

Houben-Weyl

Methods of Organic Chemistry

Additional and Supplementary Volumes to the 4th Edition

Editorial Board: K.H. Büchel, J. Falbe, H. Hagemann, M. Hanack, D. Klamann,
R. Kreher, H. Kropf, M. Regitz, E. Schaumann

Vol. E 21 c

Stereoselective Synthesis:

C—C Bond Formation by Addition to C=C,
Cycloaddition Reactions, Ene Reactions

Publication Year
1995

ISBN (Print)
978-3-13-798004-9

 Thieme

Overview of Contents

Volume E 21c

Part D.	Synthesis of Chiral Compounds by Bond Formation	
1.	Formation of C – C Bonds	
1.5.	Reactions Involving Olefinic Double Bonds	
1.5.4.	Addition of Free Radicals to Olefinic Double Bonds	2203
1.5.5.	Addition of Carbenium Ions to Olefinic Double Bonds and Allylic Systems	2288
1.5.6.	Allylic Substitutions Catalyzed by Palladium Complexes	2371
1.5.7.	Hydroboration of Olefinic Double Bonds	2474
1.5.8.	Addition to Olefinic Double Bonds Catalyzed by Transition Metals ..	2488
	Bibliography to Part D.1.5.	2734
1.6.	Pericyclic Reactions	2735
1.6.1.	Cycloadditions	2735
1.6.1.1.	[4 + 2] Cycloadditions	2735
1.6.1.1.1.	Intermolecular [4 + 2] Cycloadditions	2735
1.6.1.1.2.	Intramolecular [4 + 2] Cycloadditions	2872
1.6.1.1.3.	Hetero [4 + 2] Cycloadditions	2905
1.6.1.2.	[3 + 2] Cycloadditions	2953
1.6.1.2.1.	1,3-Dipolar Cycloadditions	2953
1.6.1.2.2.	Diradical Cycloadditions	2988
1.6.1.2.3.	[3 + 2] Cycloadditions of Organometallic Compounds	2997
1.6.1.3.	Thermally Induced [2 + 2] Cycloadditions	3060
1.6.1.4.	Light-Induced [2 + 2] Cycloadditions	3085
1.6.1.5.	[1 + 2] Cycloadditions	3179
1.6.2.	Ene Reaction	3271
	Bibliography to Part D.1.6.1. – D.1.6.2.	3298
	For Contents to all Volumes see p VII	
	For Detailed Table of Contents to Volume E 21 c see p XI	
	For List of Abbreviations see inside back cover	

METHODS OF
ORGANIC CHEMISTRY

METHODS OF ORGANIC CHEMISTRY

(HOUBEN-WEYL)

ADDITIONAL AND SUPPLEMENTARY VOLUMES
TO THE 4TH EDITION

EDITORIAL BOARD

K. H. BÜCHEL · J. FALBE · H. HAGEMANN
LEVERKUSEN DÜSSELDORF LEVERKUSEN

M. HANACK · D. KLAMANN · R. KREHER
TÜBINGEN HAMBURG DORTMUND

H. KROPP · M. REGITZ · E. SCHAUmann
HAMBURG KAISERSLAUTERN CLAUSTHAL

EDITORIAL OFFICE

J. P. RICHMOND · J. Y. ROWDEN
V. POCK · J. STINCHCOMBE

STUTTGART

GEORG THIEME VERLAG STUTTGART · NEW YORK

VOLUME E 21 c

STEREOSELECTIVE SYNTHESIS

Editors

Günter Helmchen Reinhard W. Hoffmann

Heidelberg / Germany

Marburg / Germany

Johann Mulzer

Frankfurt / Germany

Ernst Schaumann

Clausthal / Germany

Authors

T. Bauer

Warszawa / Poland

P. Binger

Mülheim, Ruhr / Germany

C. Chapuis

Geneva / Switzerland

M. Cinquini

Milano / Italy

R. Conrads

Arnsberg / Germany

D. Craig

London / Great Britain

F. Cozzi

Milano / Italy

P. Eilbracht

Dortmund / Germany

D. Fox

Kent / Great Britain

B. Giese

Basel / Switzerland

T. Göbel

Basel / Switzerland

R. Hoffmann

Münster / Germany

J. Jurczak

Warszawa / Poland

B. Kopping

Basel / Switzerland

T. Lübbbers

Basel / Switzerland

J. Mattay

Kiel / Germany

P. Metz

Münster / Germany

U. Nubbemeyer

Berlin / Germany

W. Sander

Bochum / Germany

H.-U. Reißig

Dresden / Germany

B. B. Snider

Waltham / USA

J. K. Whitesell

Austin / USA

M. Zajdelowicz

Torun / Poland

H. Zipse

Basel / Switzerland

This book mentions numerous commercial and proprietary trade names, registered trademarks and the like (not necessarily marked as such), patents, production and manufacturing procedures, registered designs and designations. The Editors and Publishers wish to point out very clearly that the present legal situation in respect of these names or designations or trademarks must be carefully examined before making any commercial use of the same. Industrially produced apparatus and equipment are included to a necessarily restricted extent only and any exclusion of products not mentioned in this book does not imply that any such selection of exclusion has been based on quality criteria or quality considerations.

Die Deutsche Bibliothek – CIP-Einheitsaufnahme

Methoden der organischen Chemie / (Houben-Weyl). –

Stuttgart ; New York : Thieme

Teilw. begr. von Eugen Müller und Otto Bayer. – Teilw. begr. von
Eugen Müller ... Fortgef. von Heinz Kropf. – Erw.- und Folgebd. zur
4. Aufl. hrsg. von K. H. Büchel ... – Teilw. u. d. T.: Methods of
organic chemistry

NE: Müller, Eugen [Hrsg.]; Houben, Josef [Hrsg.]; Kropf, Heinz
[Hrsg.]; Büchel, Karl H. [Hrsg.]; Methods of organic chemistry

Additional and suppl. vol. of the 4. ed.

Vol. E 21 c. Stereoselective synthesis / ed. Günter Helmchen
... Authors H. Ahlbrecht ... – 1995

NE: Helmchen, Günter [Hrsg.]; Bauer, Tomasz

Library of Congress Card No.: applied for

Date of publication 27.10.1995

Copyright and all related rights reserved, especially the right of copying and distribution, multiplication and reproduction, as well as of translation. No part of this book may be reproduced by any process, whether by photostat or microfilm or any other procedure, without previous written consent by the Publisher. This also includes the use of electronic media of data processing or reproduction of any kind.

© 1995, Georg Thieme Verlag, Rüdigerstraße 14, D-70469 Stuttgart – Printed in Germany

Typesetting: Konrad Tritsch, Druck- und Verlagsanstalt GmbH, D-97070 Würzburg

Printing: Tutte Druckerei GmbH, D-94119 Salzweg-Passau

ISBN 3-13-798004-6

Preface

There was a time when stereoselectivity of a reaction was mostly of mechanistic interest and reactions that could result in the formation of stereoisomers were considered a nuisance and had to be avoided at best. However, this situation has changed over the past two decades, during which stereoselective synthesis has grown into a reliable methodology. This development began with the remodelling of readily available chiral compounds from nature. More recently, these “ex-chiral-pool” synthetic strategies have been complemented and, in many cases, surpassed by the powerful techniques of asymmetric synthesis.

Originally, only a few laboratories were concerned with the design of routes to enantiomerically pure compounds. Since the demand for nonracemic chiral drugs and pesticides has enormously increased, methods of asymmetric synthesis are now bound to be applied by almost every practising chemist. However, newcomers to the field soon find themselves confronted with a confusing vocabulary, with no guidance as to the appropriate method to solve their problem, and with lack of well-documented procedures. This situation frequently leads to frustration or at least to unnecessary work.

This called for the present volume set of the Houben-Weyl series *Methods of Organic Chemistry*. Since the 1950s Houben-Weyl has served the synthetic community by giving comprehensive critical reviews of the existing synthetic methods in a consistent style and with high reliability. The editors, authors and publisher of Houben-Weyl “Stereoselective Synthesis” have worked together to confer this philosophy to the field of asymmetric synthesis. Thus, we hope to supply a treatise which should become the standard reference in the field.

“Stereoselective Synthesis” gives a comprehensive treatment of chemical transformations in which a new stereocenter is created, i.e., all enantio- and those diastereodifferentiating reactions which allow the absolute and relative configuration of a new stereogenic unit to be controlled. Consequently, mechanism-controlled reactions (e.g. S_N2 displacements), “ex-chiral-pool” syntheses which do not lead to new stereogenic units, and *E/Z* selective formation of alkenes are not covered.

Following the general introductory chapters covering principles, nomenclature, separation and analysis, the chapters on individual synthetic methods are organized by the type of bond that is broken or formed. Only starting material and products are considered as a basis for the classification, not the reaction mechanism. In the typical Houben-Weyl style, the scope of the most important methods is illustrated with tables of selected examples. Insight into the practical application of the methods can be obtained from the experimental procedures provided.

The wealth of material forced us to break up the work into five volumes (E21a through e). Access to and properties of the common chiral auxiliaries, solvents, reagents and catalysts which are used in various different reactions is covered comprehensively in Volume E 21e avoiding duplication of information in the individual chapters.

The transition of Houben-Weyl from German to English brought about changes in the layout and in the style of presentation without, however, sacrificing the high standard of quality and reliability that is the hallmark of Houben-Weyl.

Special thanks go to our 101 authors who have spent a great deal of time and effort to achieve the goals we have set. We are also indebted to the editorial staff in Stuttgart, who had to cope with the special challenges of editing and publishing a gigantic amount of complex material.

May 1995

Günter Helmchen

Reinhard W. Hoffmann

Johann Mulzer

Ernst Schaumann

Contents to all Volumes

Volume E 21 a

Part A. General Aspects

1. **Nomenclature and Vocabulary of Organic Stereochemistry**
2. **Basic Principles of EPC Synthesis**
3. **Determination of Enantiomeric Purity**
 - 3.1. Direct Methods
 - 3.2. Formation of Diastereomers
4. **Determination of Absolute and Relative Configuration**
 - 4.1. Nuclear Magnetic Resonance Methods (Relative Configuration)
 - 4.2. X-ray and Neutron Diffraction Methods
 - 4.3. Chemical Methods
 - 4.4. Chiroptical Methods

Part B. Synthesis of Axially Chiral Compounds

1. **Allenes**
2. **Biaryls**

Part C. Synthesis of Chiral Compounds by Bond Disconnection

Part D. Synthesis of Chiral Compounds by Bond Formation

1. **Formation of C–C Bonds**
 - 1.1. Alkylation Reactions
 - 1.1.1. Chiral Nucleophiles
 - 1.1.2. Chiral Electrophiles
 - 1.1.3. Chiral Additives
- 1.2. Insertion into C–H Bonds

Volume E 21 b

- 1.3. Addition to Carbonyl Groups (C=O)
 - 1.3.1. σ -Type Organometallic Compounds
 - 1.3.2. Benzyl-Type Organometallic Compounds
 - 1.3.3. Allyl-Type Organometallic Compounds
 - 1.3.4. Enolates
 - 1.3.5. Azaenolates or Nitronates
 - 1.3.6. Metalated Sulfoxides or Sulfoximides

- 1.3.7. Enzyme-Catalyzed Hydrocyanation
- 1.4. Addition to Imino Groups (C=N)
- 1.4.1. σ -Type Organometallic Compounds
- 1.4.2. Allylic and Allenic Organometallic Compounds
- 1.4.3. Enolates and Related Compounds
- 1.4.4. Strecker and Ugi Reactions
- 1.4.5. *N*-Acyliminium Ion Additions
- 1.5. Reactions Involving Olefinic Double Bonds
- 1.5.1. Vinylogous Substitution Reactions
- 1.5.2. Addition to α, β -Unsaturated Carbonyl Compounds (Michael-Type Additions)
- 1.5.3. Addition to Olefinic Double Bonds; Enamines, Nitroalkenes, 4,5-Dihydrooxazoles, α, β -Unsaturated Sulfones, Sulfoxides and Sulfoximines

Volume E 21 c

- 1.5.4. Addition of Free Radicals
- 1.5.5. Addition of Carbenium Ions to Olefinic Double Bonds and Allylic Systems
- 1.5.6. Allylic Substitutions Catalyzed by Transition Metal Complexes
- 1.5.7. Hydroboration of Olefinic Double Bonds
- 1.5.8. Addition to Olefinic Double Bonds Catalyzed by Transition Metals
- 1.6. Pericyclic Reactions
- 1.6.1. Cycloadditions
- 1.6.2. Ene Reaction

Volume E 21 d

- 1.6.3. Sigmatropic Rearrangements and Electrocyclic Reactions
- 2. Formation of C–H Bonds**
 - 2.1. Protonation of Organometallic Compounds, Enolates and Nitronates
 - 2.2. Radical Reactions
 - 2.3. Reduction of Carbonyl Groups (C=O)
 - 2.3.1. Hydrogenation
 - 2.3.2. Reduction with Metals
 - 2.3.3. Reduction with Metal Hydrides
 - 2.3.4. Hydrosilylation and Subsequent Hydrolysis
 - 2.3.5. Reduction with C–H Hydride Donors
 - 2.3.6. Enzyme-Catalyzed and Biomimetic Reductions
 - 2.4. Reduction of Imino Groups (C=N)
 - 2.5. Reduction of Olefinic Double Bonds
 - 2.5.1. Hydrogenation
 - 2.5.2. Hydroboration and Hydroalumination
 - 2.6. [1, n] Sigmatropic Rearrangements
- 3. **Formation of C–Hal Bonds**

Volume E 21 e

- 4. **Formation of C–O Bonds**
- 4.1. Oxygenation of Enolates

- 4.2. Hydroboration of Olefinic Double Bonds Followed by Oxidation
- 4.3. Hydrosilylation of Olefinic Double Bonds Followed by Oxidation
- 4.4. 1,2-Dihydroxylation of Olefinic Double Bonds
- 4.5. Epoxidation of Olefinic Double Bonds
- 4.6. Cyclization onto Olefinic Double Bonds Forming Lactones and Ethers
- 4.7. Conjugate Addition of *O*-Nucleophiles
- 4.8. Microbial Insertion of Oxygen into C–H Bonds
- 4.9. Allylic Oxidation with Singlet Molecular Oxygen
- 4.10. Allylic Oxidation with Selenium Dioxide
- 4.11. Sigmatropic Rearrangements
- 5. **Formation of C–S Bonds**
- 6. **Formation of C–Se or C–Te Bonds**
- 7. **Formation of C–N Bonds**
- 7.1. Electrophilic Amination
- 7.2. Addition to Olefinic Double Bonds
- 7.3. Conjugate Addition of *N*-Nucleophiles
- 7.4. Allylic Substitution Catalyzed by Palladium Complexes
- 7.5. Allylic Amination
- 7.6. Sigmatropic Rearrangements
- 8. **Formation of C–P Bonds**
- 9. **Formation of C–Si Bonds**
- 10. **Formation of C–Sn Bonds**

Volume E 21f

- Appendix** **Survey of Chiral Auxiliaries, Solvents, Reagents, and Catalysts**
- Author Index**
- Subject Index**
- Compound Index**

Table of Contents

Volume E 21c

Part D.	Synthesis of Chiral Compounds by Bond Formation	
1.5.4.	Formation of C–C Bonds by Addition of Free Radicals to Olefinic Double Bonds	2203
	(B. GIESE, T. GÖBEL, B. KOPPING, H. ZIPSE)	
1.5.4.1.	Intermolecular Reactions	2203
1.5.4.1.1.	Chiral Radicals	2203
1.5.4.1.1.1.	With Auxiliary Control	2203
1.5.4.1.1.2.	Substrate Control	2205
1.5.4.1.2.	Chiral Alkenes	2237
1.5.4.1.2.1.	With Auxiliary Control	2237
1.5.4.1.2.2.	Substrate Control	2242
1.5.4.2.	Cyclization	2250
1.5.4.2.1.	Acyclic Systems	2250
1.5.4.2.1.1.	Formation of Five-Membered Rings	2250
1.5.4.2.1.2.	Formation of Six-Membered Rings	2261
1.5.4.2.1.3.	Auxiliary-Controlled Cyclizations	2265
1.5.4.2.2.	Annulation of Cyclic Systems	2267
1.5.4.2.2.1.	Formation of Five-Membered Rings (Five-Ring Annulation)	2267
1.5.4.2.2.2.	Formation of Six-Membered Rings (Six-Ring Annulation)	2278
1.5.4.2.3.	Tandem Cyclizations	2282
1.5.5.	Formation of C–C Bonds by Addition of Carbenium Ions to Olefinic Double Bonds and Allylic Systems	2288
	(U. NUBBEMEYER)	
1.5.5.1.	Carbenium Ion Addition to Simple Alkenes	2290
1.5.5.2.	The Prins Reaction	2295
1.5.5.2.1.	Intermolecular Prins Reaction	2295
1.5.5.2.2.	Intramolecular Prins Reaction	2298
1.5.5.2.2.1.	Type-I Reactions: 5- and 6- <i>exo</i> Cyclizations	2298
1.5.5.2.2.2.	Type-II Reactions: <i>endo</i> Cyclizations	2301
1.5.5.2.2.3.	Type-III Reactions: Formation of Cyclic Ethers	2304
1.5.5.3.	Carbenium Ion Olefin Cyclization	2309
1.5.5.3.1.	Monocyclizations	2309
1.5.5.3.1.1.	Formation of Five-Membered Rings	2309
1.5.5.3.1.2.	Formation of Six-Membered Rings	2312
1.5.5.3.1.3.	Formation of Seven-Membered Rings	2321
1.5.5.3.2.	Bicyclizations	2322
1.5.5.3.2.1.	Formation of Bicyclo[4.3.0] Systems: Hydrindanes	2322
1.5.5.3.2.2.	Formation of Bicyclo[4.4.0] Systems: Decalins	2324
1.5.5.3.2.3.	Formation of Steroidal Systems via Bicyclization	2330
1.5.5.3.3.	Tricyclizations	2333
1.5.5.3.3.1.	Tricyclizations Forming Nonsteroidal Systems	2333
1.5.5.3.3.2.	Tricyclizations Forming Steroidal Compounds	2336
1.5.5.3.4.	Tetracyclizations	2343

1.5.5.3.5.	Pentacyclizations	2345
1.5.5.4.	Transannular Carbenium Ion Olefin Cyclizations	2350
1.5.5.4.1.	Reactions of Cyclooctenes	2350
1.5.5.4.1.1.	Formation of Bicyclo[3.3.0]octanes	2350
1.5.5.4.1.2.	Formation of Bicyclo[3.2.1]octanes	2353
1.5.5.4.1.3.	Reactions of Special Cyclooctenes	2354
1.5.5.4.2.	Reactions of Cyclononenes and the Formation of Bicyclo [4.3.0] Systems: Hydrindanes	2354
1.5.5.4.3.	Reactions of Cyclodecenes	2356
1.5.5.4.3.1.	Formation of <i>trans</i> -Bicyclo[4.4.0] Systems: <i>trans</i> -Decalins	2356
1.5.5.4.3.2.	Formation of <i>cis</i> -Bicyclo[4.4.0] Systems: <i>cis</i> -Decalins	2359
1.5.5.4.3.3.	Formation of Bicyclo[5.3.0] Systems: Hydroazulenes	2362
1.5.5.4.4.	Reactions of Cycloundecenes	2363
1.5.5.4.4.1.	Reactions of Humulene	2363
1.5.5.4.4.2.	Reactions of Humulene Monoepoxides	2364
1.5.5.4.5.	Reactions of Other Cycloalkenes	2366
1.5.6.	Formation of C–C Bonds by Allylic Substitutions Catalyzed by Palladium Complexes	2371
	(T. LÜBBERS and P. METZ)	
1.5.6.1.	Soft Carbanions and π -Allylpalladium Complexes	2371
	(T. LÜBBERS)	
1.5.6.1.1.	Simple Diastereoselectivity	2372
1.5.6.1.2.	Substrate-Induced Stereoselectivity	2375
1.5.6.1.2.1.	Intermolecular Reactions of π -Allylpalladium Complexes	2376
1.5.6.1.2.2.	Intramolecular Reactions of π -Allylpalladium Complexes	2413
1.5.6.1.3.	Enantioselective Catalysis	2429
1.5.6.1.3.1.	Intermolecular Reactions of π -Allylpalladium Complexes	2431
1.5.6.1.3.2.	Intramolecular Reactions of π -Allylpalladium Complexes	2449
1.5.6.1.4.	Double Stereodifferentiation	2450
1.5.6.2.	Enol Derivatives of Monocarbonyl Compounds or Aza Analogs and π -Allylpalladium Complexes	2453
	(P. METZ)	
1.5.6.2.1.	Substrate-Induced Stereoselectivity	2453
1.5.6.2.2.	Enantioselective Catalysis	2460
1.5.6.3.	Organometallic Compounds and π -Allylpalladium Complexes	2462
	(P. METZ)	
1.5.6.3.1.	Simple Diastereoselectivity	2462
1.5.6.3.2.	Substrate-Induced Stereoselectivity	2463
1.5.6.3.3.	Enantioselective Catalysis	2472
1.5.7.	Formation of C–C Bonds by Hydroboration of Olefinic Double Bonds	2474
	(M. ZAIDLEWICZ)	
1.5.7.1.	Synthesis of Chiral Alkynes, Alkenes and Alkanes	2474
1.5.7.2.	Synthesis of α -Chiral and Homologated Alcohols, Aldehydes and Acids	2476
1.5.7.3.	Synthesis of α -Chiral Ketones	2479
1.5.7.4.	Synthesis of β -Chiral Ketones, Esters and Nitriles	2484
1.5.8.	Formation of C–C Bonds by Addition to Olefinic Double Bonds Catalyzed by Transition Metals	2488
	(P. EILBRACHT)	
1.5.8.1.	General Principles of Stereoselection in Organometallic Addition Reactions and Catalysis	2490

1.5.8.1.1.	Stereochemistry of Organometallic C–C Bond Forming Addition Reactions	2490
1.5.8.1.2.	Chiral Ligands Used in Asymmetric Homogeneous Catalysis	2492
1.5.8.1.3.	Application and Recovery of Chiral Ligands	2493
1.5.8.1.4.	Current Problems and Trends	2494
1.5.8.2.	Additions with C–C/C–H Bond Formation (Hydrocarboration)	2495
1.5.8.2.1.	Hydrovinylation and Hydroalkenylation via Alkene (Alkyne) Dimerization and Codimerization	2495
1.5.8.2.2.	Hydroformylation	2503
1.5.8.2.2.1.	General Aspects	2503
1.5.8.2.2.2.	Stereochemistry and Diastereoselectivity	2506
1.5.8.2.2.3.	Ligands, Catalyst Precursors and Reaction Conditions in Enantioselective Hydroformylation	2514
1.5.8.2.2.4.	Asymmetric Hydroformylation of Various Substrate Types	2522
1.5.8.2.2.5.	General Conclusions, Stereochemical Models	2552
1.5.8.2.3.	Hydroacylation, Hydrocarbonylation	2559
1.5.8.2.3.1.	Hydrocarbonylative Coupling of Alkenes and Alkynes	2559
1.5.8.2.3.2.	Hydroacylation of Alkenes with Aldehydes	2562
1.5.8.2.4.	Hydrocarboxylation	2574
1.5.8.2.4.1.	Stereochemistry and Asymmetric Induction	2574
1.5.8.2.4.2.	Asymmetric Hydrocarboxylation of Various Substrate Types	2576
1.5.8.2.5.	Hydrocyanation	2591
1.5.8.2.5.1.	General Aspects	2591
1.5.8.2.5.2.	Stereochemistry	2592
1.5.8.2.5.3.	Asymmetric Hydrocyanation	2595
1.5.8.2.6.	Other Methods of Stereoselective Hydrocarboration	2600
1.5.8.3.	Additions with C–C/C–C Bond Formation (Dicarboration)	2615
1.5.8.3.1.	Oligomerization, Cooligomerization and Telomerization via Dicarborative Addition	2615
1.5.8.3.2.	Stereoselective Polymerization and Copolymerization	2621
1.5.8.3.3.	Stereoselective Carbocarbonylation and Dicarbonylation	2631
1.5.8.3.4.	Other Linear Dicarbortations	2639
1.5.8.3.5.	Cycloaddition and Cyclodimerization	2650
1.5.8.3.5.1.	[2 + 1] Cycloaddition, Cyclopropanation	2650
1.5.8.3.5.2.	Lewis Acid and Low-Valent Transition Metal Catalyzed Stereoselective [2 + 2] Cycloaddition	2659
1.5.8.3.5.3.	Transition Metal Catalyzed Stereoselective [3 + 2] Cycloaddition	2662
1.5.8.3.5.4.	Transition Metal Catalyzed [4 + 2] Cycloaddition	2668
1.5.8.3.5.5.	Transition Metal Catalyzed [4 + 4] Cyclization	2678
1.5.8.3.5.6.	Transition Metal Catalyzed Stereoselective Cyclooligomerization and Cocyclooligomerization	2681
1.5.8.3.5.7.	Transition Metal Catalyzed Stereoselective and Asymmetric Carbonylative Multicomponent Cycloaddition	2690
1.5.8.4.	Additions with C–C/C–Heteroatom Bond Formation (Heterocarboration)	2702
1.5.8.4.1.	Carbohydroxylation, Carboalkoxylation and Carbocarboxylation	2702
1.5.8.4.2.	Carboamination	2713
1.5.8.4.3.	Carbohalogenation	2719
1.5.8.4.4.	Transition Metal Catalyzed Addition of Organometallics (Carbometalation)	2725
	Bibliography to Part D.1.5.	2734

1.6.	Formation of C—C Bonds by Pericyclic Reactions	2735
1.6.1.	Cycloadditions	2735
1.6.1.1.	[4 + 2] Cycloadditions	2735
1.6.1.1.1.	Intermolecular [4 + 2] Cycloadditions	2735
	(J. JURCZAK, T. BAUER, C. CHAPUIS)	
1.6.1.1.1.1.	Noncatalyzed [4 + 2] Cycloadditions	2735
1.6.1.1.1.2.	Catalyzed [4 + 2] Cycloadditions	2811
1.6.1.1.1.3.	[4 + 2] Cycloadditions Catalyzed by Chiral Metal Catalysts	2856
1.6.1.1.2.	Intramolecular [4 + 2] Cycloadditions	2872
	(D. CRAIG)	
1.6.1.1.2.1.	Thermal Reactions	2872
1.6.1.1.2.2.	Catalyzed Intramolecular Diels—Alder Reactions	2897
1.6.1.1.3.	Hetero [4 + 2] Cycloadditions	2905
	(J. JURCZAK, T. BAUER and C. CHAPUIS)	
1.6.1.1.3.1.	[4 + 2] Cycloadditions of Homodienophiles to Heterodienes	2905
1.6.1.1.3.2.	[4 + 2] Cycloadditions of C=O Heterodienophiles to Homodienes	2914
1.6.1.1.3.3.	[4 + 2] Cycloadditions of C=S Heterodienophiles to Homodienes	2943
1.6.1.1.3.4.	[4 + 2] Cycloadditions of C=N Heterodienophiles to Homodienes	2946
1.6.1.2.	Formation of C—C Bonds by [3 + 2] Cycloadditions	2953
1.6.1.2.1.	1,3-Dipolar Cycloadditions	2953
	(M. CINQUINI and F. COZZI)	
1.6.1.2.1.1.	With Nitrones	2954
1.6.1.2.1.2.	With Nitrile Oxides	2966
1.6.1.2.1.3.	With Imine Ylides	2974
1.6.1.2.2	Diradical Cycloadditions	2988
	(W. SANDER)	
1.6.1.2.3.	[3 + 2] Cycloadditions of Organometallic Compounds	2997
	(P. BINGER and D. FOX)	
1.6.1.2.3.1.	Simple Diastereoselectivity	2997
1.6.1.2.3.2.	Substrate Stereocontrol	3036
1.6.1.2.3.3.	Auxiliary Control in Catalytic Processes	3049
1.6.1.2.3.4.	Chirally Modified Metal Catalysts	3055
1.6.1.3.	Thermal [2 + 2] Cycloadditions	3060
	(B. B. SNIDER)	
1.6.1.3.1.	Intermolecular Cycloadditions of Ketenes with Alkenes	3060
1.6.1.3.2.	Intramolecular Cycloadditions of Ketenes with Alkenes	3063
1.6.1.3.3.	Intermolecular Cycloadditions of Keteniminium Salts with Alkenes	3065
1.6.1.3.4.	Intramolecular Cycloadditions of Keteniminium Salts with Alkenes	3067
1.6.1.3.5.	Other Cycloadditions Forming Cyclobutanes	3069
1.6.1.3.6.	Cycloadditions of Ketenes with Carbonyl Compounds	3070
1.6.1.3.7.	Synthesis of β -Lactams	3071
1.6.1.4.	Formation of C—C Bonds by Light-Induced [2 + 2] Cycloadditions	3085
	[J. MATTAY and (in part) R. CONRADS and R. HOFFMANN]	
1.6.1.4.1.	Introduction, General Remarks, Equipment and Techniques	3085
1.6.1.4.2.	[2 + 2] Photocycloadditions of α, β -Unsaturated Carbonyl Compounds	3087
1.6.1.4.2.1.	Intermolecular Enone Cycloadditions	3087
1.6.1.4.2.2.	Intramolecular Enone Cycloadditions	3119
1.6.1.4.3.	Oxetanes via [2 + 2] Photocycloaddition to Carbonyl Compounds (Paterno—Büchi Reaction)	3133
1.6.1.4.3.1.	Introduction and Mechanism	3133
1.6.1.4.3.2.	Regioselectivity	3136

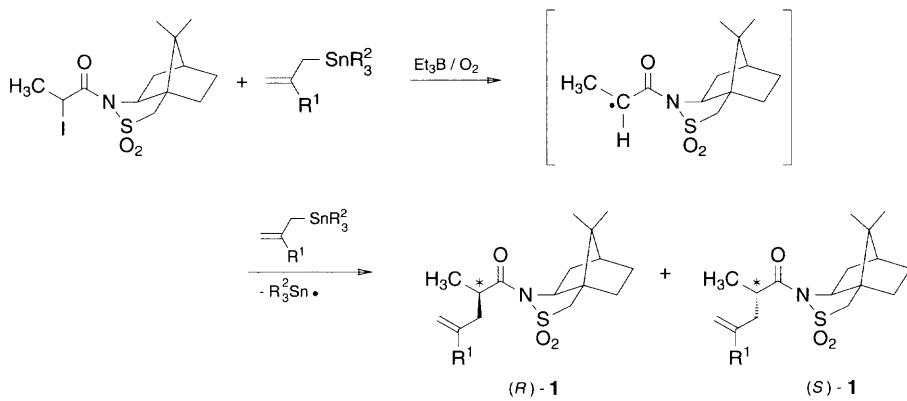
1.6.1.4.3.3.	Stereoselectivity	3137
1.6.1.4.3.4.	Asymmetric Induction	3139
1.6.1.4.3.5.	Intramolecular Oxetane Formation	3144
1.6.1.4.3.6.	Oxetanes from Furans	3146
1.6.1.4.3.7.	Oxetanes from Carboxylic Acid Esters	3148
1.6.1.4.3.8.	Oxetanes from Imides	3149
1.6.1.4.3.9.	Related [2 + 2] Photocycloadditions with Imines and Nitriles	3152
1.6.1.4.3.10.	A Tabular Survey of the Paterno–Büchi Reaction	3154
1.6.1.5.	Formation of C–C Bonds by [2 + 1] Cycloadditions	3179
	(H.-U. REISSIG)	
1.6.1.5.1.	Methylene and Alkylcarbene Transfer Reactions	3181
1.6.1.5.1.1.	Mechanism-Based and Simple Diastereoselectivity	3181
1.6.1.5.1.2.	Diastereofacial Selectivity	3184
1.6.1.5.1.3.	Enantioselective Reactions Employing Auxiliaries	3191
1.6.1.5.1.4.	Enantioselective Reactions Using Optically Active Catalysts	3204
1.6.1.5.2.	Alkenylcarbenes and Alkynylcarbenes	3209
1.6.1.5.3.	Aryl-Substituted Carbenes	3216
1.6.1.5.4.	Carbonyl-Substituted Carbenes	3220
1.6.1.5.4.1.	Simple Diastereoselectivity	3220
1.6.1.5.4.2.	Diastereofacial Selectivity	3226
1.6.1.5.4.3.	Enantioselective Reactions Employing Auxiliaries	3231
1.6.1.5.4.4.	Enantioselective Reactions Employing Optically Active Catalysts	3234
1.6.1.5.5.	Halogen-Substituted Carbenes	3251
1.6.1.5.5.1.	Mechanism-Based and Simple Diastereoselectivity	3251
1.6.1.5.5.2.	Diastereofacial Selectivity	3253
1.6.1.5.6.	Oxygen-Substituted and Fischer Type Carbenes	3258
1.6.1.5.7.	Nitrogen-Substituted Carbenes	3265
1.6.1.5.8.	Other Heteroatom-Substituted Carbenes	3268
1.6.2.	Formation of C–C Bonds by Pericyclic Reaction; Ene Reaction	3271
	(J. K. WHITESELL)	
1.6.2.1.	C–C Double and Triple Bond Systems as Eneophiles	3274
1.6.2.1.1.	Alkenes	3274
1.6.2.1.1.1.	Bimolecular Reactions	3274
1.6.2.1.1.2.	Intramolecular Reactions	3275
1.6.2.1.2.	Alkynes	3282
1.6.2.2.	C–X Double Bond Systems as Eneophiles	3283
1.6.2.2.1.	Aldehydes and Ketones	3283
1.6.2.2.1.1.	Bimolecular Reactions	3284
1.6.2.2.1.2.	Intramolecular Reactions	3291
1.6.2.2.2.	Imines	3295
	Bibliography to Part D.1.6.1.–D.1.6.2.	3298

1.5.4. Formation of C – C Bonds by Addition of Free Radicals to Olefinic Double Bonds

B. GIESE, T. GÖBEL, B. KOPPING AND H. ZIPSE

1.5.4.1. Intermolecular Reactions

1.5.4.1.1. Chiral Radicals

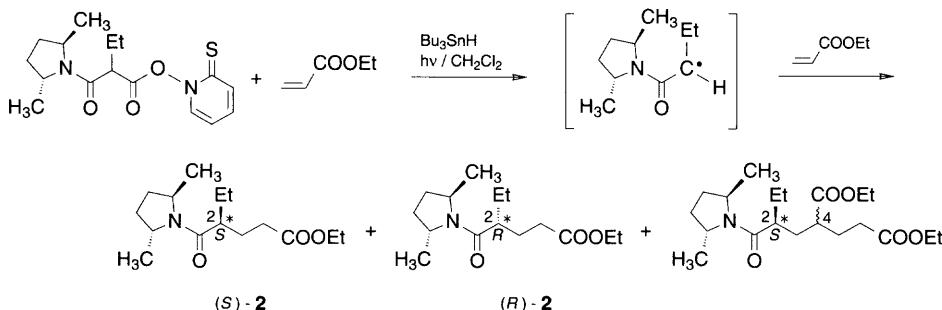

1.5.4.1.1.1. With Auxiliary Control

1.5.4.1.1.1.1. Auxiliaries

For the auxiliaries employed see Section D.2.2.

1.5.4.1.1.1.2. Addition to Alkenes

Radicals bearing a chiral amide group, derived from Oppolzer's camphor sultam, are intermediates in radical reactions with allylstannanes¹. The allylations yield the two isomeric products with high selectivities.

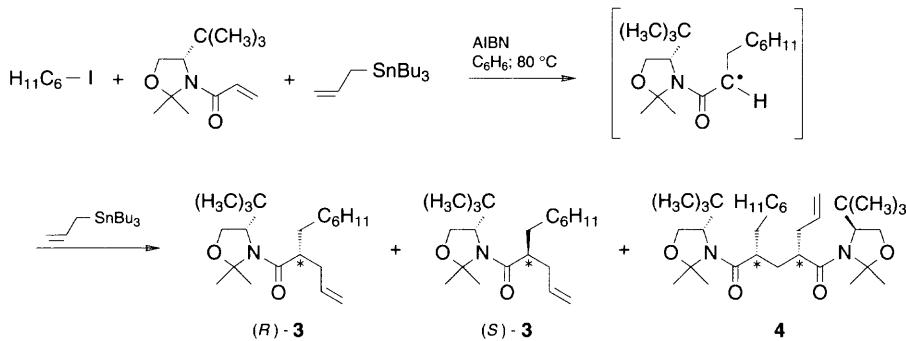

R ¹	R ²	Temp (°C)	Solvent	d.r. [(R)/(S)]	Yield (%)
CH ₃	Bu	25	C ₆ D ₆	93:7	95
COOCH ₃	C ₆ H ₅	25	C ₆ D ₆	94:6	95
H	Bu	25	C ₆ D ₆	93:7	95
H	Bu	0	CH ₂ Cl ₂	95:5	95
H	Bu	-20	CH ₂ Cl ₂	96:4	95

N-(4-Substituted 2-Methyl-1-oxo-4-pentenyl)-10,2-camphanesultams; General Procedure¹:

A mixture of 1.0 equiv of the chiral α -iodoamide, 1.5 equiv of allyl(tributyl)stannane and 0.05–0.2 equiv of triethylborane in C₆H₆ or CH₂Cl₂ (0.5 M) is stirred under a very slow stream of air until all the starting iodide is consumed (GC control). The solution is diluted with Et₂O, followed by 2 to 5 drops of DBU. After 5 min the solution is filtered through a layer of silica gel and washed with dry Et₂O. The residue is concentrated in vacuo and purified by flash chromatography.

for references see p 2248

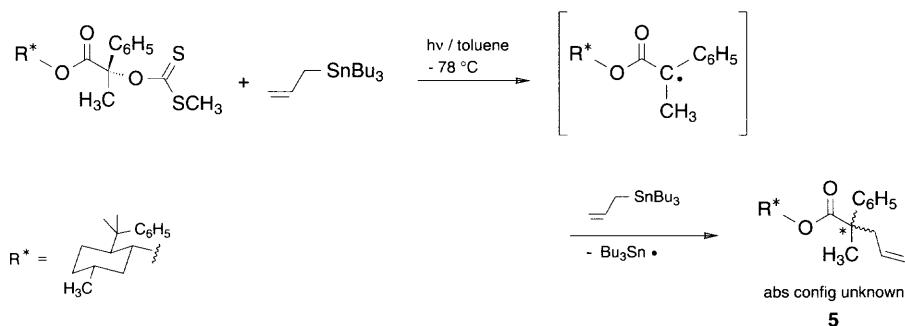
Stereoselective C–C bond formation also occurs in the addition of chiral dimethylpyrrolidine amide substituted radicals to ethyl acrylate². The radicals are generated via irradiation of alkyl thiohydroxamates (“Barton method”)³. Reactions at different temperatures yield isomeric mixtures of monoadducts (35–50%) and diadducts (15–25%). High levels of asymmetric induction are observed in the production of the monoadduct. The diadduct is a 1:1 mixture of C-4 diastereomers, presumably possessing the *S* configuration at C-2.


2: *ethyl 4-[(2R,5R)-2,5-dimethyl-1-pyrrolidinyl carbonyl]hexanoate*

At 80 °C; yield: not reported; d.r. [(*S*)-2/(*R*)-2] 92:8

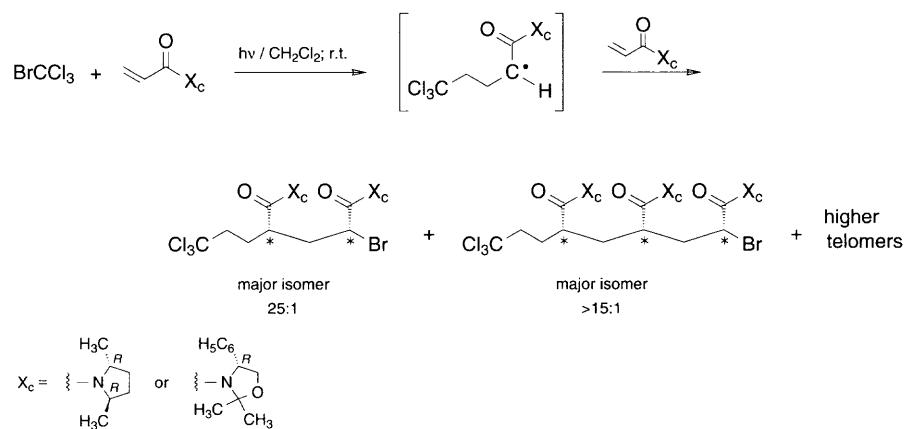
At 25 °C; yield: 55%; d.r. [(*S*)-2/(*R*)-2] 96:4

At –24 °C; yield: 30%; d.r. [(*S*)-2/(*R*)-2] 97:3


In a similar reaction, chiral oxazolidine amides are used as chiral auxiliaries⁹². The amide-substituted radical, generated via the addition of cyclohexyl radicals to the corresponding alkene, undergoes addition to tributyl(2-propenyl)stannane with significant diastereoselectivity. The monoadduct is formed in a ratio of 96:4 and for the diadduct only one major diastereomer is observed.

3: *(4S)-4-tert-butyl-3-(2-cyclohexylmethyl-1-oxo-4-pentenyl)-2,2-dimethyloxazolidine*; yield: 33%; d.r. [(*R*)-3/(*S*)-3] 96:4

4: *syn-1,5-bis[(4S)-4-tert-butyl-2,2-dimethyl-3-oxazolidinyl]-2-cyclohexylmethyl-4-(2-propenyl)-1,5-pentanedione*

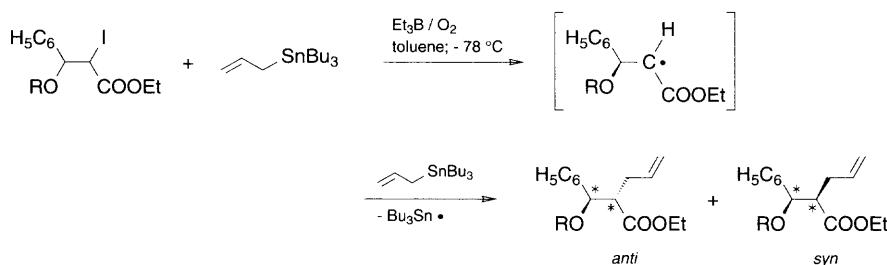

(–)-8-Phenylmenthyl esters are also suitable chiral groups for inducing stereoselectivity in radical addition reactions, as shown in the allylation of phenylmenthyloxycarbonyl-substituted xanthates. The photoinitiated reaction of the radical precursor with tributyl(2-propenyl)stannane at –78 °C affords only one diastereomer⁴. The absolute configuration of (–)-8-phenylmenthyl 2-methyl-2-phenyl-4-pentenoate (**5**) is not known.

5: (−)-8-phenylmenthyl 2-methyl-2-phenyl-4-pentenoate; yield: 36%

1.5.4.1.1.1.3. Telomerization

The use of monomers bearing chiral auxiliaries allows the tacticity⁵ along the growing chain in radical polymerization to be controlled. The telomerization of acrylamides bearing (2*R*,5*R*)-1-(1-oxo-2-propenyl)-2,5-dimethylpyrrolidine or (4*R*)-2,2-dimethyl-4-phenyloxazolidine as chiral auxiliaries is achieved by a photochemically initiated bromotrichloromethane chain transfer reaction^{2, 6, 7}. Both reactions yield mixtures of telomers, with up to ten amide units in different ratios. The observed ratios and the absolute configuration of the main isomers of the di- and triadducts show that the formation of the telomers proceeds with significant control of configuration.

Comparable results are obtained in the telomerization of (1-oxo-2-propenyl)sultams¹.

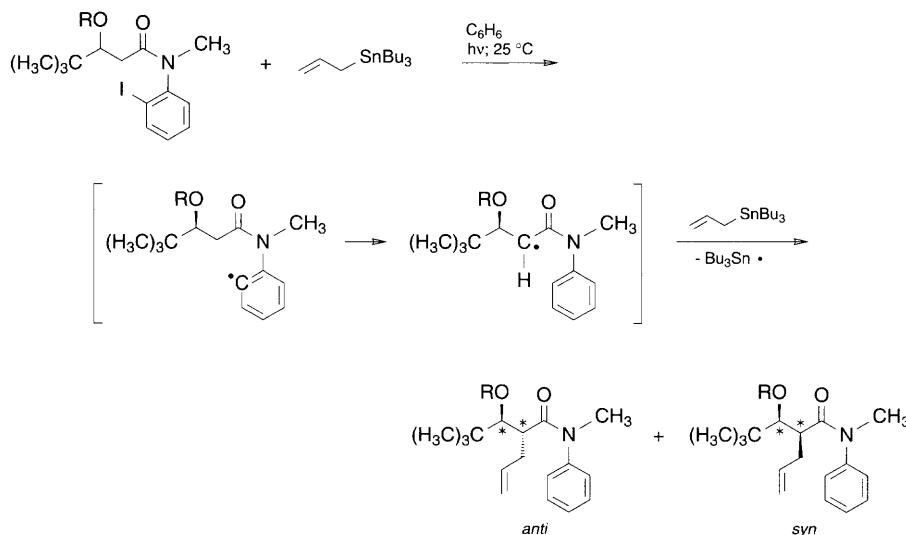

1.5.4.1.1.2. Substrate Control

1.5.4.1.1.2.1. Acyclic Systems

In comparison to stereoselective hydrogen abstraction, diastereoselective C–C bond formation of acyclic radicals often occurs with higher levels of asymmetric induction.

The low temperature (−78 °C) radical allylation of 3-alkoxy-substituted ethyl 2-iodo-3-phenylbutanoates proceeds via an ester-substituted radical that undergoes stereoselective addition across the double bond of tributyl(2-propenyl)stannane⁸. The diastereomeric excess of the products is influenced only to a small extent by the steric bulk of the alkoxy substituent in the 3-position.

for references see p 2248

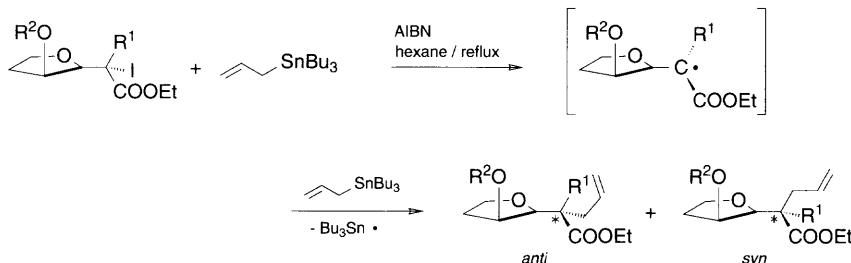


R = CH₃; yield: 75%; d.r. (anti/syn) 5:95

R = Bn; yield: 87%; d.r. (anti/syn) 4:96

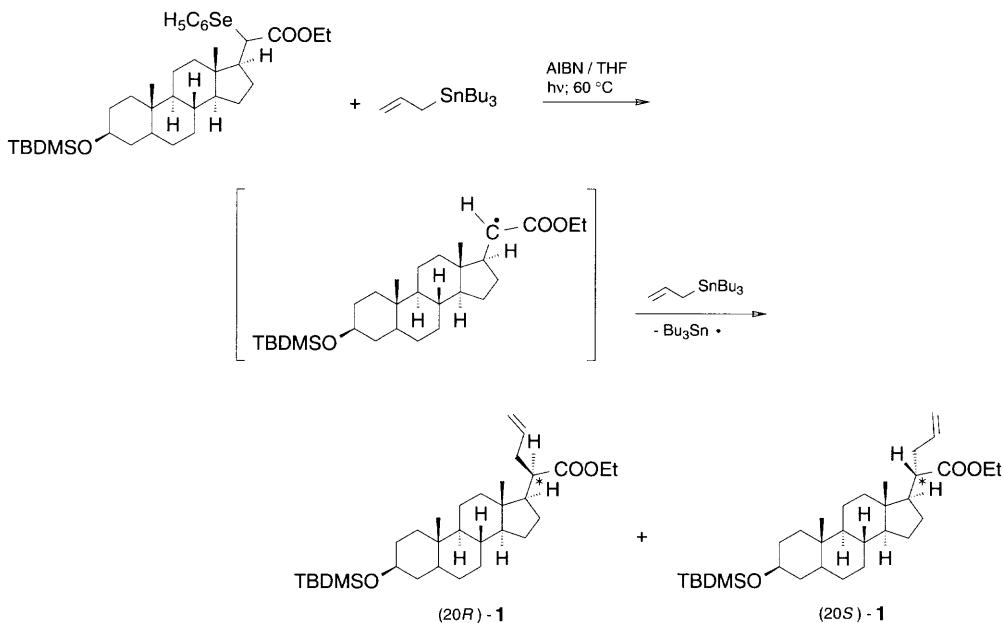
The configuration of β -oxygen-substituted radicals can be influenced and even reversed by hydrogen bonding^{9,93} or chelation with Lewis acids⁹⁴.

Closely related amide-substituted radicals are intermediates in the allylation of both protected and unprotected *N*-(2-iodophenyl)-4,4,*N*-trimethyl-3-hydroxypentanamides⁹. At 25 °C the anti/syn ratios of the allylated products are moderate.


R = H; yield: 64%; d.r. (anti/syn) 93:7

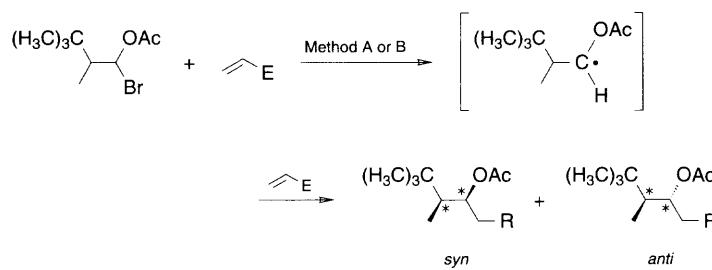
R = Ac; yield: 41%; d.r. (anti/syn) 15:85

anti-3-Hydroxy-4,4,N-trimethyl-N-phenyl-2-(2-propenyl)pentanamide; Typical Procedure⁹:


198 mg (0.55 mmol) of *N*-(2-iodophenyl)-4,4,*N*-trimethyl-3-hydroxypentanamide and 343 μ l (1.10 mmol) of tributyl(2-propenyl)stannane are mixed in 1.1 mL of C₆H₆ in a NMR tube under argon. The reaction mixture is photolyzed (sunlight lamp) for 48 h at r.t. and concentrated under reduced pressure (GC analysis at this time gives a anti/syn ratio of 93:7). Purification by HPLC (hexane/EtOAc 80:20) gives the anti-isomer; yield: 97 mg (64%).

Excellent diastereoselectivity in C–C bond formation is observed if chirality is induced by cyclic substituents. For example, the allylation of 1-iodo-1-tetrahydrofuranyl esters affords only one diastereomer⁸.

$R^1 = H$; $R^2 = SiBu_3$; yield: 67%; d.r. (anti/syn) > 97: < 3
 $R^1 = CH_3$; $R^2 = SiBu_3$; yield: 55%; d.r. (anti/syn) > 97: < 3


In the C–C bond formation of more complex cyclic systems, such as the steroid derivative ethyl 3β -(*tert*-butyldimethylsilyloxy)-20-phenylseleno-5-pregnén-21-oate, 1,2-induction is also effective¹⁰. Reaction with tributyl(2-propenyl)stannane yields the diastereomeric steroids in a ratio of 90:10.

1: ethyl 3β -(*tert*-butyldimethylsilyloxy)-20-(2-propenyl)-5-pregnén-21-oate; yield: 90%;
d.r. [(20R)/(20S)] 90:10

The diastereoselectivity of the ester- or amide-substituted radicals is rationalized, and can also be predicted, by invoking the concept of allylic strain (see Section D.2.2.1.2.1.). This concept is also valid for amino-substituted radicals⁹⁵.

Acetoxy-substituted chiral radicals are generated via halogen abstraction from 1-acetoxy-1-bromo-2,3,3-trimethylbutane¹¹. Addition across the double bond of a variety of different alkenes proceeds with very similar diastereoselectivity.

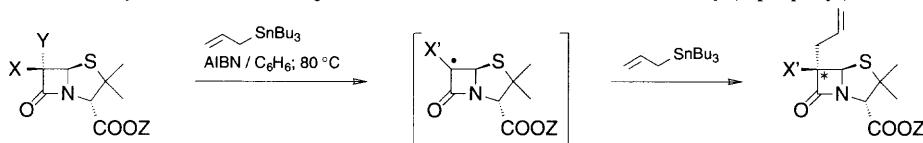


E	Method ^a	R	d.r. (syn/anti)	Yield (%)
CH ₂ SnBu ₃	A	CH=CH ₂	81:19	–
CN	B	CH ₂ CN	80:20	63
COOEt	B	CH ₂ COOEt	79:21	38

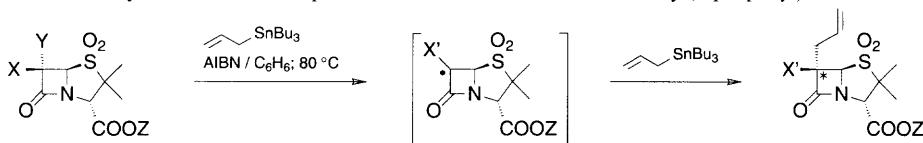
^a Method A: AIBN, C₆H₆, 80 °C. B: Bu₃SnH, AIBN, C₆H₆, 80 °C.

The steric outcome of C–C bond formation is rationalized by assuming a Felkin–Anh like transition state (see Section D.2.2.1.2.3.).

The reaction of ethyl 1-iodo-1-(4-methylphenylsulfinyl)propanoate with tributyl(2-propenyl)stannane is highly stereoselective¹². Only a trace amount of a second diastereomer is formed.


2: ethyl 2-methyl-2-(4-methylphenylsulfinyl)-4-pentenoate; yield: 87%; d.r. (syn/anti) > 98: < 2

This essentially absolute stereocontrol is rationalized by presuming a stable conformation of the intermediate radical due to dipole–dipole interactions of the sulfinyl and the ester groups. 1,2-Induction is not restricted to ester-substituted radicals. It can also be observed with a trifluoromethyl group⁹⁶.


1.5.4.1.1.2.2. Cyclic Systems

Cyclobutyl Radicals

The selectivity in addition reactions of cyclobutyl radicals to alkenes has been investigated in reactions of β -lactam derivatives^{31–33}. 6-Bromopenicillanic acid esters were used as precursors in reductive addition reactions with alkenes^{31, 32} or with allylstannanes^{30, 31}. Addition to the intermediate penicillanic acid-6-yl radical occurred exclusively from the α -face of the β -lactam ring.

Table 1. Allylation of 6-Bromopenicillanic Acid Derivatives with Tributyl(2-propenyl)stannane

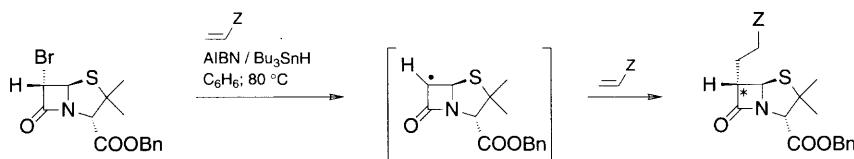
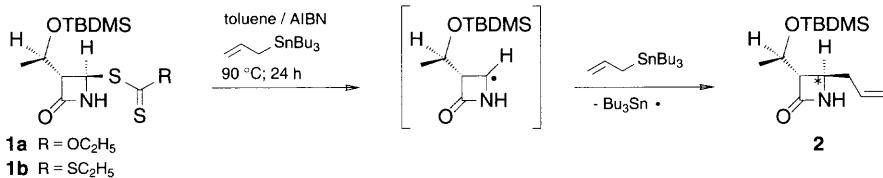

Substrate		Product		Yield (%)	Ref
X	Y	Z	X'		
H	Br	CH ₃	H	87	30, 31
H	Br	CH ₂ CH=CH ₂	H	85	30
H	Br	4-CH ₃ OC ₆ H ₄	H	81	30
Br	Br	CH ₃	Br	53	30, 31
Br	Br	CH ₂ CH=CH ₂	Br	55	30
	Br	CH ₃		82	30, 31
	Br	CH ₃		75	30, 31
H	Br	CH(C ₆ H ₅) ₂	H	95	32
Br	H	CH(C ₆ H ₅) ₂	H	95	32

Table 2. Alkylation of 6-Bromopenicillanate 1,1-Dioxides with Tributyl(2-propenyl)stannane

Substrate		Product		Yield (%)	Ref
X	Y	Z	X'		
H	Br	CH ₃	H	93	30, 31
H	Br	CH ₂ CH=CH ₂	H	69	30
H	Br	4-CH ₃ OC ₆ H ₄	H	76	30
Br	Br	CH ₂ CH=CH ₂	Br	59	30

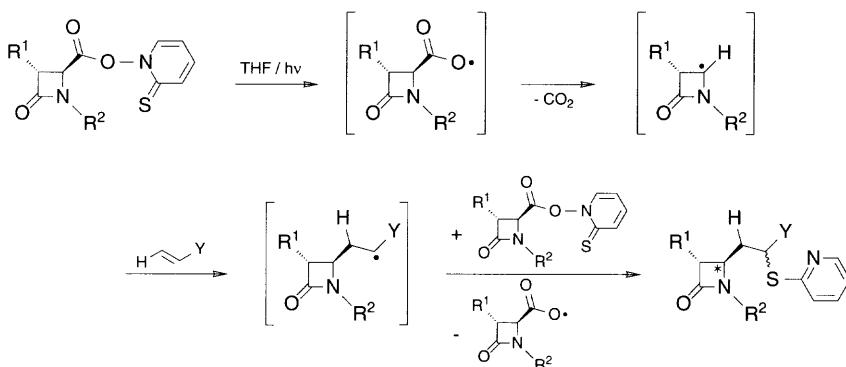
Methyl 6 α -(2-Propenyl)penicillanate (Table 1); Typical Procedure³⁰:

2.0 g (6.04 mmol) of tributyl(2-propenyl)stannane and 100 mg (0.61 mmol) of AIBN are added to a solution of 1.2 g (4.08 mmol) of methyl 6 α -bromopenicillanate in 50 mL of C₆H₆. The resulting mixture is refluxed under argon for 5 h. Flash chromatography (silica gel, hexane, then hexane/EtOAc) of the crude mixture allows the isolation of a colorless oil; yield: 905 mg (87%).



$Z = \text{CN}$; yield: 67%
 $Z = \text{COOCH}_3$; yield: 55%
 $Z = \text{OAc}$; yield: 43%

Benzyl 6α -(2-Methoxycarbonylethyl)penicillanate; Typical Procedure³²:

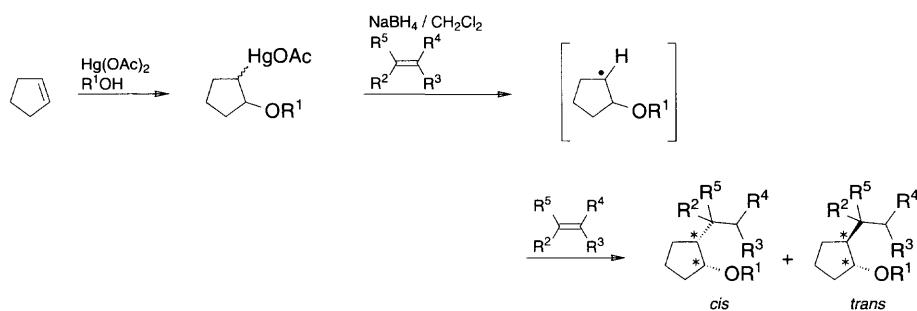

200 mg (0.45 mmol) of benzyl 6α -bromopenicillanate, 5 mL of dry benzene and 580 mg (6.7 mmol) of methyl 2-propenoate are refluxed under nitrogen. To this mixture are added 157 mg (0.54 mmol) of tributyltin hydride, 2 mg of AIBN and 380 mg (4.4 mmol) of methyl 2-propenoate in 2 mL of C_6H_6 over a period of 5–6 h (syringe pump). After the addition is complete the mixture is refluxed for 2 h and then cooled to r.t. The solvent and excess methyl 2-propenoate are removed. The residue is dissolved in 50 mL of CH_3CN and washed with three 50-mL portions of hexanes. The solvent is then removed and the residue purified by chromatography (EtOAc/hexanes 1:4); yield: 132 mg (65%); mp 84–85 °C.

trans Addition relative to the other ring substituents is also observed in reactions of 3-substituted azetidinone-4-yl radicals with allylstannanes³³. Here, ethylthio or ethoxycarbonylthio groups are used as precursor functionalities. Addition of tributyl(2-propenyl)stannane to the intermediate radicals proceeds such that (4*R*)-4-(2-propenyl)-2-azetidinones are obtained exclusively.

2: (3*S*,4*R*)-3-[(*R*)-1-(*tert*-butyldimethylsilyloxy)ethyl]-4-propenyl-2-azetidinone;
yield: from **1a**, 72%; from **1b**, 79%

1,2-Dihydro-2-thioxo-1-pyridinyl 4-oxo-2-azetidinecarboxylates are used in addition reactions of 4-azetidinyl radicals to electron-deficient alkenes⁷⁸. After the primary addition step, the adduct radical abstracts the 2-thiopyridinyl group from the precursor, which regenerates after decarboxylation the azetidinone-4-yl radicals and forms terminally difunctionalized addition products. Again, addition of alkenes to the azetidinone-4-yl radical occurs exclusively *trans* to the substituent in 3-position.

R ¹	R ²	Y	Time (h)	Config. of New Stereogenic Center	Yield (%)
CH ₃	TBDMS	SO ₂ C ₆ H ₅	1	R	77
CH ₂ TBDMS	TBDMS	SO ₂ C ₆ H ₅	1	R	54
$\begin{array}{c} \text{OMOM} \\ \\ \text{H}_3\text{C}-\text{CH}_2 \end{array}$	$\begin{array}{c} \text{3,4-(CH}_3\text{O)}_2\text{C}_6\text{H}_3 \\ \\ \text{COOCH}_3 \end{array}$	COOCH ₃	17	R	54
		SO ₂ C ₆ H ₅	18	R	44


Addition of 1,2-Dihydro-2-thioxo-1-pyridinyl 4-Oxo-2-azetidinecarboxylates to Electron-Deficient Alkenes; General Procedure⁷⁸:

To a solution of 1 mmol of the 2-oxo-4-azetidine carboxylic acid in 7 mL of anhyd THF (7 mL) at -20 °C are added 1.1 mmol of *N*-methylmorpholine and 1.1 mmol of isobutyl chloroformate under argon. The solution is stirred for 30 min at -20 °C and 1.2 mmol of the sodium salt of *N*-hydroxy-2-thiopyridone is added. The mixture is stirred at -20 °C under argon for 45 min in the dark, then rapidly filtered, and the solids washed with 3 mL of anhyd THF. The yellow filtrate is irradiated in the presence of 5 mmol of the alkene with a 250-W tungsten lamp at r.t. under argon. Concentration of the mixture and purification of the residue by flash chromatography gives the adducts. In the case of nitroethylene, 2 mmol of camphor-sulphonic acid are added after filtration of the salts, and the filtrate is cooled again to -20 °C, before adding the nitroalkene and irradiation.

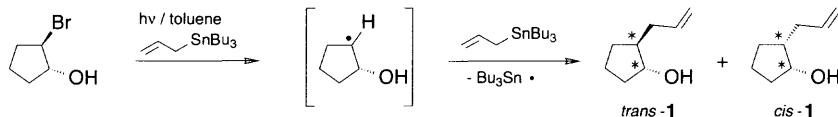
Cyclopentyl Radicals

The stereoselectivity in addition and abstraction reactions of cyclopentyl radicals has been reviewed recently³⁷. It has been concluded that β -substituents at the radical center, as well as the alkene substituents, have a large influence on the selectivity, however only small solvent effects have been found.

Cyclopentyl radicals substituted in the β -position relative to the radical center are formed during the solvomercuration/reductive alkylation reaction of cyclopentene³⁴. The organomercurial produced in the first solvomercuration step is reduced by sodium borohydride and yields free cyclopentyl radicals in a radical chain mechanism. Addition of alkenes can then occur *trans* or *cis* to the β -alkoxy substituent introduced during the solvomercuration step. The adduct radical is finally trapped by hydrogen transfer from mercury hydrides to yield the *trans*- and *cis*-addition products. The *trans/cis* ratio depends markedly on the alkene employed and it appears that the addition of less reactive alkenes occurs with higher *trans* selectivity. In reactions of highly substituted alkenes, this reactivity control is compensated for by steric effects. Therefore, only the *trans*-addition product is observed in reactions of tetraethyl ethenetetracarboxylate. The choice of alcohol employed in the solvomercuration step has, however, only a small influence on the stereoselectivity.

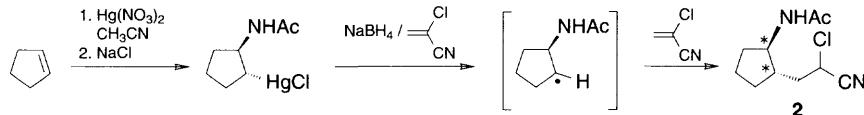
Alcohol	Alkene				d.r. (<i>trans</i> / <i>cis</i>)	Yield (%) ^a
	R ¹	R ²	R ³	R ⁴		
CH ₃	H	H	CN	H	77:23	50
Et	CN	H	CN	H	77:23	65
Et	H	H	CN	H	72:28	66
Et	H	Cl	CN	H	60:40	60
Et	H	CH ₃	CN	H	77:23	43
Et	H	H	Ac	H	87:13	51
Et	H	H	COOCH ₃	H	88:12	60
Et	H	H	C ₆ H ₅	H	90:10	15
Et	COOCH ₃	H	COOCH ₃	H	88:12	—
Et	COOCH ₃	COOCH ₃	COOCH ₃	COOCH ₃	>98:2	—
<i>i</i> -Pr	H	H	CN	H	77:23	50
<i>t</i> -Bu	H	H	CN	H	80:20	8 ^b

^a Overall yield for the solvomercuration/reductive alkylation one-pot procedure.

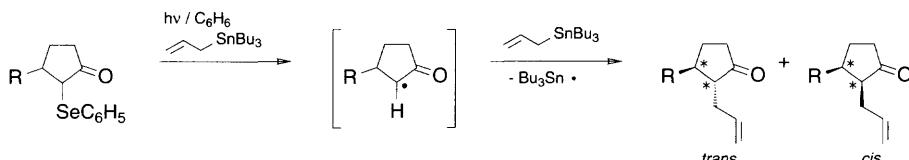

^b Low yield due to solvomercuration step.

Ethoxymercuration/Reductive Alkylation of Cyclopentene; General Procedure³⁴:

A suspension of 4.1 g (13 mmol) of mercury(II) acetate in 10 mL of EtOH is mixed with 1.36 g (20 mmol) of cyclopentene at 20 °C. After the mercury(II) acetate has dissolved, 1.5 g (7.0 mmol) of mercury(II) oxide are added in four portions. The colorless solution is diluted with 100 mL of CH₂Cl₂ and 60 mmol of the alkene. The mixture is cooled to 0 °C, 1.5 g (40 mmol) of NaBH₄ are added quickly and stirring is continued for 1 h. The excess NaBH₄ is destroyed with 30 mL of water and the liquid layers are decanted and separated. The water layer is extracted with three 30-mL portions of CH₂Cl₂ and the combined organic phases are filtered through a funnel filled with anhyd MgSO₄. After evaporation of the solvent, distillation of the residue yields the addition products.

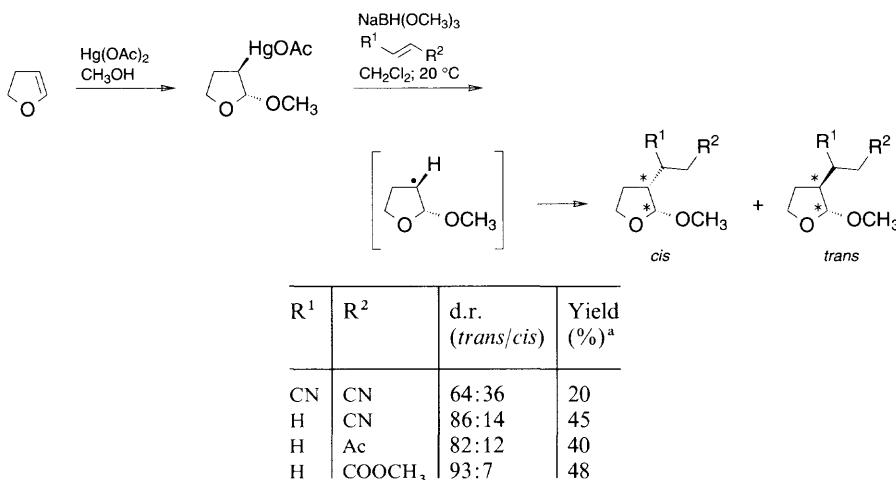

The influence of the solvent has been studied in the addition reaction of the β -ethoxycyclopentyl radical to 2-propenenitrile³⁷. It is found that the preference for *trans* addition is increased by using more polar solvents, e.g., d.r. (*trans/cis*), cyclohexane 68:32, tetrahydrofuran 76:24, dichloromethane 77:23, acetonitrile 81:19.

Preference for *trans* addition is observed to a similar extent in reactions of the β -hydroxycyclopentyl radical³⁵. After bromine abstraction from the precursor by stannyl radicals, addition to allylstannane occurs such that the *trans*-adduct radical is formed with high selectivity. Final elimination of the stannyl radical continues the chain mechanism and forms the allylation product.


1: 2-(2-propenyl)cyclopentanol; yield: 67%; d.r. (*trans/cis*) 91:9

β -Acetamidocyclopentyl radicals give very high *trans* selectivity in addition reactions to 2-chloro-2-propenenitrile³⁸. This is found in the amidomercurration/reductive alkylation reaction of cyclopentene, in which only the *trans*-product is found.

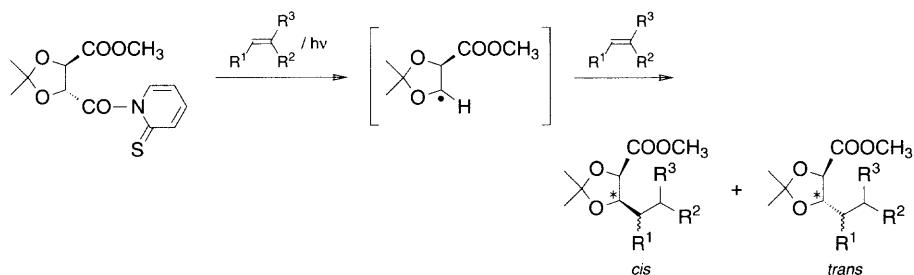
2: (1S*,2R*)-2-acetylaminoo- α -chlorocyclopentanepropanenitrile; yield: 75%


Cyclopentyl radicals flanked with β -substituents on both sides are formed in reactions of 3-alkyl-2-phenylselenocyclopentanones³⁶. After photochemical initiation, the cyclopentyl radical is formed through abstraction of the phenylseleno group. Addition to tributyl(2-propenyl)stannane occurs preferentially *trans* to the β -alkyl substituent and consecutive elimination of the stannyl radical gives the final allylation product. It has also been reported³⁷ that addition of the β -methyl cyclopentyl radical to 2-propenenitrile occurs with d.r. (*trans/cis*) 92:8, hence it seems likely that the carbonyl group adjacent to the radical center reduces the selectivity.

R = CH₃; yield: 98%; d.r. (*trans/cis*) 78:22

R = Bu; yield: 95%; d.r. (*trans/cis*) 79:21

Heterocyclic cyclopentyl radicals formed in the solvomercuration/reductive alkylation reaction of dihydrofuran give products with *trans* selectivity in a slightly higher ratio than the corresponding carbocyclic analogs³⁴. This is attributed to anomeric effects, which lead to a more pronounced axial orientation of the β -alkoxy substituent in the tetrahydropyranyl radical.

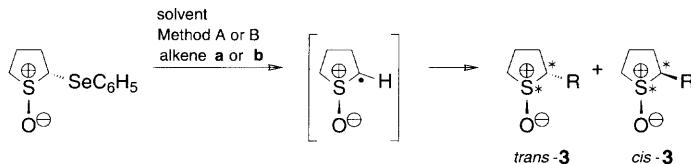


^a Overall yield for the solvomercuration/reductive alkylation procedure.

Solvomercuration/Reductive Alkylation of Dihydrofuran; General Procedure³⁴:

2.03 g (6.4 mmol) of mercury(II) acetate and 1.27 g (5.8 mmol) of mercury(II) oxide are stirred with 1.05 g (15 mmol) of dihydrofuran in 15 mL of CH₃OH for 1 h. The solvent is removed in vacuo, and after addition of 80 mL of CH₂Cl₂ and 80 mmol of alkene, a solution of sodium trimethoxyborohydride in 40 mL of THF is added over 5–20 min. Stirring is continued for 3 h, the solvent is evaporated and the products isolated by vacuum distillation.

Heterocyclic radicals with two ring heteroatoms, such as the reactions of tartaric acid derivatives, have been investigated³⁹. Here, the isopropylidene-protected hydroxy groups define the cyclopentyl unit and one of the carboxy groups is utilized as the precursor functionality. Irradiation leads to a radical chain process, in which addition of alkenes to the intermediate radical occurs preferentially *trans* to the β -carboxy group. Only the *trans*-isomer is observed in the ¹H-NMR spectrum of the product in all cases and d.r. (*trans*/*cis*) 25:1 is estimated from HPLC measurements after degradation of the monoadducts to known compounds.



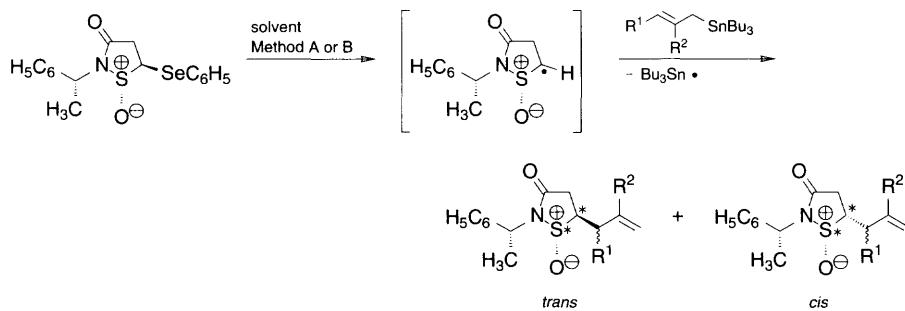
R¹ = H; R² = H; R³ = COOCH₃; yield: 70%

R¹ = H; R² = H; R³ = SO₂C₆H₅; yield: 70%

R¹, R² = -CON(CH₃)CO-; R³ = H; yield: 93%

Larger solvent effects on the *trans/cis* ratio are observed in reactions of 1-oxothiolan-2-yl radicals⁴⁰. Tetrahydro-2-phenylselenothiophene 1-oxide is used as the precursor; addition to alkenes and also deuterium abstraction from deuterostannane have been investigated. The addition reactions proceed with *trans* selectivity, which is improved by using polar, protic solvents and by adding Lewis acids as complexing agents.

Alkene **a**: $\text{CH}_2 = \text{CH-CH}_2\text{Si}(\text{CH}_3)_3$; alkene **b**: $\text{CH}_2 = \text{CH-CH}_2\text{SnBu}_3$

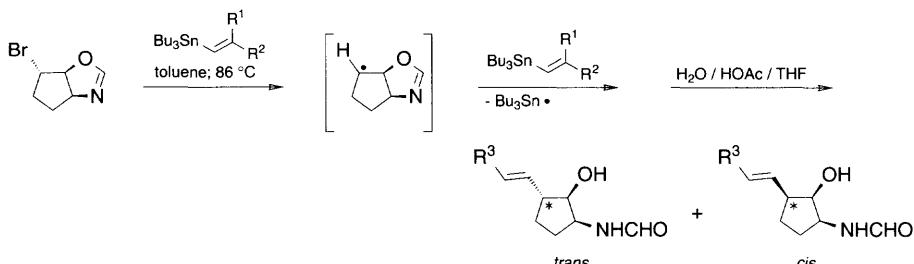

3a: $\text{R} = \text{CH}_2\text{CH}_2\text{Si}(\text{CH}_3)_3$; *tetrahydro-2-(2-trimethylsilylethyl)thiophene 1-oxide*

3b: $\text{R} = \text{CH}_2\text{CH}=\text{CH}_2$; *tetrahydro-2-(2-propenyl)thiophene 1-oxide*

Method ^a	Solvent	Complexing Agent	Alkene	Product	d.r. (<i>trans/cis</i>)	Yield (%)
A	C_6H_6	—	a	3a	4.0:1	25
		—	b	3b	6.0:1	35
B	C_6H_6	—	b	3b	2.3:1	78
	THF	—			2.3:1	44
	EtCN	—			3.5:1	88
	CH_2Cl_2	LiClO ₄ , 0.5 M			9:1	82
		—			6.3:1	63
	EtOH	Eu(dpm) ₃ , 0.5 M			8.1:1	54
		—			6.4:1	87
	THF	LiCl, 0.5 M			5.3:1	25
		ZnBr ₂ , 0.5 M			7.3:1	62
		$\text{BF}_3 \cdot \text{OEt}_2$			6.8:1	75

^a Method A: AIBN, 80 °C. B: AIBN, 15 °C, $\text{h}\nu$.

The same influence by the solvent on the *trans/cis* ratio is observed in allylation reactions of enantiomerically pure 3-oxo-2-(1-phenylethyl)-5-isothiazolidinyl 1-oxide radicals⁴¹. The *trans*-addition products are again formed preferentially and the highest selectivities are found in strongly polar, protic solvents.


Method ^a	Solvent ^b	R ¹	R ²	d.r. (<i>trans</i> / <i>cis</i>)	Yield (%)
A	C ₆ H ₆	H	H	6.8:1	75
B	C ₆ H ₆	H	H	9.6:1	82
	C ₆ H ₁₂ /DME			9:1	83
	DME			10:1	79
	EtOH			17.5:1	82
	TFE			50:1	89
A	C ₆ H ₆	H	CH ₃	6.8:1	64
B	C ₆ H ₆	H	CH ₃	12.8:1	69
	C ₆ H ₆	CH ₃	H	10:1	40
A	C ₆ H ₆	H	Cbz	3.8:1	62
B	C ₆ H ₆	H	Cbz	7.9:1	90
	EtOH			12.6:1	79
	TFE			22.8:1	87
	C ₆ H ₆	H	Bu	9.6:1	79
	<i>i</i> -PrOH			14.4:1	63
	EtOH			17.2:1	82

^a Method A: AIBN, *Δ*. B: *hv*, r.t.

^b DME = 1,2-dimethoxyethane; TFE = trifluoroethanol.

Heterocyclic ring systems annulated to cyclopentyl radicals can be considered as two simultaneously present substituents. *cis*-Annulated ring systems in the β,γ -position to the radical center are found to give *trans* selectivities which are larger than when a single β -substituent is present. Bicyclic radicals with an overall bend shape are often exclusively attacked by alkenes from the convex face.

Bicyclic oxazolocyclopentyl bromides are employed as precursors in addition reactions to β -stannylalkenes, which give, overall, the stannyl substitution product, through an addition/elimination mechanism⁴².

R¹ = COOEt; R² = H; R³ = COOEt; yield: 79%; d.r. (*trans*/*cis*) 89:11

R¹ = H; R² = C₆H₅; R³ = C₆H₅; yield: 70%; d.r. (*trans*/*cis*) 100:0