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Preface 

Methods ofOrganic Chemistry - or synonymously Houben-Weyl- would be severely 
incomplete in this decade without the coverage of small ring chemistry. The first, 
and only, Houben-Weyl volume on Carbocyclic Three- and Four-membered Ring 
Compounds was published 25 years ago. Until that time small ring chemistry was, 
in the main, considered a domain for mechanistic and physical organic investigations, 
although many of the basic preparative methods had already been developed and 
the majority of important transformations thoroughly studied and reasonably weIl 
understood. Nevertheless, the notion, which started to evolve slowly in the sixties, 
of small ring compounds being useful and, frequently, uniquely applicable building 
blocks for other carbocyclic and also acyclic organic skeletons, has only since fully 
matured. 

Quite a number of cyclopropane and cyclobutane derivatives have gained importance 
in their own right. For instance, the cyclopropyl group has turned out to be an essential 
feature in natural and non-natural products with insecticidal, cytostatic, various plant 
physiological, as weIl as antiinfective, activities and has, therefore, entered the realm 
of industrially applied chemistry. Arecent survey listed 191 pharmaceutically impor­
tant compounds containing an aminocyclopropane substructure, the best known 
example being the widely used broad-spectrum antibiotic Ciprofloxacin. 

Yet the discovery of new types of natural sm all ring compounds continues. F or 
example, a few years aga an antibiotic natural product with an unusual fatty acid 
side chain containing four adjacent cyclopropyl groups was described, and more re­
cently, a similar compound with five adjacent, and a total of six, cyclopropyl groups 
has been reported. The vast progress in the development of stereoselective synthetic 
methodology (see Houben-Weyl Volume E21) has also brought about new methods 
for stereoselective cyclopropanations, and this has gone hand in hand with efforts 
towards enantioselective total syntheses of cyclopropyl-group-containing natural and 
non-natural products. So far these developments have only scratched the surface, as 
most ofthese methods are still hampered by severe constraints, and so the race goes on. 

In view ofthis progress, it appeared to be time to publish an up-to-date comprehensive 
treatment of the methods of preparation and transformation of carbocyclic three­
and four-membered-ring compounds. Certainly, the access to cyclopropane deriva­
tives via carbene additions to alkenes, which represents one of the most general 
methods, has been covered - albeit from a different perspective - in the Houben-Weyl 
volume on Carbenes (E19b), and cross-references are frequently made to Houben­
Weyl E19b in the corresponding sections ofthis volume. Yet this earlier volume cannot 
even be considered to be a comprehensive summary of the methods for the synthesis 
of cyclopropanes, let alone ofthe preparations and transformations of cyclopropenes, 
cycloproparenes, cyclopropenones and triafulvenes, all of which are covered here. 

Twenty five years ago, all of the material on cyclopropane and cyclobutane chemistry 
was compiled by two single authors, which at the time must have been a truly Her­
culean task. Nowadays, this would simply be impossible. Thus, Houben-Weyl E17 
has come to li fe only through the joint efforts of more than 60 authors, some of 
whom have invested a lot of their time with major contributions. An estimated 20,000 
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publications were read and evaluated, well over 13,000 references actually being 
quoted in the three-membered-ring seetions alone. An editorial staff of 6 native 
speakers took care to make the presentation uniform and polish the language, espe­
cially of the non-native English writing authors. All the art work was redrawn by a 
group of 4. 

The editor is indebted to all the authors, the editorial staff and the artists for the 
fruitful collaboration which made this book possible. We all hope that this handbook 
will serve the chemie al community well and will become an indispensable reference 
tool for those engaged in Synthetic Organic Chemistry. 

Göttingen, August 1996 Armin de Meijere 
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B. Transformations 

1. Elimination Reactions 

M.S. BAIRD 

1,2-Elimination in cyc1opropanes will lead to the preparation of a cyc1opropene if the 1,2-bond 
is endocyc1ic or a methylenecyc1opropane if it is exocyc1ic; these reactions are covered in Sections 
2.A.1.1.1. and 1.A.5.2.2., respectively. 1,1-Eliminations leading to cyc1opropylidenes are 
covered in Houben-Weyl, Vol. E19b, pp 391-511. 

2. Ring-Opening Reactions 

2.1. Addition Reactions 

2.1.1. Nonactivated Cyclopropanes 

S. VON ANGERER 

2.1.1.1. Reductive Ring Fission 

2.1.1.1.1. Hydrogenolysis 

Alkyl-substituted cyc1opropanes are c1eaved preferentially at the least substituted bond by 
catalytic hydrogenation. This observation is in agreement with theoretical considerations that 
favor the C - C bond opposite to the substituent as the c1eavage si te due to the weakly electron­
donating effect ofthe alkyl substituent. 1 With a C - C double bond or other cyc1opropyl groups 
in the molecule, however, the preferred mode of ring opening can be different (vide injra).2 
Electron-withdrawing groups, such as a carbonyl function, result in the c1eavage ofthe adjacent 
bond (see Section 2.1.3.1.). Mono- and 1,1-disubstituted cyc1opropanes react with hydrogen 
in the presence of a noble metal catalyst such as palladium, platinum or rhodium to give 
geminal dimethyl groups, such as in 1, or tertiary alkyl substituents, such as in 3. 1 

- 6 

When benzylcyc1opropane was hydrogenolyzed in the presence of platinum a substantial 
proportion ofthe alkyl derivative with a reduced aromatic ring was obtained. With a palladium 
catalyst derivative 2e became the main product with the phenyl ring retained. 3 

2 

1,2 R 1 R 2 Reaction Conditions Yielda (%) Ref 

1 2 

a C6 H 13 H Pd/Co EtOH 95 5 3 
b Me Me Pd/C, MeOH or Pt, HOAc, OCC 10-24 h n.r. - 1 
c Me 1-adamantyl Ptz, HOAc, 50 -C/3 atm 96 - 4 
d CHzOH CHzOH Pd/C, EtOH, 185 atm, 24 h n.r. - 1,2 
e Bn H Pd/C, EtOH 25 75 3 

a n. r. = not reported. 

for references see p 1982 
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n m R Reaction Conditions Yield (%) Ref 

3 3 - H2(g), Rh/C, 60°Cj100 atm 58 6 
2 3 CH -t-Bu H ( ,PtO ,HOAc 92 5 

Spirocyclopropanes usually behave as 1,1-dialkylcyclopropanes and yield cyclic structures with 
geminal dimethyl substituents (see Table 1).4,7 - 14 The introduction of a geminal dimethyl 
fragment via a spirocyclopropane has frequently been used in the synthesis of natural products 
such as ,19(12tcapnellene,8 longifolene,12,13, patchouli alcohol,10 seychellene,10 and pen­
talenene.9 

Exceptions were dispiro[2.0.2.4]dec-8-ene (4) and dispiro{ cyclopropane-1 ,2'-bicyclo[2.2.0]hex­
ane-3',1"-cyclopropane} (5) in which both three-membered rings were opened to ethyl groups.15 

~ H2(g), PdiC 

~ 

~ 4 ce ce oe + + + 

~ ~ 6 7 B 9 

5 

Substrate Yield (%) 

6 7 8 9 

4 45 32 7 16 
5 8 84 - 7 
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Table 1. 1,1-Dialkylcyclopropanes from Spirocyclopropanes 

Substrate Reaction Product Yield Ref 
Conditions (%) 

I{t, 
R 1 R 2 

UR' H H Hig), Pt02 , HOAc, - 4 
50 DC/3 atm 

R1 H H H 2(g), Pt02 , HOAc R1 85 7 
OH H H 2(g), Pt02 , HOAc 85 7 
H OH H 2(g), Pt02 , HOAc 83 7 

H~ 
H 2(g), Pt, HOAc, rt 

H~ 
- 8 

~o 
Hz<g), Pt, HOAc, 3 atm 

~o 
96 9 

H H 

~ 
Hig), Pt02 , HOAc, 60°Cj3 atm 

92? 
60 14 

0 0 

~ 
H 2(g), Pt02 , HOAc, 25°C, 18 h 

~ 
96 12,13 

0 0 

Ji6Me Hz<g), Pt02 , NaOAc, HOAc, 

~Me 
83 10 

rt, 40 min 

I I 
H H 

~R1 
R 1 R 2 

~R1 H OH H 2(g), Pt02 , HOAc, 10 d 100 11 

OH H Hz<g), Pt02 , HOAc, 10 d 83 11 
R2 R2 

3 Additionally the derivative R 1 = OAc; R 2 = H was obtained in 79% yield. 

Jor reJerences see p 1982 

2 Houben-Weyl, Bd. E17c 
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In analogy to the mono-alkylated cyclopropanes annulated cyclopropanes gave methylated 
cyclic products 10,17 11,16 and 1218 upon catalytic hydrogenolysis. 

0 H2(g), Pd/C, EtOH () 
10 

H2(g), Pt02' HOAc, 55°C cb 
H 

11 (cis /trans) 1 :1 

W W H2(g), PtlRh, HOAc, 15 h, rt 

° H",j 
80% 

12 

In polycyclic systems with a bicyclo[2.2.1]heptane group generally the six-membered ring was 
retained and the cyclopropane ring opened to give a methyl group, i. e. formation of 13. 19 

'(?(.~.~ 
~H 

C02Me 

13 

In bi- and oligocyclic systems the cleavage reaction can also take a different course depending 
on the preferred mode of adsorption of the molecule on the catalyst surface. For example, in 
exo-homotriquinacene, 14 and 15 and in hexacyclo[4.4.0.02,10.04,8.07,9]decane (diademane), 
both types of cyclopropane C - C bonds were cleaved by hydrogenation in the presence of 
palladium on charcoal. 20 

lö. 
H 

H", 
11 

H 
14 

H~H 
H H 

15 

H2 , Pd/C, MeOH 

H2, Pd/C, MeOH 

H.~. H ~H H~H 
H.~ + ~ + ~ 

H 
16% 

H~H 
H··W··H+ 

H H 
27% 

33% 

H .. D: H 
H,6--U + 

H 
16% 

51% 

l,2{H 30ther 
H '" . + cleavage 

products 

H 
10% 13% 

Hydrogenation of 3,7, 7-trimethylbicyclo[4.1.0]hept-2-ene in ethanol gave al : 1 mixture of ring­
opened product 16 and ring-retained product 17 both with the double bond reduced. 21 In 
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propionic acid only the monocyclic derivative 16 was obtained. It is apparent that ring opening 
can only occur simultaneously with or after the reduction of the double bond. 

~ 
H2(g), Pd/C U ~ + 

16 17 

Conditions Product 

EtOH,20 D C 16/17 1 : 1 
EtC02H, 96 cC 16 

The cyclopropane ring in dibenzannulated tricyclo[3.3.0.02,8]octa-3,6-diene was opened to give 
the symmetric bicyclo[3.3.0]octadiene skeleton 18.22 

H2(g), Pd/C, EIOH, rt, 30 min 

94% 

18 

Recently, various methyl-substituted cyclopropanes have been used as test substrates for 
some novel hydrogenation catalysts such as palladium(O),23 nickel(O),24, 25 copper(O),26 and 
rhodium(O) on silica gel. 27 Although the ratio of cleavage products 19 and 20 was dependent 
on the experimental conditions, especially on the hydrogen pressure, the main product was 
usually formed by the cleavage of the least substituted C - C bond in the ring. In further 
studies, the cyclopropane ring was opened by treating it with deuterium gas in the presence 
ofiridium(O) on alumina. 28 When methyl- or 1 ,1-dimethy1cyclopropane was used the deuterium 
label was found at the unsubstituted carbon atoms. 

19 20 

R 1 R2 R 3 R4 Catalyst Product Ref 

H H H H Ni/NaX, zeolite - 25 
Et H H H Pd/silica gel 19 23 
Me H H Me Pd/silica gel 19 23 
Me Me Me Me Pd/silica gel 19 23 
Me H H Me Rh/silica gel 19 27 
Me Me H H Ni/silica gel 19 + 20 24 
Me Me H H Cu 19 + 20 26 
Me H Me H Cu 19 + 20 26 
Me H H Me Cu 19 + 20 26 
Me Me Me Me Cu 20 26 
Me Me Me Me Rh/silica gel 19 + 20 27 

Jor reJerences see p 1982 

2* 
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2.1.1.1.2. Reactions with Hydride Complexes 

An example of the reduction of a nonactivated cyclopropane by lithium in liquid ammonia 
is the reduction of l-methyl- and 1,1-dimethylspiro[2.4]hepta-4,6-diene. Either cyclopropane 
bond at the spiro center was cleaved to give alkyl-substituted cyclopentadienes 1 and 2. 29 

R 

R= H, Me 2 

In the 1950s, it was reported that the reaction of cyclopropane with lithium aluminum hydride 
gave tripropylaluminum. 30 However, this result was not verified. 31 The reaction of cyclo­
propane in the vapor phase with diborane to monoalkylcyclopropanes was shown to be fairly 
regioselective, the products being derived from addition of the hydride to the most-substituted 
carbon atom, and the boron to the least-substituted carbon atom. 31 With butyl-, pentyl- and 
octylcyclopropanes after oxidative workup the linear primary alcohols 3 were obtained as the 
major products together with small quantities of the 2-methyl derivatives 4. 

~R + R~ 
I OH 

3 4 

R Conditions Yielda (%) Ref 

Pr3 B 3 4 

H rt, months or 80-100°C n.r. - - 32 
Bu 106 8 C, 1.5 h - 90 5 31 
CSH ll 110°C, 1 h - 90 10 31 
CH 86°C, 15 min - 81 9 31 8 17 

a n. r. = not reported. 

The reaction of bicyclo[4.1.0]heptane with diborane and subsequent treatment with hydrogen 
peroxide produced predominantly cyclohexylmethanol (5b) in high yield. 31 Under modified 
experimental conditions small amounts ofisomeric methylcyclohexanol (6b) and cycloheptanol 
(7b) were isolated. In contrast to the hydroboration of alkenes, the cyclopropane cleavage 
reaction is inhibited by ethereal solvents such as diethyl ether, tetrahydrofuran or 2-methoxy­
ethyl ether. Bicyclo[3.1.0]hexane reacted with diborane in a similar fashion to give mainly 
cyclopentylmethanol (5a).31 The reaction of 1-methylbicyclo[4.1.0]heptane gave a mixture of 
cis- and trans-(2-methylcyclohexyl)methanol (5c) in an initial ratio of 60: 40. Spiro[2.5]octane 
reacted with diborane to yield only products derived from scission at the spiro carbon. The 
main product was 2-cyclohexylethanol (8).31 
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<;k 
1. B2Hs 
2. H20 2, HO· ~OH 

~R 
+ HO~ + 

~R 
R 

5 6 7 

5-7 R n Conditions Yield (%) 

5 6 7 

a H 1 93 ce, 1 h 92 trace 8 
b H 2 sealed tube, 100 ce, 22 h 96 trace trace 
c Me 2 106 c e, 1 h 97a - -

a (cis/trans) 6: 4. 

1. B2Hs, 105 oe, 1 h 
2. H20 2 , HO· 

8 95% 9 5% 

In the 7,7-dimethyltricyclo[3.3.0.02 ,8]octane system, the use of diborane resulted in hydro­
genolytic cleavage of the most strained cyclopropane bond giving 10.33 

H 

X:CX:J 
~ 

BH3, THF, 0 oe, 3 h 

86% 

H 

><Xx) 
~OH 

10 

2.1.1.2. Oxidative Ring Fission 

Due to the ring strain, the cyclopropane ring can be opened when treated with oxidizing agents 
such as lead(IV) acetate or thallium(III) acetate at elevated temperatures. The cleaved C - C 
bond is initially replaced by an acetoxy group and a hydroxy function which is subsequently 
acetylated. In ethy1cyclopropane, the bond next to the substituent was cleaved almost exclu­
sively on reaction with thallium(III) acetate giving 1,3-diacetoxypentane (1) as the major prod­
uct. 34 An analogous result was observed for spiro[2.4]heptane (2a) and spiro[2.5]octane (2b) 
which incorporate a cyclopropane group.35 

~Et 
TI(OAcb, HOAc 
75 oe, 120 h 

TI(OAcb, HOAc 

Et 

ACO~OAC + ACO~OAC 
Et 

65: 1 

~TI(OAC)2 
2a n= 1 

b n=2 

Jor reJerences see p 1982 
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When bicyc1ic compounds 3 with cyc1opropane rings were oxidized with thallium(III) acetate 
or lead(lV) acetate the c1eavage of both types of C - C bonds was observed together with 
secondary elimination products. It has been observed that, as the ring size increased from 
bicyc10[2.1.0]pentane (3a) to bicyc10[3.1.0]hexane (3b) and to bicyc1o[4.1.0]heptane (3e), c1eav­
age of the bond between the bridgehead and the methylene increased at the expense of c1eavage 
of the bond between the two bridgeheads due to the strain on the C - C bridge?6,37 Thal­
lium(III) acetate was the more selective agent. 36 In a mechanistic study, kinetics ofthis oxidative 
ring-opening reaction were determined. 35 

OAc 
M(OAc)m 

~OAc 
Q-OAC (Q (~ 

HOAc 
Q-OAC + + + 

( n 
OAc 

OAc 

3 4 5 6 7 

3-7 n M(OAc)m Temp, Time Yield (%) Ref 

4 5 6 7 

a 1 Pb(OAc)4 25°C, 24 h - 36 25 39 36 
Tl(OAch 25°C, 60 h - 27.5 22.5 50 35, 36 

b 2 Pb(OAc)4 75°C, 26 h 24.5 27 24 24.5 36,37 
Tl(OAch 75°C, 62 h 46 25 20 9 35, 36 

c 3 Pb(OAc)4 75°C, 60 h 69 11.5 9 7.5 36,37 
Tl(OAc) 25°C, 82 h 91 3 trace 6 32,34-36 

Treatment of ent-trachyloban-19-oate 8 with thallium(III) acetate in acetic acid resulted in 
c1eavage of the most strained bond of the three-membered ring to afford the corresponding 
diacetate together with elimination productS. 38 

qAC AcO AcO 

x:r 
TI(OAcb, HOAc q <roAC 
75 oe, 2 d 

+ + 

8 18% 10% 6% 

The oxidative c1eavage of the central C - C bond of the bicyc10[2.1.0]pentane fragment in 
pentacyc10[5.3.1.02 ,6.03,5.04,9]undecane (9) with thallium(III) acetate and lead(lV) acetate was 
used for the introduction of functional groups into noriceane (tetracyc10[5.3.1.02 ,6.04,9]unde­
cane). 39 The oxidation reaction yielded two unrearranged diacetates 10 with different configur­
ation and arearrangement product 11 due to the formation of a bridgehead carbenium ion 
as intermediate. The preferred orientation of the acetoxy groups depended on the oxidizing 
agent: endo,exo for thallium(lII) acetate and exo,exo for lead(lV) acetate. 
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9 

2.1.1. Nonactivated Cyclopropanes 

TI(OAcb, HOAc, argon, 4 h, rt 
er Pb(OAc)4' HOAc, 24 h, rt 

+ 

endo,exo-10 R1 =H, R2 =OAc 
exo ,exo -10 R1 = OAc, R2 = H 

Reagent Yield (%) 

endo,exo-lO exo,exo-lO 11 

TI(OAch 40 
Pd(OAc)4 20 

4 
40 

18 
20 

1957 

ß~OAC 
11 

Mercury(II) acetate also underwent addition across this particular bond of 9 and gave endo­
tetracyc1o[5.3.1.02 ,6.04,9]undecan-3-01 (12) in excellent yield following the reduction ofthe pri­
mary adduct with sodium borohydride. 39 The endo-product suggests the intervention of a 
1,3-bridged metal ion in these reactions. 

9 

1. Hg(OAcl2, THF, H20, 1 h, rt 
2. NaBH4, 3 M NaOH, 1 h, rt 

80% 

H~ 
12 

Silver(I) ions generally catalyze the rearrangement of strained polycyc1ic systems which contain 
cyc1opropane groups. It was shown, however, that silver(I) c1eaved one or two of the strained 
cyc1opropane bonds in quadricyc1ane (13) in an oxidation reaction. A complex mixture was 
obtained on treatment of quadricyc1ane (13) with silver(I) trifluoroacetate. The main addition 
products contained two oxygen functions and one intact cyc1opropane ring.40 

13 

AgOCOCF3 
MeOH 

Meo··lJ)"OMe + MeO.J:J)"OMe + MeO~OMe + R10.J:J)'OR' 

R1 = COCF3, R2 = Me 
R1 = H, R2 = Me 

Although the cyc1opropane ring and the C-C double bond have many similarities in their 
chemical properties, a cyc1opropane ring, in contrast to the double bond, is stable towards 
ozone; an exception is found when additional strain is put on one of the cyc1opropane bonds. 
Highly strained bicyc10[2.1.0]pentane reacted with ozone adsorbed on silica gel to give a 2 : 5 
mixture of cyc1opropaneacetic acid (14) and butanedial (15), the formation of 15 can be ration­
alized as c1eavage of all three cyc1opropane bonds.41 Analogously, exo- and endo-2-methylbi-

for references see p 1982 
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cyc1o[2.1.0]pentane gave 2-methylbutanedioic acid (17) as the main product after workup with 
hydrogen peroxide.41 eleavage of all three cyc1opropane bonds by ozone was also observed 
in methyl-substituted bicyc1obutanes.41 

D> 03. silica gel 

1. 03. silica gel 
2. H20 2• HOAc 

/\ e02H + ~eHO ~ OHe 

14 

~e02H 
16 

15 

2.1.1.3. Reactions with Radicals 

The ring-opening reaction of the cyc1opropyl radical cation has been the subject of a number 
of theoretical42 . 43 and spectroscopic44,45 studies. The addition of radicals to cyc1opropane 
resulting in ring opening can proceed by two mechanisms: (1) by a type of substitution reaction 
in which the e - e bond is c1eaved on the attack of the radical; (2) by hydrogen abstraction, 
e - e bond c1eavage, and capture of a reactive species such as a halogen atom. In the latter 
mechanism, the capture reaction can occur prior to c1eavage to yield substituted cyc1opropanes. 

Photochlorination of cyc1opropane gave chlorocyc1opropane (la) and 1,3-dichloro­
propane.46 The latter was the major product at low temperature.46,47 Photochlorination with 
lert-butyl hypochlorite gave mostly chlorocyc1opropane (la).46 Methy1cyc1opropane reacted 
with chlorine to give predominantly 1-chloro-2-methy1cyc1opropane (Ib), but sm all amounts 
of acyc1ic products such as 2-chlorobutane, 1,3-dichlorobutane, and 1,3-dichloro-2-methyl­
propane were also obtained. 46,48 With lert-butyl hypochlorite 4-chlorobut-1-ene was isolated 
as the only acyc1ic product. Photochlorination of 1, 1-dimethy1cyc1opropane in trichloro­
fluoromethane atO oe gave the chloromethy1cyc1opropane derivative 2 in 67 % yield after 
immediate workup. 

~R C12• hv or t ·BuOCI A + CI~CI 
R CI I 

1a R=H 
b R=Me 

R 

~CI + CI~ 
2 

The increased strain in methylenecyc1opropane, which is relieved on ring opening, makes the 
cyc1ic bonds more liable to c1eavage than methy1cyc1opropane. Photochlorination of methyl­
enecyc1opropane (3) in the liquid phase produced a mixture of several addition products in­
c1uding 3-chloro-2-chloromethylprop-2-ene (42%), 2,4-dichlorobut-1-ene (27%), 1-chloro-1-
chloromethy1cyc1opropane (18 %), 1 ,2,3,4-tetrachlorobutane (11 %), and 1,3-dichloro-2-chloro­
methylprop-1-ene (2 %).49 
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CI ~CI + CI ~CI 
CI 

+~ 
CI 

3 42% 27% 18% 

CI ~CI 
/'-. ~ ,CI CI CI 

+ CI' Y '-/' + 

CI 
11% 2% 

Spiropentane (4), which can be considered as a homomethylenecyc1opropane, reacted under 
irradiation with chlorine in the vapor phase to give a mixture offour compounds. Main products 
were chlorospiropentane (43%) and 4-chloro-2-chloromethylbut-1-ene (36%) together with 
1,2,4-trichloro-2-chloromethylbutane (16%) and 1,1-bise chloromethyl)cyc1opropane (4%) 
whose proportions were dependent on the irradiation conditions. 50 The latter was formed 
almost exc1usively when the photochlorination reaction was carried out in the liquid phase, 
but also when the vapor phase chlorination was performed in the dark. 50 

[><J 
C12, hv 
100 °C, 16.5 h 

CI 

[><:[ ~
CI 

CI 
CI 

CI 
+ ~CI 

CI 
4 43% 36% 16% 4% 

Photochlorination of tricyc10[2.2.1.02 ,6]heptane (nortricyc1ane, 5) gave two substitution prod­
ucts and the addition product exo,exo-2,6-dichlorobicyc10[2.2.1]heptane (6) in which one of 
the cyc1opropane bonds was c1eaved. 51 The steric orientation of the halogen atoms suggests 
an inversion of configuration at the carbon atoms is involved. 

5 

C12 , 1,1 ,2-trichloroperfluoroethane 
hv (N2), 25 °C 

ratio 1: 1: 2 6 

A number of methyl- and ethyl-substituted cyc1opropanes 7 were brominated under conditions 
that guaranteed a radical reaction pathway (irradiation at - 78 oe in dichloromethane).48 
Methy1cyc1opropane (7a) underwent exc1usive c1eavage of the bond next to the substituent to 
give a quantitative yield of 1,3-dibromobutane (8a). Analogous results were obtained with 
ethy1cyc1opropane (7b) and 1,1-dimethy1cyc1opropane (7c). In 1,2-dimethy1cyc1opropane (7d) 
the bond between the substituted and the nonsubstituted carbon atom was c1eaved. Higher 
substituted cyc1opropanes 7e and 7f showed a similar reaction course.48 

Jor reJerences see p 1982 
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A3 A4 

Br~Br 
Al' A2 

Al A2 

+ Br~Br 
A3 ' A4 

8 9 

7-9 R1 R2 R3 R4 Temp (OC), Yield (%) 
Time (min) 

8 9 

a Me H H H -78,8 100 -

b Et H H H 0,2 100 -

c Me Me H H -78, - 90 -

d Me H Me(Ht H(Me)a - 78, 10 100b -

e Me Me Me H -78,5 83 7 
f Me Me Me Me -78,3 - 100 

a cis or trans. 
b (1S,2S/1S,2R) 1 : 1. 

In a stereochemical study, it was shown that the free radical ring c1eavage of all-cis-1,2,3-
trimethylcyc1opropane (10) by bromine proceeded with inversion of configuration at one center 
and by nonstereospecific reaction at the other center. 52 Equal amounts of (S)-meso-2,4-di­
bromo-3-methylpentane and dl-2,4-dibromo-3-methylpentane were obtained by this reaction. 
The reaction of the corresponding trans derivative was much slower than that of the all-cis 
compound. 

Br Br Br Br 

~ +~ Br 
10 70% 10% 

Photobromination of 2,4-dehydroadamantane (11) at - 78 oe yielded a mixture of two di­
bromoadamantanes with axial, equatorial (a,e) and equatorial, equatorial (e,e) orientations 
of the halogen atoms.48 

Sr2, hv, -78 oe 

11 

Br1fX1 

X2 

(a,e) X1 = H, X2 = Sr 68% 
(e,e) X1 = Sr, X2 = H 32% 

The products of halogenation reactions by radical mechanisms often depend on the source 
used for the generation ofhalogen radicals. In photochlorination reactions, the use of tert-butyl 
hypochlorite results predominantly in ring-retained products whereas chlorine at low tempera­
tu re preferentially opens the cyc1opropane ring. A similar observation was made in the bro­
mination reaction. Photo lysis of cyc1opropane in the presence of N-bromosuccinimide yielded 
almost exc1usively bromocyc1opropane (12) whereas using bromine as the reagent gave only 
1 ,3-dibromopropane (13). 531t is thought that the bromine atom c1eaved the e - e bond whereas 
in the reaction with N-bromosuccinimide the competing succinimide radical abstracted the 
hydrogen followed by the capture of a bromine atom. 
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/\ + Br~Br 
~Br 

12 13 

Reagent Yield (%) 

12 13 

Br2, hv, QCC 0 100 
NBS 98 2 

Highly strained systems such as bicyclobutane (14) and [1.1.1]propellane (15) readily underwent 
addition ofbromotrichloromethane across the central bond by a radical mechanism. 54 Benzoyl 
peroxide catalyzed a number of addition reactions to the extremely strained central bond of 
[1.1.1]propellane (15). Examples were acetaldehyde, cyanogen bromide, deuteriochloroform, 
diphenyl disulfide, diphenyl diselenide, iodine, and tert-butyl hypochlorite. 54 Radical chain 
addition of various organic disulfides to [1.1.1]propellanes (15), initiated by 2,2'-azobis(iso­
butyronitrile) gave the normal adducts across the strained central bond and homologs that 
contained two or more bicyclo[1.1.1]pentane moieties. 55 

BrCCI3• hv 

14 

15 

x Y Reagent X Y Reagent 

Br CCI3 BrCCI3 SPh SPh (PhSh, Et20, pentane 
Ac CH(OH)Me MeCHO, BzOOH SePh SePh (PhSeh, Et20, pentane 
Br" CN" BrCN, BzOOH, pentane 1 1 12 , pentane 
D CDCI CDCI , BzOOH O-t-Bu CI t-BuOCI 

a The main product was a dimer. 

Similar addition reactions were observed with the bridged [1.1.1]propellane system tetra­
cyclo[5.1.0.01

•
6 .02

•
7]octane (16) when reacted with diethyl ether, carbon tetrachloride, bromo­

chloromethane, iodomethane, tert-butyl bromide, benzyl bromide and tri(butyl)tin hydride. 56 

Jor reJerences see p 1982 
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xÖv 
+ xötr + xÖÖUv 

16 17 18 19 

16-19 X Y Reagent Yield (%) 

17 18 19 

a CH(OEt)Me H Et20 13 12 5 
b Cl Cl3 CCl4 54 4 -

c Br CH 2Cl BrCH2Cl 31 - -

d I Me MeI, 40°C, 12 h 25 - -

e I Et EtI, SO°C, 17 h 35 - -

f Br t-Bu t-BuBr, DBPO, SocC 36 - -

g Br Bn BnBr, DBPO 50 - -

h SnBu3 H Bu3SnH, Et20, rt 72 - -

i H H 1. Li, Et2NH, 14 h, reflux 63 - -

2.H ° 

Addition following a radical mechanism can also be achieved by generating radicals by 
homolytic fission of a cyc1opropane bond followed by reaction with other components such 
as the solvent. When the tricyc1o[4.1.0.0 2,7]heptane system 20 was irradiated in the presence 
of a photosensitizer such as naphthalene-1-carbonitrile (nphth-CN) the central bond of the 
bicyc10butane moiety was c1eaved and nuc1eophiles were added across the original bond. 57 In 
the absence of nuc1eophiles dimerization and loss of hydrogen occurred. The formation of 
this product can be rationalized by attack of the radical formed by the photolysis of the most 
strained cyc1opropane bond at the bridgehead of the bicyc10butane fragment in a second mol­
ecule. This assumption was supported by the results from studies with tricyc1o[4.1.0.02 ,7]hep­
tanes bearing methyl substituents at the relevant bridgehead atoms. 58,59 

o nphth - CN, hv ~ 
R 

20 21 

21 R Conditions Yield (%) Ref 

a OMe MeOH, KOH 100 57,59 
b OH KOH, H 20, THF 91 57 
c CN ICN, KCN, MeCN, 1S-crown-6 91 57 

CF CH OH 

Irradiation of a methanolic solution of 1-methyltricyc1o[4.1.0.02 , 7]heptane (22) in the pres­
ence of naphthalene-1-carbonitrile gave 6-methoxy-7-methylbicyc1o[3.1.1]heptane (23a, 93%, 
isolated yield 56%).58,59 In an aqueous system, the corresponding hydroxy derivative 23b was 
isolated in 70% yield. The orientation of addition was anti-Markovnikov and the substituents 
were located in the less hindered positions. The same bond was c1eaved when the 2-tert-butyl 
derivative 24 was submitted to this reaction. With two methyl substituents, i.e. 26, a mixture 
of two stereoisomers 27 A,B and a dehydrogenated product 28 was obtained whose formation 
could be explained by the occurence of a tertiary carbon radical. 58 
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nphth-CN, hv 

22 

23 R Conditions Yield (%) 

a OMe MeOH, 10 h 93 
b OH KOH, H20, THF 90 
ca OMe MeOD, 10 h 93 

a For Hb = D. 

But 

Ö 
24 

KOH,MeOH 
nphth-CN, hv 

nphth-CN 
MeOH, hv 

But 

~ 
OMe 

25 

+ 

27 A R' = Me, R2 = H 32% 

B R' = H, R2 = Me 7% 

1963 

Ref 

58,59 
58 
58 

/ 

4 
OMe 

28 40% 

In a similar fashion 1,2,2-trimethylbicyclobutane (29) reacted in methanol under irradiation 
in the presence of naphthalene-1-carbonitrile to give three products that corresponded to those 
obtained with dimethylated tricyclo[4.1.0.02,7]heptane system. 59 In addition, cleavage of the 
bond between the quaternary carbon atoms was observed. 

29 

MeOH, nphth-CN 
hv, 20 h 

OMe OMe 

9% 12% 

As byproducts stereoisomeric adducts ofthe reduced photosensitizer (1,2-dihydronaphthalene-
1-carbonitrile) to cyclobutanes were found. 59 

2.1.1.4. Reactions with Electrophiles 

Although cyclopropanes are far less reactive than alkenes, they can be opened by various 
electrophiles including protic acids, bromine, chlorine, mercury(II) salts and acetyl chloride. 
The ring-cleavage processes of cyclopropanes by electrophiles were studied with the aid of 
ab initio molecular orbital60 and other calculations. 61 Early studies assumed that traditional 

Jar reJerences see p 1982 
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open carbocations were formed. More recent data from bromination reactions suggested the 
formation of intermediates with location of the electrophile across an edge or at a corner of 
cyclopropane. 62 

2.1.1.4.1. Acids 

Hydrogen bromide underwent rapid addition to methylcyclopropane in the presence ofbromine 
to give predominantly 2-bromobutane (la, 50% yield). A small amount (10%) of disubstituted 
butanes 3a and 4a was also isolated. A 100% excess of bromine over the cyclopropane was 
added in order to convert alkene products into dibromides. The reaction was carried out in 
the dark to avoid radical reactions of bromine. A similar result was obtained with ethy1cy­
clopropane. 63 cis- and trans-1 ,2-Dimethylcyclopropane gave a mixture of four isomerie bro­
mo pentanes in 76% and 89% yield, respectively, on treatment with hydrogen bromide/bromine 
at _78°C. 63 

~R 
HBr, Br2' CH2CI2 
-78°C, 10 min 

1-4 

a 
b 

R 

sr~ + 

R 

Yield (%) 

1 2 

Me 50 -

Et 29 1 

3 

4 
7 

Sr 

~ 
R 

2 

4 

6 
-

Sr 

+ sr0 + 

R 

3 

Ref 

63, 87 
63 

Sr 

~sr 
R 

4 

Treatment of ( - )-cis-caran-4-one (5), in which the cyclopropane fragment is separated from 
the activating carbonyl function by a methylene group, with dry hydrogen bromide in acetic 
acid gave a mixture of bromo derivatives which were reduced with lithium in liquid ammonia 
to avoid decomposition. The products were characterized as ketones following Jones oxida­
tion. 64 The cleavage of the cyclopropane bond occurred without preference for one of the 
cyclopropane bonds outside of the cyclohexane ring. 

1. HBr, HOAc, 10°C 
2. Li/NH3 
3. Jones reagent 

5 (-)-(18,48) 83% (1R,3R) (1R,3R) 8% (-)-(18,48) 9% 

The ring-opening reaction of 5ß,10ß-methylene-bridged steroids, e.g. 6, with hydrogen halides 
gave access to angular methyl groups in position 10. The presence of a carbonyl group at C3 
rendered the system susceptible to dehydrohalogenation reactions with formation of an !Y.,ß­
unsaturated ketone structure. 65 


