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Preface

The rapid increase in the development of advanced nanomaterials provides
opportunities for designing unique and efficient energy storage devices with
outstanding electrochemical performance. With the present technological develop-
ments, research on advanced electrode materials having enhanced power density,
cyclic life, and operational safety has increased drastically. With the increasing
demand for large-scale energy storage, nanostructured materials have grabbed
significant attention, particularly in electric vehicles and next-generation wireless
communication devices. The nanostructured energy storage devices can provide
extensive power sources with high capacity, good efficiency, and longer cyclic
stability. Nanostructured materials possess high specific surface areas, substantial
porous structures, special physical and chemical properties, short transport length,
higher reversible capacity, and longer cycle life, which make them very useful and
value-added materials for energy storage applications. Additionally, the utilization
of nanostructured materials in energy storage devices is advantageous because they
exhibit a tunable structure with an interface in the nanometer range and they can
be synthesized in various shapes, sizes, and topographies. Furthermore, nanoma-
terials exhibit a larger specific surface area, which is beneficial for enhancing the
interaction between the energy devices and the interaction medium as compared
with their bulk counterparts. Moreover, nanostructured materials help in advancing
the functioning and development of long-life and durable energy storage devices
by providing chemically and physically stable electrode materials. Over the last
few decades, a library of nanomaterials having different compositions, tailorable
properties, and controlled morphology has been studied as electrode (both anode
and cathode) materials for lithium-ion batteries (LIBs) and supercapacitors (SCs).
The ideal performance criteria for highly efficient energy storage devices are
fast ion interchange, high conductivity, excellent electrode–electrolyte interface,
good faradaic reactions, and good charging/discharging stability. Nanostructured
materials provide significantly enhanced ionic transport and improved electronic
conductivity in contrast to traditional materials used in batteries and SCs. Moreover,
they also possess more intercalation sites, thereby enabling high specific capacities,
fast ion diffusion, and the ability to tolerate high currents. These interesting
features of nanostructured materials-based electrodes offer an efficient solution
to high-energy and high-power energy storage systems. Thus, continuous efforts
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have been made by researchers to exploit the unique properties of nanostructured
materials that are useful in developing and designing high-performance energy
storage devices. However, the control synthesis and optimization of the synthesis
processes of nanostructured materials are the keys to designing efficient electrodes
as per specific application needs. Besides, it is essential to understand the energy
storage behavior at the nanoscale, the relationship between the structure, mor-
phology, and energy storage performance as well as the potential energy storage
mechanisms of these nanostructured materials.

The book Nanostructured Materials for Energy Storage provides a comprehensive
discussion of the recent advances in LIB and SC applications of nanostructured
materials with diverse structures and improved properties that help enhance
the performance of low-cost, rapid, and highly efficient LIBs and SCs. The book
presents innovative concepts and breakthrough knowledge required for the
development of nanostructured materials for LIBs and SCs. This book covers the
fundamental principles of LIBs and SCs; provides a basic understanding of material
selection, synthesis process, characterization, functionalization, design parameters,
and development of nanostructured materials for LIBs and SCs applications;
and discusses related mechanisms. The book comprises 43 chapters providing
a detailed and in-depth discussion on the synthesis, characterizations, device
fabrication, and energy storage performance of various nanostructured materials
like graphene, hexagonal boron nitride (h-BN), MXenes, carbon nanotubes (CNTs),
carbon nanofibers (CNFs), transition metal oxides (TMOs), layered transition metal
dichalogenides (TMDs), metal–organic frameworks (MOFs), lithium titanates,
lithium transition metal orthosilicates, silicon, molybdenum- and vanadium-based
nanomaterials, gel polymer electrolytes, hydrogels, and conducting polymer
nanocomposites. As a whole, this book provides a detailed discussion of the current
knowledge on the synthesis of various nanostructured materials, their properties
and characterizations, functionalization strategies, design and development of LIBs
and SCs, and explores the key requirement areas for the development of efficient
energy storage devices. A scientific book of this scale is highly needed to explore and
comprehensively discuss the recent advances, emerging trends, and the technical
challenges in using different nanostructured materials in LIBs and SCs-based
energy storage devices. Overall, this book will be a valuable source of reference for
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1.1 Introduction

Lithium-ion batteries (LIBs) nowadays have found their applications in various
areas as portable electrical devices (mobile phones and tablets) and electrical
and hybrid vehicles [1–3]. They offer some benefits like high power density,
environmental friendliness, and suitable lifetime. Conventional LIBs include a
graphite anode, a cathode with the general formula of LiTMO2 (TM (transition
metals): Ni, Mn, etc.), and an organic liquid electrolyte. The electrolyte is mostly
based on some carbonate-based solvents like ethylene carbonate (EC), ethyl methyl
carbonate (EMC), and dimethyl carbonate (DMC), a conducting salt (LiPF6), and
some additive materials [4, 5]. There are many motivations for further research
on LIBs, such as decreasing the battery degradation, increasing lifetime and
energy density, using environmentally friendly and recyclable materials, and
decreasing the cost. Therefore, a review of the types and preparation methods of
LIBs, future trends, and key issues regarding lithium batteries is provided in this
chapter.

Nanostructured Materials for Energy Storage, First Edition.
Edited by Kalim Deshmukh and Mayank Pandey.
© 2024 WILEY-VCH GmbH. Published 2024 by WILEY-VCH GmbH.



2 1 Lithium-Ion Batteries

1.2 Lithium-Ion Batteries

1.2.1 Fundamental Principles

Researchers are now putting in a lot of time and effort to come up with better ways
to store energy. For the commercialization of alternative energy and consequently
the substitution of fossil fuels and existing energy sources, several strategies are
essential. Because of their high energy density, extended service lifetime, minimal
self-discharge, and low volumetric and weight losses, rechargeable LIBs have an
essential role in this industry [6–13].

Furthermore, the LIBs act as energy storage with the highest efficiency for a vari-
ety of portable devices, including laptops, mobile phones, and digital electronics
[14–19]. However, the use of LIBs in pure electric vehicles (PEVs), hybrid electric
vehicles (HEVs), and plug-in HEVs (PHEVs) requires between two and five times the
energy density than current lithium battery technology (150 Wh kg−1) can provide.
Increasing the lithium batteries’ energy density may be accomplished by producing
high-capacity cathode and anode electrode materials or by employing high-voltage
cathode active substances as electrodes. The electrolyte breakdown that happens at
more than 4.2 V vs. Li/Li+ is one of the key obstacles to designing a high-voltage
cathode in LIBs. In this regard, significant research is still underway to increase the
efficiency of LIBs employing organic and inorganic-based materials [20–22].

The present concept of LIBs is based on the use of transition metal oxides or
phosphates as active materials on the cathode side (LiMn2O4, LiCoO2, LiFePO4,
LiCo1/3Mn1/3Ni1/3O2, and so on). On the other hand, the anode uses graphite
as its active element. A polypropylene/polyethylene membrane filled with an
electrolyte comprising lithium salts (like LiPF6) in various percentages of organic
carbonates, including ethylene propylene and DMCs, separates the anode and
cathode. The separator keeps the electrodes from making electrical communication
while enabling lithium ions to move from the cathode to the anode when charging
and discharging. The passage of lithium ions from the anode to the cathode enables
the transformation of the chemical into electrical energy, which is referred to as the
second phenomenon.

Reversible capacity, long cycle life, strong electrical and ionic conductivity, the dif-
fusion of lithium into active material at a high rate, demonstrated eco-compatibility,
and low cost are all conditions for active materials to be deemed acceptable candi-
dates for LIBs. LiMn2O4, LiCoO2, and LiFePO4 are cathode materials of the highest
quality, while graphite is the most often utilized anode due to its superior proper-
ties such as low and flat working potential vs. Li, cheap cost, and long cycle life.
Nevertheless, graphite permits just one Li ion with 6 carbon atoms to be interca-
lated (see Figure 1.1), giving a stoichiometry of LiC6 and a 372 mAh g−1 reversible
capacity. The penetration rate of lithium into materials containing carbon is between
10−12 and 10−6 cm2 s−1 (ranging from 10−9 to 10−7 cm2 s−1 for graphite), leading to
low energy density. The replacement of graphite anodes with substances compris-
ing greater energy, capacity, and power density is thus critical. Despite its enormous
capacity (3860 mAh g−1), lithium metal cannot be used as an anode in secondary



1.2 Lithium-Ion Batteries 3

Anode

Electrolyte

A

Cu
current

collector

Al
current

collector

Graphene
structure

Solvent
molecule

LiMO2 layer
structure

Li+

Cathode
e e

e

e

e

e

e

e

e

e

e

Figure 1.1 Schematic representation of lithium insertion/de-insertion mechanism for
current rechargeable lithium battery. Source: Ref. [23], Copyright 2011. American
Association for the Advancement of Science.

batteries due to health and safety considerations. A short circuit between the anode
and the cathode may occur if tree growth occurs on lithium metal.

1.2.2 Recent Trends

Transportation systems and energy consumption may be accurately measured by
population growth and the development of cities. LIBs were originally intended for
use in electric vehicle (EV) transportation, residential energy storage, and, more
widely, the elimination of community reliance on fossil fuels, among other appli-
cations. Because of its increasing acceptability and commercial diffusion by electric
machines, LIBs technology is expected to be a major accomplishment in renewable
energy sources. In reality, when it comes to energy and power production, LIBs out-
perform all other battery technologies. For this reason, battery technology that can
alter the situation has been the primary focus of most studies so far. Historical evi-
dence indicates that LIB technology is quite recent, having just been in a commercial
application for around thirty years.
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Figure 1.2 Number of publications related to LIB topics. Source: Scopus.

Since its debut commercialization by Sony in 1991, the LIBs’ performance has
continuously improved, allowing for these accomplishments. Improvements are
made not only in terms of specific energy (Wh kg−1) and energy density (Wh l−1) but
also in terms of safety, affordability, and charging rate [24, 25]. Nevertheless, further
progress is required to accelerate the energy revolution that our contemporary
civilization is experiencing.

Figure 1.2 displays the number of publications related to LIB topics. The growing
number of relevant scientific articles from 2000 to 2019 demonstrates the dramatic
increase in academic research on LIBs. During the same time period, almost 10,500
patents relating to LIBs were published (source: Google Patents). Consequently, the
cars powered by batteries face an uphill battle against vehicles powered by inter-
nal combustion engine (ICE)-driven that are more than 150 years old. LIBs, electric
machines, and other LIB-related products were mass-produced and commercialized
as a result of the pledges and financial backing of the Central Financial Authority
(CFA). Stanley Whittingham, Akira Yoshino, and John Goodno, three of the technol-
ogy’s pioneers, have been awarded the 2019 Nobel Prize in Chemistry by the Royal
Swedish Academy of Sciences. It demonstrated that there had been a significant
shift in research and development, as well as the influence of LIBs on our civiliza-
tion. Nevertheless, it is anticipated that all essential operational parameters of LIB
technology (such as energy, safety, power, and cost) will continue to improve. EVs
such as HEVs, PHEVs, or all-electric EVs (BEVs) are projected to gain in popular-
ity as time goes on. Because the automobile industry accounts for more than 60%
of all LIB production globally, it is, in reality, the driving force behind these break-
throughs. It is crucial to remember that EVs accounted for “just” little more than
1% of total automotive sales globally in 2017 [26]. It is important to note that this



1.2 Lithium-Ion Batteries 5

percentage surpassed 4% in 2020, more than four years beyond the original forecast.
People are encouraged to purchase BEVs and PHEVs by national authorities that
supply subsidies (purchase credits) or tax advantages. There are plans to enhance
these incentives in almost every EU member state, and several have already put lim-
itations on the purchase of ICE vehicles (Figure 1.3).

Incentives have also been provided in the United States, Japan, and China. These
framework initiatives have surely aided in the rise of worldwide EV registrations
(Figure 1.4a) and cumulative sales (Figure 1.4b), both of which have shown excellent
growth rates. It should be noted that, despite the fact that financial incentives for EVs
in China and the United States were higher in 2020, resulting in a higher worldwide
growth rate (37%), sales in both countries neared the previous year’s level, while
sales in Europe, for example, grew.

Customers may be put off by the high cost of a new EV compared to a conven-
tional vehicle powered by an ICE. Battery costs are expected to fall over the next
several years owing to increasing manufacturing and the usage of cheaper metals
more costly than cobalt (Figure 1.5) [29]. But it is worth noting that the price per
kilowatt-hour at the pack level decreased by nearly 85% between 2010 and 2018. The
NEDO 2030 research and development targets for the future generation of batteries
indicate that battery pack costs may reduce again (Figure 1.5) [29].

The LIBs, as previously stated, are likely to improve in all operational mea-
surements. Therefore, security is of paramount importance. Fires and explosions
produced by unintended combustion of volatile solvents used in LIBs are com-
parable to those caused by gasoline or diesel fuel, according to a National
Highway Traffic Safety Administration (NHTSA) assessment on the danger of
electrochemical failure. Figure 1.6 demonstrates the schematic representation
of the electrolyte, anode, and cathode constituents utilized in battery research
and development for EVs [29]. There is no doubt that safety can and should
be improved, but major strides have already been made in this regard. It is
also expected that in driving distances of 500 km (300 miles) or more, with
charging times of 10–15 minutes or less, they will need refueling equal to that
of ICE-powered cars. The employment of solid or liquid electrolytes, cathode
materials without cobalt, increased understanding of interconnections, and the
long-term usage of future LIBs are all techniques that are consistent with each
other [29].

The importance of manufacturing and recycling facilities for the creation
of raw materials and cells cannot be overestimated. The manufacture of LIBs
is currently primarily concentrated in Asia, particularly in Korea, China, and
Japan. Nevertheless, an increase in global manufacturing is required to fulfill
the escalating demands of the automobile industry. While Tesla is expected to
boost its cell output in the United States to 22 GWh per year, manufacturing
over 300 GWh is now on the table in Europe. To fulfill the rising demand for
electric cars, however, a major increase in manufacturing will be required in
the near future. Figure 1.7 shows the selected most popular research trends in
rechargeable Li and Li-ion battery fields for achieving high energy densities in
future batteries [30].
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Figure 1.5 Pack-level lithium battery pricing (a portion of this diagram is derived from
Bloomberg NEF’s “Behind-the-scenes view at the expense of lithium-ion batteries”
published by NEDO for 2030). Source: Ref. [29]. Copyright 2020. Reproduced with
permission from Elsevier.

1.2.3 Which Options Are Available for Battery-Active Materials?

The energy density of the next generations of lithium and LIBs can be determined by
the specific capacity and the voltage at which the active materials of the battery work.
Studies, financial support, and efforts have been made in the field of the production
of electrode materials for lithium-ion and lithium batteries. The advantages, disad-
vantages, and the most commonly used anode and cathode materials are reviewed
in Figures 1.8, 1.9, and 1.10 [31–33].
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Figure 1.8 shows the growth of LIB operating electrodes. Generally, cathode
materials should have a high voltage and anode materials should possess a low
voltage, while every electrode material should benefit from a high specific capacity
[31]. Materials that have the mentioned properties can lead to the improvement
of Li-ion and Li batteries’ energy densities and also result in the reduction of the
size and weight of future batteries. On the other hand, ecological and economic
factors such as production cost, benignity, and abundance should not be neglected.
Figure 1.9 displays the voltage in contrast with the capacity chart of the function
of anode and cathode materials for high-rate LIB [32]. Figure 1.10a demonstrates
a graphical depiction of the engaged anode materials for the following genera-
tion of lithium batteries and illustrates the capability compression and potential
(in contrast with Li/Li+) [33]. Figure 1.10b represents a graphical depiction of
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Figure 1.7 The selected most popular research trends in rechargeable Li and Li-ion
battery fields for achieving high energy densities in future batteries. Source: Ref. [30].
Copyright 2020. Reproduced with permission from the Royal Society of Chemistry.

three various kinds of lithium storage anodes, along with their benefits and
drawbacks [33].

1.2.3.1 High-Voltage Cathode Materials
The average work potential and the specific volume-weight capacities for many
kinds of thick interlayer cathode materials, such as commercial and high-voltage
cathodes, have been shown in Figure 1.11 which indicates that the crystal struc-
ture of LiMO2 (M = Ni, Co, or Mn) and its derivatives have lots of lithium and
manganese [30]. In Figure 1.11, it can be seen that the commercial cathodes of
lithium manganese oxide (LMO, LiMnO2), lithium cobalt oxide (LCO, LiCoO2),
and lithium iron phosphate (LFP, LiFePO4) have low work potential (<3.8 V) and
also low volume-weight capacities (<750 mAh cm−3 and <180 mAh g−1) [30].

Great efforts have been made in the field of cell energy density progress,
optimization, and research on the materials with better capacities and higher
work potentials in the construction of the cathode (for example, >3.8 V and
>200 mAh g−1). Previous studies report that layered oxides containing high per-
centages of nickel, lithium, and manganese can be considered solutions for the
near future. The group of layered oxides with high Ni contents (LiNi1−xMxO2,
M = Co, Mn, and Al) have improved gravimetric and volumetric specific capacities
compared with other intercalation-type cathode materials that have been utilized
in some of the commercial products. This group includes LiNi0.8Co0.15Al0.05O2
(NCA, ∼220 mAh g−1 and ∼980 mAh cm−3) and LiNi0.8Co0.1Mn0.1O2 (NCM811,
∼200 mAh g−1 and ∼932 mAh cm−3). In addition, there are also substantial options
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Figure 1.8 Depiction of the growth of lithium-ion battery operating electrodes.
Source: Ref. [31]. Copyright 2019. Reproduced with permission from the Royal Society of
Chemistry.

such as LiNi1/3Co1/3Mn1/3O2 (NCM333, ∼150 mAh g−1) and LiNi0.6Co0.2Mn0.2O2
(NCM622, ∼170 mAh g−1). The materials with high nickel content, such as
xLi2MnO3–(1−x) LiMO2 or Li1+xM1−xO2, M = Mn, Ni, Co, in comparison with
the layered oxides with high values of nickel are more inexpensive and have
better capacities (250–300 mAh g−1). For example, the work potential, specific
weight capacity, and specific volume capacity for the high-voltage spinel oxide
LiNi0.5Mn1.5O4 (LNMO) are 4.7 V, 147 mAh g−1, and 626 mAh cm−3, respec-
tively. According to the reports of the previous study, the better work potential
and specific gravity can result in high voltages using periodic LCO cathodes
(high-voltage LCO: H-LCO) [34] of sulfates and phosphates (low specific
capacity ∼170 mAh g−1) such as LiNiSO4F and Li2NiPO4F. They are polyan-
ionic compounds and can produce good work potentials in the interval from
4.0 to 5.3 V.


