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Preface 

There was a time when stereoselectivity of areaction was mostly of mechanistic 
interest and reactions that could result in the formation of stereoisomers were consid­
ered a nuisance and had to be avoided at best. However, this situation has changed 
over the past two decades, during which stereoselective synthesis has grown into a 
reliable methodology. This development began with the remodelling of readily avail­
able chiral compounds from nature. More recently, these "ex-chiral-pool" synthetic 
strategies have been complemented and, in many cases, surpassed by the powerful 
techniques of asymmetrie synthesis. 

Originally, only a few laboratories were concerned with the design of routes to 
enantiomerically pure compounds. Since the demand for nonracemic chiral drugs and 
pesticides has enormously increased, methods of asymmetrie synthesis are now bound 
to be applied by almost every practising chemist. However, newcomers to the field 
so on find themselves confronted with a confusing vocabulary, with no guidance as to 
the appropriate method to solve their problem, and with lack of well-documented 
procedures. This situation frequently leads to frustration or at least to unnecessary 
work. 

This ca lIed for the present volume set of the HOUBEN-WEYL series Methods 
o/Organic Chemistry. Since the 1950s HOUBEN-WEYL has served the synthetic 
community by giving comprehensive critical reviews of the existing synthetic methods 
in a consistent style and with high reliability. The editors, authors and publisher of 
HOUBEN-WEYL "Stereoselective Synthesis" have worked together to confer this 
philosophy to the field of asymmetrie synthesis. Thus, we hope to supply a treatise 
which should become the standard reference in the field. 

"Stereoselective Synthesis" gives a comprehensive treatment of chemical trans­
formations in which a new stereocenter is created, i.e., all enantio- and those 
diastereodifferentiating reactions which allow the absolute and relative configuration 
of a new stereogenie unit to be controlled. Consequently, mechanism-controlled 
reactions (e.g. SN2 displacements), "ex-chiral-pool" syntheses which do not lead to 
new stereo genie units, and EI Z selective formation of alkenes are not covered. 

Following the general introductory chapters covering principles, nomendature, 
separation and analysis, the chapters on individual synthetic methods are organized 
by the type ofbond that is broken or formed. Only starting material and products are 
considered as a basis for the dassification, not the reaction mechanism. In the typical 
HOUBEN-WEYL style, the scope of the most important methods is illustrated with 
tables of selected examples. Insight into the practical application of the methods can 
be obtained from the experimental procedures provided. 



VI Preface Houben-Weyl 

The wealth of material forced us to break up the work into five volumes (E21 a 
through e). Access to and properties of the common chiral auxiliaries, solvents, 
reagents and catalysts which are used in various different reactions is covered compre­
hensively in Volume E 21 e avoiding duplication of information in the individual 
chapters. 

The transition of HOUBEN-WEYL from German to English brought about 
changes in the layout and in the style ofpresentation without, however, sacrificing the 
high standard of quality and reliability that is the hallmark of HOUBEN-WEYL. 

Special thanks go to our 101 authors who have spent a great deal of time and 
effort to achieve the goals we have set. We are also indebted to the editorial staff in 
Stuttgart, who had to co pe with the special challenges of editing and publishing a 
gigantic amount of complex material. 

May 1995 Günter HeImchen 

Reinhard W Hoffmann 

Johann Mulzer 

Ernst Schaumann 
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1.3. Formation of C - C Bonds by Addition to Carbonyl Groups 

1.3.1. Addition of G-Type Organometallic Compounds 

R. M. DEVANT and H.-E. RADUNZ 

1.3.1.1. Theoretical Models 

1151 

Among C - C bond forming reactions, the nucleophilic addition of cr-type carbanions to alde­
hydes and ketones is one of the most widely used and extensively studied reactions in organic 
chemistry. Its synthetic utility is, in particular, derived from the possibility of controlling the 
stereochemistry of the formed product. Since a stereogenic center is created during the addition 
of an organometallic reagent to a prostereogenic carbonyl compound, stereoselection is possi­
ble if another stereogenic center is already present in the reaction system. In this type of reaction 
there are three different general routes to stereoselective product formation. 

(1) Addition of an achiral organometallic reagent to a chi ra I carbonyl compound. 
(2) Addition of a chiral organometallic reagent to an achiral carbonyl compound. 
(3) Addition of an achiral organometallic reagent to an achiral carbonyl compound in the 

presence of a chiral catalyst, additive or solvent. 
Reactions of type 1 and 2 lead to mixtures of diastereomers that are either racemic or 

enantiomerically pure, depending on whether the substrates are racemates or pure enantiomers. 
This kind of stereoselection is termed diastereofacial selection 1. If both substrates, the 
organometallic reagent and the carbonyl compound, contain a stereogenic center the stereo­
chemical outcome of the addition reaction is governed by double stereo differentiation 1 . 

Reactions of type 3 are examples of enantiofacial stereoselection, since the products are 
mixtures of enantiomers which contain only the stereogenic center formed during the addition 
reaction. The stereoselectivity inducing chirality is brought into the system via a catalyst, 
additive or solvent. 

The ratio of stereoisomers in a kinetically controlled, irreversible addition reaction is 
dependent on the relative rate constants leading to the respective diastereomeric transition 
states. Since the rate constant is a function of the free energy of activation (LlG =f=), the 
difference in the energy of the two diastereomeric transition states (LlLlG =f=) is responsible for 
the ratio of the isomers. 

Prediction of the stereochemical outcome of a nucleophilic addition reaction is a delicate 
problem as the energy difference between the diastereomeric transition states is relatively small. 
A difference of 1.8 kcal mol- 1 gives isomers in a ratio of 96.4: 3.6 at 25°C; a difference of 
2.8 kcal mol- 1 leads to a preference of 99: 1 2. 

Despite difficulties in estimating correct transition state geometries, several models have 
been proposed which allow prediction of the stereochemical course of nucleophilic addition 
reactions to acyclic and cyclic carbonyl compounds. 

One of the first empirical rules for the addition of an organometallic reagent to chiral 
aldehydes bearing the stereogenic center adjacent to the carbonyl group was suggested by 
Cram 3 - 7 (see Section A.2.3.5.2.). In Cram's "open-chain" model for acyclic carbonyl com­
pounds, bearing no substituents capable of complexing with the organometallic reagent, the 
conformation of the carbonyl compound is assumed to have the large substituent (L) of the 
stereogenic center antiperiplanar to the carbonyl group. In an addition reaction, the predom­
inantly formed diastereomer results from sterically controlled, perpendicular attack from the 
least hindered side of the double bond (Figure 1). 

Jor reJerences see p j j 56 
2* 
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L 

Figure 1. Cram's open-chain model. 

S, M, L = smalI, medium, 
large substituents 

Houben-Weyl 

Even if this simple, formal picture does not reflect the mechanistic course of the reaction, it 
allows the major diastereomer formed in a multitude of addition reactions, where the stereo­
chemistry is determined only by steric interactions to be predicted. 

A similar steric model, proposed by Prelog, predicts the major diastereomer in the addition 
of Grignard reagents to chiral esters of cx-oxo acids 8,9. An antiperiplanar arrangement of the 
dicarbonyl moiety with the ester carbonyl group flanked by the two least bulky substituents of 
the stereogenic center is assumed. Again the major diastereomer results from attack of the 
nucleophile from the sterically least hindered side (Figure 2). 

Figure 2. Pre1og's model for C(-oxo acids. 

A different situation exists for cx-chiral carbonyl compounds bearing an oxygen or amino 
substituent at the stereogenic center. This type of compound is capable of forming a chelate 
complex with the organometallic reagent. Cram's "cyclic model" explains the stereochemistry 
of addition reactions to cx-heteroatom-substituted carbonyl compounds on the basis of a 
five-membered chelate which favorably fixes the conformation of the reactants. The incoming 
nucleophile approaches the carbonyl group from the face opposite to the large substituent L 
(Figure 3) 10,11. 

z= metal 

Figure 3. Cyc1ic model. 

In cases where the heteroatom substituent is the medium (M) group, the cyclic and the 
open-chain model predict the same stereochemistry. In cases where the heteroatom substituent 
is small (S), the two models predict opposite stereochemical results. This leads to an order of 
stereospecificity, with the stereospecificity highest when both models predict the correct ste­
reochemistry, with substantially lower specificity when the cyclic model only applies, and with 
the lowest degree of stereospecificity when only the open-chain model predicts the correct 
stereochemical result. 

The stereoselectivity of an addition reaction is considerably lower when the reactions are 
conducted in polar solvents, complexing additives such as N,N,N' ,N' -tetramethylethylenedi­
amine are used, or when the stereogenic center carries a methoxy group instead of a hydroxy 
group. This behavior is explained as competition between the cyclic model and a dipolar model, 
proposed for carbonyl compounds bearing a polar substituent such as chlorine with a highly 
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polarizable bond at the stereogenic ex-carbon 12. The Cornforth "dipolar model" suggests an 
antiperiplanar arrangement of the carbonyl group and the polarized C-Cl bond, with the 
nucleophile approaching from the less hindered side (Figure 4). 

Figure 4. Dipolar model. 

In every case the dipolar and the cyclic model predict the opposite stereochemistry. Reaction 
conditions which allow both models to compete lower the predicted stereoselectivity from that 
model. 

In contrast to the open-chain and dipolar models, which are based on conformations of 
the carbonyl compound not representing energy minima, Karabatsos proposed a different 
model assuming an early, "reactant-like" transition state in which the most stable conforma­
tion of the free carbonyl compound is preserved 13, 14. Thus, the C - M bond eclipses the 
carbonyl double bond and, in order to minimize the energy of the transition state, the nucle­
ophile approaches close to the small substituent on the stereogenic center (Figure 5). 

Figure 5. The Karabatsos model. 

S, M, L = smalI, medium, 
large substituents 

Therefore, the ratio of diastereomers is dependent on the M ~ 0 versus L ~ 0 and not on the 
R 2 ~ S versus R 2 ~ M interactions as is the ca se in Cram's open-chain model. 

A further improvement of the theory of 1,2-asymmetric induction was introduced by 
Felkin 15. Neither Cram's open-chain model nor the Karabatsos model is able to explain why 
the stereoselectivity increases when either the incoming nucleophile R 28 or the substituent at 
the carbonyl group (R 1) increases in bulk. To explain these experimental observations the 
following assumptions are made for the Felkin model: 

(1) The transition state for the nucleophilic addition reaction to a carbonyl compound is 
essentially "reactant-like", rather than "product-like". 

(2) In the transition state, the torsional strain involving the partially formed bond between 
the nucleophile and the carbonyl group represents a substantial fraction of the total strain, even 
when the degree ofbonding is low. Thus, in the ca se of acyclic carbonyl compounds, a staggered 
conformation is preferred in the transition state (Figure 6). 

Figure 6. Preferred Felkin transition state. 

Jor reJerences see p j j 56 
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(3) The major steric interactions in the transition state involve the nuc1eophile (R 28) and 
the carbonyl substituent (R 1). This implies that any conformation is destabilized with respect 
to that shown in Figure 6 if R 28 or R 1 increase in bulk and as a result, the stereoselectivity 
increases. 

(4) A polar substituent, such as chlorine, stabilizes the transition states in which the 
incoming nuc1eophile and the polar group are remote (Figure 6, L = Cl). 

A direct comparison of Cram's, Cornforth's, Karabatsos's and Felkin's model was possi­
ble by ab initio ca1culations. Several different conformations of a "supermolecule", consisting 
of a chiral substrate (2-chloropropanal or 2-methylbutanal) and a nuc1eophile (simulated by 
HG), were ca1culated 16,17. The resulting curves, which represent the energy of the different 
transition states, show that the Felkin transition state lies c10se to the minima, whereas all other 
transition state models have significantly higher energies 18,19. Assuming aBoltzmann distribu­
tion for the transition states, the Felkin model accounts for more than 99 % of the total yield. 
In order to predict the 1,2-asymmetric induction, it is therefore justified to take into account 
only the preferred Felkin transition state and to avoid more complex treatments involving 
various different transition state geometries 20,21. 

In all of the models for 1 ,2-asymmetric induction described above, a perpendicular attack 
of the nuc1eophile (R 28) is assumed. However, quantum mechanical ca1culations and crystal­
lographic data show that the nuc1eophile approaches the carbonyl group at an angle (cp) of 
between 100° and 110°2,16,22 (Figure 7). 

Figure 7. 'Realistic' nucleophile approach Felkin model. 

Nonperpendicular attack of the nuc1eophile explains Felkin's hypothesis for the predominance 
of interactions involving R 1 and R 2 over interactions involving the carbonyl oxygen. Addition­
ally, as R 1 increases in bulk, the nuc1eophile is pushed towards the stereogenic center and can 
better "feei" the difference between the substituents, resulting in an increase in stereoselectivity. 

Complexation of the carbonyl oxygen with the counterion of the nuc1eophile reduces the 
optimal angle of attack, leading to a decrease in stereoselectivity. Since "hard" nuc1eophiles 23 
are generally associated with highly active cations which are capable of strong "electrophilic 
assistance", this observation explains the empirical rule that "soft" nuc1eophiles give higher 
stereoselectivities than "hard" nuc1eophiles 24. 

In the ca se of substituted cyc1ic ketones, particularly cyc1ohexanones, the stereochemical 
outcome of an addition reaction is determined by the predominance of either equatorial or axial 
attack ofthe nuc1eophile, leading to axial orequatorial a1cohols, respectively2S-27 (Figure 8). 

axial attack 

Jisj
HH \\10 

R ... 
H \. 

H equatorial attack 

Figure 8. Nucleophilic attack on substituted cyclohexanones. 

An empirically derived rule states that axial attack is favored with unhindered cyc1ic ketones 
where steric hindrance is negligible 28. This leads to the concept of "product development 
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control", implying an essentially product-like transition state with the ratio of isomers reflect­
ing the thermodynamic stabilities of the products 29. However, it is proposed that "steric 
approach control" operates with hindered cyclic ketones, implying an early reactant-like tran­
sition state with the nucleophile approaching from the least hindered side of the carbonyl 
group29. Since axial attack encounters steric hindrance from the 3,5 axial substituents, equato­
rial attack is predominant regardless of the size of the incoming nucleophile. Objections to the 
concept of product development control have arisen as nucleophilic addition reactions are 
usually run under irreversible reaction conditions and the observed ratio of stereoisomers 
differs significantly from the ratio in thermodynamic equilibrium 30,31. 

Felkin's model for 3-substituted cyclohexanones is based on the assumption that the 
premises valid for acyclic carbonyl compounds are also applicable to cyclic substrates 32 - 34. 
Thus, a reactant-like transition state is proposed for both types of nucleophilic addition 
reaction. While steric strain and torsional strain can be minimized simultaneously in a staggered 
transition state for acyclic carbonyl compounds, this is not possible in the case of cyclohex­
anones. Equatorial attack, leading to an axial alcohol (A '*' ; Figure 9), leads to torsional strain 
resulting from partial bond eclipsing; axial attack implying an essentially staggered transition 
state (E '*'; Figure 9), results in steric interactions between the incoming nucleophile and the 
substituent in the 3-position. Therefore, the ratio of stereoisomers is determined by the relative 
magnitudes of torsional and steric strain. For unhindered cyclic ketones the steric strain is small 
and axial attack of the nucleophile predominates. For hindered cyclic ketones, or when a bulky 
nucleophile approaches the carbonyl group, steric strain is overriding the torsional strain and 
equatorial attack is preferred. 

strain 

E=7= 

Figure 9. Equatorial (A *) and axial (E *) attack on 3-substituted cyclohexanones. 

Model calculations generally support Felkin's hypo thesis 35 - 38. However, an additional con­
trolling factor is the stabilization of the transition state by the approach of the nucleophile 
antiperiplanar to a vicinal bond 35. In the transition state for axial attack (Figure 8), the 
incipient bond is approximately antiperiplanar to two axial C - H bonds. Flattening of the ring 
improves this antiperiplanarity and, therefore, the more flattened the cyclic ketone, the more 
axial attack is preferred. 

Since equatorial attack is roughly antiperiplanar to two C - C bonds of the cyclic ketone, 
an extended hypothesis of antiperiplanar attack was proposed 39. Since the incipient bond is 
intrinsically electron deficient, the attack of a nucleophile occurs anti to the best electron-donor 
bond, with the electron-donor order: C-S > C-H > C-C > C-N > c-o. The transition 
state-stabilizing donor-acceptor interactions are assumed to be more important for the ste­
reochemical outcome of nUcleophilic addition reactions than the torsional and steric effects 
suggested by Felkin. 

for references see p j j 56 
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1.3.1.2. Formation of C - C Bonds by Addition to Cyclic Ketones 

The stereochemical outcome of nuc1eophilic addition reactions to cyc1ic ketones is the subject 
of numerous experimental and theoretical studies, with substituted cyc1ohexanones and cy­
c1opentanones having been intensively studied. In addition reactions to substituted cyc1ohex­
anones 1 the problem of simple diastereoselectivity is manifested in the predominance of either 
axial attack of a nuc1eophile, leading to the equatorial a1cohol 2A, or equatorial attack of the 
nuc1eophile which leads to the axial a1cohol 2 B. 

axial attack 

HH ~ 0 

M Nu8 

R "'-5' "-
H H equatorial 

attack 

At least two different, competing interactions are involved in the determination of the stereo­
chemical course of such addition reactions. The ratio of the stereoisomeric products thus 
reflects the relative magnitudes of these competing interactions. It is gene rally accepted that the 
nuc1eophilic addition to a cyc1ic ketone involves an early, reactant-like transition state. Conse­
quently, the steric strain between an incoming nuc1eophile and the axial hydrogens at C-3 and 
C-5 destabilizes the axial transition state, thus directing the nuc1eophile into the equatorial 
position. A rule of thumb is that with bulky nuc1eophiles equatorial attack predominates. The 
nature of the interaction which leads to predominant axial attack is still under debate. Several 
hypotheses have been developed in order to explain experimental results which show a distinct 
preference for axial attack (see also Section 1.3.1.1.). Among these, the rationalizations dis­
cussing transition-state stabilization and destabilization via stereoelectronic factors have re­
ceived the widest acceptance. 

One hypothesis proposes a destabilizing, repulsive interaction between two occupied or­
bitals. The equatorial transition state is destabilized compared to the axial transition state by 
torsional strain which is introduced by bond ec1ipsing of the incipient bond with the axial C-2 
and C-6 carbon ~ hydrogen bonds. This Felkin model 33 

- 37 relies on the assumption that an 
incipient bond, even if it is only partially formed, suffers from severe repulsion in the case of 
ec1ipsing vicinal a-bonds. 

Anh's model 38
. 39 proposes a transition state stabilizing charge-transfer interaction be­

tween an occupied aI-orbital and a vacant ai-orbital. The axial transition state is stabilized due 
to delocalization of the a-orbital of the incipient bond into the a*-orbitals of the antiperiplanar 
C-2 and C-6 carbon ~ hydrogen bonds. During equatorial attack a similar, but weaker, an­
tiperiplanar interaction occurs between the incipient bond and the vicinal carbon ~carbon 
bonds of the cyc1ohexanone ring. Therefore, in the absence of a strong steric interaction, axial 
attack is preferred. Flattening ofthe cyc1ohexanone ring improves the antiperiplanar alignment 
of the axial incipient bond and the vicinal axial C-2 and C-6 carbon ~ hydrogen bonds, thus 
leading to an improvement of the predominant axial attack. 

Cieplak's model suggests an alternative, transition state stabilizing interaction 40,41. Dur­
ing axial attack of a nuc1eophile, the vacant a*-orbital of the intrinsically electron-deficient 
incipient bond interacts with the occupied a-orbitals ofthe axial C-2 and C-6 carbon ~ hydrogen 
bonds. During equatorial attack, the a*-orbital interacts with the occupied orbitals of the 
C-2~C-3 and C-5~C-6 ring bonds. The effect of hyperconjugative a-assistance favors axial 
attack because C-H bonds are better electron donors than C-C bonds. In contrast to the other 
hypotheses, Cieplak's model is able to explain the decrease in axial selectivity upon electroneg-

Jor reJerences see p j 170 
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ative substitution at the cyclohexanone system or the nucleophile, since introduction of an 
electronegative substituent decreases the electron donation of vicinal bonds into the vacant 
a*-orbital of the incipient bond. Although very successful, Cieplak's model has been criticized 
as being based on a paradox assumption 42 because electron donation into the vacant a*-orbital 
of the incipient bond is a forbidden interaction according to the Frontier Molecular Orbital 
(FMO) Theory 43. 44. Since the FMO theory is one of the most successful theories for describing 
the course of organic reactions, it is unlikely that nucleophilic addition reactions to cyclic 
ketones obey an anti-FMO mechanism. According to the FMO theory the addition of a nucle­
ophile to a carbonyl group is controlled by an interaction of the HOMO of the nucleophile with 
the (nt=o)-LUMO of the cyclohexanone. Since the LUMO orbital is actually more extended on 
the axial face of the trigonal center compared to the equatorial face 42 - 46, nucleophilic reagents 
would prefer the axial approach. However, when the nucleophile is very bulky, steric strain 
overrides the stereoelectronic preference for axial attack. 

Although the true nature of the interaction leading to predominant axial attack remains 
a point of discussion and awaits final clarification, there is nevertheless a vast body of exper­
imental results indicating the possibilities and limitations of diastereoselective addition to cyclic 
ketones. 

Nucleophilic Addition to Cyclohexanones 

Cyclohexanones exist in the chair conformation with substituents occupying an equatorial 
position whenever possible. Although there is always a sm all equilibrium concentration of 
other conformational isomers, the influence of these conformers on the stereochemical course 
of nucleophilic additions is thought to be insignificant 7. Nevertheless, 4-tert-butylcyclohex­
anone is often chosen as the substrate in nucleophilic addition reactions since, due to the large 
size of the substituent, the system is virtually locked in a single chair conformation. Addition 
reactions of various organometallic reagents to several substituted cyclohexanones are summa­
rized in Tables 1 and 2. Lithium, magnesium, zinc and cadmium alkyl and aryl reagents 
generally exhibit low to moderate equatorial selectivity in additions to 4-substituted cyclohex­
anones (Table 1). Apparently, even with nucleophiles as small as methyl, the steric inter action 
with the axial hydrogens at C-3 and C-5 of the cyclohexanone ring is sufficiently strong to 
overcome the axial selectivity which is observed in hydride reductions. The equatorial selectiv­
ity increases with decreasing reaction temperature 1

• 2. 32 and with increasing steric demand of 
the nucleophile 1, 9,16. Thus, addition of tert-butylmagnesium bromide to 4-tert-butylcyclohex­
anone leads exclusively to the axial alcohol 16

. Compared to the organometallic reagents 
already discussed, zirconium and titanium reagents lead to a higher preference for equatorial 
attack 11-15,31. However, titanium reagents are only suitable for the transfer of n-alkyl nucle­
ophiles. With branched alkyl nucleophiles, such as isopropyl, reduction of the carbonyl group, 
rather than the addition product, is observed 12,22. With respect to alkylation with meth­
ylorganometallic reagents, the higher-order cuprate prepared in si tu from copper(I) iodide and 
methyllithium shows a remarkably high equatorial selectivity upon addition to 4-tert-butylcy­
clohexanone 2. 

t-BU~ 

o 
3 

CH3Li I (CH3)2CuLi 

Et20; .70 °C 

91% 
t-BU~ + t-BU-q,0H 

OH 
4A 4B 

cis-4-tert-Butyl-l-methylcyclohexanol (4 A); Typical Procedure 2 : 

5.70 g (30 mmol) of copper(1) iodide are suspended under a nitrogen atmosphere in 100 mL of anhyd Etzü 
at O°e. 40 mL of 2 M CH 3 Li (80 mmol) in Etzü are added and the light tan solution is stirred for 10 min. 
After cooling to - 70°C, 1.54 g (10mmol) of 4-tert-butylcyclohexanone (3) in 25 mL of anhyd Etzü are 
added over a 5-min period. Stirring at - 70°C is continued for a further 30 min. The reaction mixture is 
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then poured into sat. aq NH4 CI. The aqueous layer is separated and extracted with Et2 0. The combined 
organic phase is dried over MgS04 and the solvent is evaporated und er reduced press ure to give a crystalline 
product (1.80 g) which is purified by sublimation (60°Cj1 Torr); yield: 1.55 g (91 %); d.r. (cis/trans) 94:6 
[determined by VPC (carbowax 20 M column) and NMR in the presence of Eu(fodU; mp 62-65 °C. 

The equatorial selectivity observed with organolithium reagents is enhanced in diethyl ether as 
the reaction solvent by the addition of lithium perchlorate (Table 1)32. 13C-NMR studies 47 

indicate that the formation of a complex between lithium perchlorate and the carbonyl group, 
which also leads to a dramatic enhancement of the rate of the addition reaction, accounts for 
the increased diastereoselectivity. 

With respect to organomagnesium compounds, the influence of the nontransferable ligand 
on the diastereoselectivity of nucleophilic addition reactions has been investigated 22. Thus, 
organolithium reagents were transmetalated with several magnesium carboxylates and sul­
fonates and the diastereoselectivity of subsequent addition reactions was determined. Although 
additions of phenylorganometallic reagents to 4-substituted cyclohexanones usually show a 
rather low diastereoselectivity6, 7,16,18,32, reaction of the magnesium reagent obtained by 
transmetalation ofphenyllithium with the sterically demanding magnesium bis(2,4,6-trimethyl­
phenylsulfonate) proceeds with considerable diastereoselectivity22 (Table 1). 

In line with other alkylorganometallic reagents, trialkylaluminum reagents also exhibit a 
slight preference for equatorial attack if an equimolar amount of the reagent is used. However, 
the diastereoselectivity is reversed when an excess of the trialkylaluminum reagent is em­
ployed 6,7,10. This unusual axial selectivity is explained by the so-called "compression ef­
fect" 6,7, where the effective size of the carbonyl group is increased by complexation with one 
equivalent of the trialkylaluminum to such an extent that, in the transition state of equatorial 
attack, severe interactions with the equatorial hydrogens at the adjacent carbon atoms may 
occur. Thus, the transition state of equatorial attack is destabilized and axial attack is predom­
inant. 

Complexation of cyclic ketones with aluminum reagents is a general method for achieving 
high axial selectivity, even in addition reactions with organolithium and Grignard reagents. 
One of the most effective complexing agents is the sterically demanding methylaluminum 
bis(2,6-di-tert-butyl-4-methylphenoxide) (MAD). Thus, pre-complexation of 4-tert-buty1cyclo­
hexanone with MAD, prior to the addition of an organolithium or Grignard reagent, lead to 
the almost exclusive formation of the equatorial a1cohol via predominant axial attack 
(Table 1) 3, 4. This extraordinarily high diastereoselectivity is explained by the formation of a 
sterically favorable complex 5 between the cyclic ketone and MAD, followed by the addition 
of the nucleophile from the least hindered (axial) face of the ketone. 

Nu 8 

\ 0 H3C 

-Ed ... / t-Bu 

AI _~~ t- Bu /" 'I '\ 
t- Bu 0 0 _ CH3 

~t-Bu t-Bu 

)=l (MAD) 
H3C 

axial attack 
equatorial alcohol 

5 

The initial formation of an "ate" complex by attack of the nucleophile on the aluminum 
reagent, followed by reaction with the ketone, is unlikely since treatment of the ketone with a 
mixture of MAD and the organometallic reagent gave results comparable to those obtained with 
the organometallic reagent in the absence of MAD. 

for references see p j j 70 
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t-BU~ 

o 
3 

BuMgBr/MAD 

toluene; . 78 oe 
67% 

trans-l-Butyl-4-tert-butylcyclohexanol (6); Typical Procedure 3,4 : 

t-BU--q 
OH 

* 
Bu 

6 

To a solution of 1.44 g (3 mmol) of MAD in 10 mL of toluene are added 154 mg (1 mmol) of 4-tert-butyl­
eyclohexanone (3) at - 78 oe. Butylmagnesium bromide (3 mmol) in EtzO is added and the reaetion mixture 
is stirred at - 78°C for 2 h. After quenehing with 1 N HCl and extraetion with EtzO, the eombined extraet 
is dried and eoneentrated. The erude produet is purified by eolumn ehromatography on siliea gel (EtzO/hex­
ane); yield: 142 mg (67 %); d.r. 100:0 [determined by eapillary GC (column: PEG-HT, 0.25 mm x 25 m; 
temp.: 130°C) by comparison with authentie sampies]. 

The methodology of preeomplexing a cyc1ic ketone with MAD, followed by addition of a 
nuc1eophile, has also been successfully used for the methylation of 5a-eholestan-3-one (7). 
Thus, addition of methyllithium 4 or methylmagnesium iodide 57 to the steroidal ketone affords 
predominantly 3ß-methyl-5a-cholestan-3a-ol, whereas alkylation with methyllithium/MAD al­
most exc1usively affords 3a-methyl-5a-cholestan-3ß-ol via predominant axial attack of the 
nuc1eophile 4

. 

H 
7 

8: 3-methyl-5cx-cholestan-3-o1 

& 
HO H 

3u-OH- 8 

CH 3X d.r. Yield Ref 
(3o:-0H/3ß-OH) (%) 

CH3 Li 73:27 
CH 3 Li/MAD 2:98 

90 
96 

4 
4 

+HO$ 
H 

3~-OH - 8 

With regard to the stereochemistry of nuc1eophilic addition reactions, the above noted trends 
for 4-substituted cyc1ohexanones are comparable to those observed with 2- and 3-substituted 
cyc1ohexanones (Table 2). However, the predominance of equatorial attack, observed with 
organometallic reagents, other than aluminum reagents, increases in the order 4-substitu­
tion< 3-substitution < 2_substitution 2 - 4 ,12-14,23,31,32. This c1early indicates that the steric 
influence of the substituent increases the c10ser the substituent is to the reaction site. Thus, 
2-methy1cyc1ohexanone is attacked from the equatorial side to a much larger extent than 
4-tert-buty1cyc1ohexanone. It has been suggested that the high equatorial selectivity observed 
with 2-methy1cyc1ohexanone is due to the methyl substituent introducing a pseudoaxial hydro­
gen (Ha)' thus increasing steric strain in the case ofaxial attack 48. 

cd):' 
(R)H H 

Although it might be expected that a larger substituent at the 2-position of cyc1ohexanone 
would hinder axial attack to a greater extent, addition reactions to 2-methyl-, 2-ethyl- and 
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Table 1. Alkylation of 4-Substituted Cyclohexanones 

R
1

--qR2 + R
1

--qOH 

OH R2 

9A 98 

R 1 RZM; equiv Solvent; d.L Yield a Ref 
Temp. cc)a (9Aj9B) (%) 

t-Bu CH3Li; 2.0 EtzO; 5 65:35 94 1 
CH3Li Et20; -78 79:21 81 2, 32 
CH3Li; 2jLiC104; 1 Et20; -78 92:8 96 32 
CH3Li; 2.0/(CH 3)zCuLi; 3.0 EtzÜ; -70 94:6 91 2 
CH3Li; 3.0/MAD; 3.0 b toluene; -78 1 :99 84 3,4 
CH3MgBr; 2.0 EtzO; 0 60:40 95 1, 5 
(CH3)3A1; 1.0 benzene; n.L 76:24 n.L 6,7 
(CH3)3A1; 3.0 benzene; n.L 12:88 n.L 6,7 
(CH3)zCd; 2.0 e EtzO; 0 53:47 d 8,9 
(CH 3)zZn; 2.0 e EtzO; 0 47:53 f 8,9 
(CH3)z TiClz; 1.0 CHzCI2; -78 82: 18 92 11,12,31 
(CH3)4Ti; LiCl EtzO; -50 38:62 n.L 12 
CH3 Ti(O-i-Pr)3 EtzO; 25 86: 14 99 12-14, 31 
CH3 Ti(O-i-Pr)3 hexane; -15 -+ 22 94:6 n.L 12, 31 
CH3Zr(OBu)3; 1.5 EtzO; 20 80:20 95 15 

t-Bu EtMgBr; toluene; - 78 48:52 95 3,4 
EtMgBr; 3.0jMAD; 3.0 toluene; - 78 0: 100 91 3,4 
Et3Al; 1.0 benzene; n.L 88: 12 n.L 6,7, 10 
Et3Al; 4.0 benzene; n.L 14:86 n.L 6,7,10 

t-Bu PrMgBr; 4.0 Et20; 0 67:33 66 9 
i-PrMgBr; 2.2 EtzO; 0 82: 18 47 16 

t-Bu BuMgBr toluene; - 78 56:44 58 3,4 
BuZr(O-i-Pr)3; 1.5 Et20; - 80 -+ 20 86: 14 78 15 
BuMgBr; 3.0jMAD; 3.0 toluene; - 78 0:100 67 3,4 

t-Bu t-BuMgBr; 2.2 Et20; 0 100:0 22 16 

I-Bu C6HsMgBr; 2.2 Et20; 0 49:51 89 16 
C6HsLi; 2.0 EtzO; -78 58:42 n.L 32 
C6HsLi; 2jLiCl04; 1 Et20; -78 69:31 n.L 32 
2,4,6-(CH3hC6H2S020MgC6Hs THF; 78 -+ 0 90: 10 82 22 
(C6H5)3A1; 1.0 benzene; n.L 51 :49 n.L 6, 7 
(C6H5)3A1; 4.0 benzene; n.L 8:92 n.L 6, 7 

I-Bu H-=-Na;1.75 Et20/NH3; n.L 12:88 68 17 

CH3 CH3MgI; EtzO; 22 52:48 n.L 7, 12 
CH 3Ti(O-i-Pr)3 Et20; -15 -+ 22 88: 12 n.L 12, 31 

CH3 C6 HsLi; 1.2 EtzO; 25 47:53 74 18 
C H M Br· 1.2 6 S g , Et 0· 25 z , 54:46 53 18 

a n.L = not reported. 
b MAD = methylaluminum bis(2,6-di-tert-butyl-4-methylphenoxide). 
C Prepared in situ by treatment of methylmagnesium bromide (4 equiv) with cadmium iodide (2 equiv). 
d 5 % unreacted ketone recovered. 
e Prepared in situ by treatment of methylmagnesium iodide (4 equiv) with zinc bromide (2 equiv). 
f 20% unreacted ketone recovered. 

Jor reJerences see p 1170 


