 2, a/2 . 

Step 2. Find the df in the left column labeled v. Here, v = 19, so move down to v=19. 

Fig. 1.12 Two-Tail Test



1.8. Confidence Intervals
 

Key Points 

s = Standard deviation of 
the data set  nssx =  = Standard deviation, not 

of the data set, but of the mean 

1.8 Confidence Intervals 

Most of the work we will do with the normal distribution will focus on estimating the 
population mean, µ. Two common approaches to doing this are: 1) a point estimate 
and 2) calculation of a confidence interval estimate. The point estimate of µ is simply 
the sample mean, x . The interval estimate of µ is ( ) nstx n 1,2 −± α , with a confidence 
level of 1 – α. 
 Data Set. Suppose you are to estimate the true mean weight of each of 10,000 
containers in a single lot of bacterial growth medium. Each container is supposed to 
contain 1 kg of medium. Ten are randomly sampled and weighed. The weights, in 
grams, are  

n xi 
1   998 
2 1003 
3 1007 
4   992 
5   985 
6 1018 
7 1009 
8   987 
9 1017 
10 1001 
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 The standard deviation of the mean has the same relation to the mean as the standard 
deviation of data has to the mean, except it represents the variability of the mean, not 

xsx ± , 68% of the time the true mean, µ, is 
contained in that interval. About 95% of the time, the true mean value µ will lie 
within the interval, xsx 2± . And about 99.7% of the time, the true mean value µ will 
lie within the interval, xsx 3± . 

 

the data (Fig. 1.13). That is, for the mean 

Fig. 1.13 The standard error of the mean 



 Step 4. Compute the 95% confidence interval. 
  ( ) nstx n 1,2 −±= αµ  

  ( ) 22.870.1001104843.11262.270.1001 ±=±=µ  
  92.100948.993 ≤≤ µ  
 This simply means that, if a large number of samples were collected, say 100, 
then 95 out of 100 times, the true weight mean will be contained in the interval: 

  92.100948.993 ≤≤ µ  

1.9 Hypothesis Testing

In statistics, one of the most, if not the most important goal is hypothesis testing. 
Hypothesis testing can be boiled down to three test questions. Suppose you are 
comparing two methods of product extraction, say Methods A and B. There are three 
questions we can test: 
  1. Does Method A produce greater extraction levels than Method B? 
  2. Does Method A produce lower extraction levels than Method B? 
  3. Do Methods A and B produce different extraction levels? 
 Question 1. Does Method A produce greater extraction levels than Method B? 
Notice that a connotation of “better” or “worse” is not a part of the hypothesis; that 
valuation is determined by the researcher. If greater extraction means better, fine, but 
it could also mean worse. The point is that, if this question is true, A – B > 0. An 
upper-tail test determines whether Method A produces greater extraction levels than 
does the second method, Method B, or simply if A > B. 
 Question 2. The second question, whether Method A produces lower extraction 
levels than does Method B, is in lower-tail form. If the answer is yes, then A – B < 0. 
 Question 3. The question as to whether Methods A and B are different from one 
another in extraction levels is a two-tail test. If the answer is “yes,” then A – B ≠ 0. 
Extractions by Method A do not have to be greater than those by Method B  
(an upper-tail test), nor do they have to be lower (a lower-tail test). They merely have 
to be different: A > B, or A < B. 
 Hypothesis testing is presented through two independent statements: the null 
hypothesis (H0) and the alternative hypothesis (HA, sometimes written as H1). It is the 
HA statement that categorizes the tail of the test, and this should be articulated first. 
Do not let these concepts confuse you . . . we will make them crystal clear in coming 
chapters. 
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What are the point and interval mean estimates? Let α = 0.05 and df = v = n – 1. 
 Step 1. Calculate the mean. 

  70.1001
10

10017
10

100110171003998
==

++++
=∑ …

n
xi  

 Step 2. Calculate the standard deviation. 

  ( ) 4843.11
9

7.10011010035215
1

222

=
−

=
−

−
= ∑

n
xnx

s  

 Step 3. Go to Table A.1 (the Student’s t table). 
  Find α/2 = 0.05/2 = 0.025, with n – 1 = 10 – 1 = 9 degrees of freedom = v.  
  t(0.025, 9) = 2.262. (α is divided by 2, because this is a two-tail test [to be fully 
discussed in detail later].) 



  
 

Chapter 2 
One-Sample Tests 

Often, a microbiologist needs to measure samples from only one population and  

2.1 Estimation of a One-Sample Mean 

Recall from Chapter 1 that, in biostatistics, the true population mean, µ, is estimated 
by the sample mean, x , and the population standard deviation, σ, is estimated by the 
sample standard deviation, s. Recall also that the x  is an unbiased estimate of µ, 
given the sampling of the population provides a valid representation of the 
population.* 
 
 

                                                 
* In sampling a population, all elements of the population must be available to the sampling 
procedure. For example, if one wanted to identify the prevalence of Avian flu in India, the 
sampling must be throughout all of India, which is probably impossible from a practical 
viewpoint. If a microbiologist sampled from Calcutta, Delhi, and Mumbai (formerly Bombay) 
and stated that the sample “represented India,” this statement would be erroneous. The most 
one could conclude would be the prevalence in these three cities. Even then, more than likely, 
certain destitute people would not be available to the sampling schema, so the study could not 
be generalized to “all individuals” in these three cities. These kinds of potential sampling bias 
and restriction must be evaluated before one can generalize sampled data to a larger 
population. 
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with normally distributed data. 
standard level for quality control purposes. In this chapter, we will be concerned only 
population colony count, and then may want to compare that count measurement to a 
it to a standard. For example, through a series of dilutions, one can estimate the true 
1) estimate its mean and standard deviation through confidence intervals, or 2) compare 
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 The variability in the data (variability of individual data points from the mean) 
measured by the standard deviation is really a measurement of uncertainty as to the 
true parameters of a population. Uncertainty is random variability inherent in any 

the forces at play in a controlled, nonrandom environment move it toward a non-
controlled, random state. The larger the value of s, the greater the uncertainty. 
 Most of the time, one is more interested in the width of the confidence interval 
that contains the true mean than merely calculating the mean and standard deviation. 
The standard one-sample confidence interval formula is: 

  
n
stx 2αµ ±=  

where µ = true, or population, mean, x  = sample mean = ∑ , and tα/2

t table value for a two-tail α value. If α = 0.05, then α/2 = 0.05/2 = 0.025. That is, 
0.025 is used to identify the t-tabled value for a total significance level of α = 0.05. 
The degrees of freedom used in the t table is n – 1. s = standard deviation = 

( ) 12 −∑ − nxx or, using the calculator formula, 122 −∑ −= nxnxs , and n = 
sample size. 
 A two-tail test includes both the lower and upper sides of the normal distribution 

 

Let us look at the situation where α = 0.05. For an upper-tail, as well as a lower-tail 

test, both the upper and lower regions are involved but still cover 5% of the curve, 

 
Fig. 2.2 α Portion of normal distribution curve for one-tail (a) & two-tail (b) tests 

 Example 2.1. A microbiologist dispensed ten “10 mL” aliquot samples of tryptic 
soy broth using an automatic dispenser system. The microbiologist wants to provide 
a 99% confidence interval for the true dispensed volume. Hence, α = 0.01. The 
volumes of the samples in milliliters are presented in Table 2.1. 

2. One-Sample Tests 

(Fig. 2.1A), while a one-tail test refers either to the upper or the lower side of the 

controlled experimentation grounded in the Second Law of Thermodynamics; that is, 

normal distribution (Fig. 2.1B or Fig. 2.1C).  

Fig. 2.1 Normal distributions for two-tail (A), upper-tail (B), & lower-tail tests (C) 

test, (Fig. 2.2A), the α region covers 5% of the total area of the curve. For a two-tail 

α/2 = 0.05/2 = 0.025, or 2.5% of the normal curve in each tail (Fig. 2.2.B). 
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x n  = Student’s (  )

( )


