Methods of Molecular Transformations

Science of Synthesis

Compounds with Four and Three Carbon—
Heteroatom Bonds

Three Carbon—Heteroatom Bonds: Nitriles, Isocyanides, and Derivatives

Volume Editor

S.-I. Murahashi

Editorial Board

D. Bellus

E. N. Jacobsen

S. V. Ley

Science of Synthesis

Science of Synthesis is the authoritative and comprehensive reference work for the entire field of organic and organometallic synthesis.

Science of Synthesis presents the important synthetic methods for all classes of compounds and includes:

- Methods critically evaluated by leading scientists
- Background information and detailed experimental procedures
- Schemes and tables which illustrate the reaction scope

Science of Synthesis

Houben-Weyl Methods of Molecular Transformations

Editorial Board D. Bellus P. J. Reider

E. N. Jacobsen
S. V. Ley
R. Noyori
M. Regitz
E. Schaumann
I. Shinkai
E. J. Thomas
B. M. Trost

Managing Director G. F. Herrmann

Managing Editor M. F. Shortt de Hernandez

Scientific Editors K. L. Greenfield

I. M. Thomas E. Smeaton

Assistant C. Baillie M. H. Smith Scientific Editors C. A. Carter C. Twomey

D. Merckel

Science of Synthesis

Houben-Weyl Methods of Molecular Transformations

Category 3 **Compounds with Four and Three**

Carbon-Heteroatom Bonds

Volume 19 **Three Carbon—Heteroatom Bonds:**

Nitriles, Isocyanides, and Derivatives

Volume Editor S.-I. Murahashi

Responsible Member I. Shinkai

of the Editorial Board

Authors U. Bergsträßer M. North

S. J. Collier J. Podlech Y. Ito A. Schmidt

S. Kanemasa L. R. Subramanian P. Langer M. Suginome

S.-I. Murahashi

2004 Georg Thieme Verlag Stuttgart · New York © 2004 Georg Thieme Verlag KG Rüdigerstrasse 14 D-70469 Stuttgart

Printed in Germany

Typesetting: Ziegler + Müller, Kirchentellinsfurt Printing: Gulde Druck, Tübingen Binding: J. Spinner, Ottersweier

Bibliographic Information published by Die Deutsche Bibliothek

Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available on the internet at http://dnb.ddb.de>

Library of Congress Cataloging in Publication Data

Science of synthesis: **Houben–Weyl** methods of molecular transformations.

p. cm.

Includes bibliographical references and index. Contents: category 3. Compounds with Four and Three Carbon—Heteroatom Bonds. v. 19 Three Carbon—Heteroatom Bonds: Nitriles, Isocyanides, and Derivatives / volume editor, S.-I. Murahashi

ISBN 3-13-118691-7 – ISBN 1-58890-196-3 (v. 19) 1. Organic compounds–Synthesis. I. Title: **Houben–Weyl** methods of molecular transformations.

QD262 .S35 2000 547'.2–dc21

00-061560

(Houben-Weyl methods of organic chemistry)

British Library Cataloguing in Publication Data

Science of Synthesis : **Houben–Weyl** methods of molecular transformations.

Category 3: Compounds with Four and Three Carbon—Heteroatom Bonds: Vol. 19: Three Carbon—Heteroatom Bonds: Nitriles, Isocyanides, and Derivatives. – (Houben–Weyl methods of organic chemistry)

1. Organic compounds – Synthesis 2. Organic compounds – Laboratory manuals I. Murahashi, S.-I., II. Bergsträßer, U. 547.2

ISBN 3-13-118691-7 (Georg Thieme Verlag, Stuttgart) ISBN 1-58890-196-3 (Thieme New York)

Date of publication: September 22, 2004

Copyright and all related rights reserved, especially the right of copying and distribution, multiplication and reproduction, as well as of translation. No part of this publication may be reproduced by any process, whether by photostat or microfilm or any other procedure, without previous written consent by the publisher. This also includes the use of electronic media of data processing or reproduction of any kind.

This reference work mentions numerous commercial and proprietary trade names, registered trademarks and the like (not necessarily marked as such), patents, production and manufacturing procedures, registered designs, and designations. The editors and publishers wish to point out very clearly that the present legal situation in respect of these names or designations or trademarks must be carefully examined before making any commercial use of the same. Industrially produced apparatus and equipment are included to a necessarily restricted extent only and any exclusion of products not mentioned in this reference work does not imply that any such selection of exclusion has been based on quality criteria or quality considerations.

Warning! Read carefully the following: Although this reference work has been written by experts, the user must be advised that the handling of chemicals, microorganisms, and chemical apparatus carries potentially life-threatening risks. For example, serious dangers could occur through quantities being incorrectly given. The authors took the utmost care that the quantities and experimental details described herein reflected the current state of the art of science when the work was published. However, the authors, editors, and publishers take no responsibility as to the correctness of the content. Further, scientific knowledge is constantly changing. As new information becomes available, the user must consult it. Although the authors, publishers, and editors took great care in publishing this work, it is possible that typographical errors exist, including errors in the formulas given herein. Therefore, it is imperative that and the responsibility of every user to carefully check whether quantities, experimental details, or other information given herein are correct based on the user's own understanding as a scientist. Scaleup of experimental procedures published in Science of Synthesis carries additional risks. In cases of doubt, the user is strongly advised to seek the opinion of an expert in the field, the publishers, the editors, or the authors. When using the information described herein, the user is ultimately responsible for his or her own actions, as well as the actions of subordinates and assistants, and the consequences arising therefrom.

Preface

As our understanding of the natural world increases, we begin to understand complex phenomena at molecular levels. This level of understanding allows for the design of molecular entities for functions ranging from material science to biology. Such design requires synthesis and, as the structures increase in complexity as a necessity for specificity, puts increasing demands on the level of sophistication of the synthetic methods. Such needs stimulate the improvement of existing methods and, more importantly, the development of new methods. As scientists confront the synthetic problems posed by the molecular targets, they require access to a source of reliable synthetic information. Thus, the need for a new, comprehensive, and critical treatment of synthetic chemistry has become apparent. To meet this challenge, an entirely new edition of the esteemed reference work **Houben-Weyl Methods of Organic Chemistry** will be published starting in the year 2000

To reflect the new broader need and focus, this new edition has a new title, **Science of Synthesis**, **Houben–Weyl Methods of Molecular Transformations**. **Science of Synthesis** will benefit from more than 90 years of experience and will continue the tradition of excellence in publishing synthetic chemistry reference works. **Science of Synthesis** will be a balanced and critical reference work produced by the collaborative efforts of chemists, from both industry and academia, selected by the editorial board. All published results from journals, books, and patent literature from the early 1800s until the year of publication will be considered by our authors, who are among the leading experts in their field. The 48 volumes of **Science of Synthesis** will provide chemists with the most reliable methods to solve their synthesis problems. **Science of Synthesis** will be updated periodically and will become a prime source of information for chemists in the 21st century.

Science of Synthesis will be organized in a logical hierarchical system based on the target molecule to be synthesized. The critical coverage of methods will be supported by information intended to help the user choose the most suitable method for their application, thus providing a strong foundation from which to develop a successful synthetic route. Within each category of product, illuminating background information such as history, nomenclature, structure, stability, reactivity, properties, safety, and environmental aspects will be discussed along with a detailed selection of reliable methods. Each method and variation will be accompanied by reaction schemes, tables of examples, experimental procedures, and a background discussion of the scope and limitations of the reaction described.

The policy of the editorial board is to make **Science of Synthesis** the ultimate tool for the synthetic chemist in the 21st century.

We would like to thank all of our authors for submitting contributions of such outstanding quality, and, also for the dedication and commitment they have shown throughout the entire editorial process.

The Editorial Board October 2000

D. Bellus (Basel, Switzerland) E. N. Jacobsen (Cambridge, USA)

S. V. Ley (Cambridge, UK) R. Noyori (Nagoya, Japan)

M. Regitz (Kaiserslautern, Germany)

P. J. Reider (New Jersey, USA)

E. Schaumann (Clausthal-Zellerfeld, Germany)

I. Shinkai (Tsukuba, Japan)

E. J. Thomas (Manchester, UK)

B. M. Trost (Stanford, USA)

Volume 19: Three Carbon—Heteroatom Bonds: Nitriles, Isocyanides, and Derivatives

	Preface ·····	١
	Table of Contents · · · · · · · · · · · · · · · · · · ·	I>
	Introduction SI. Murahashi	1
19.1	Product Class 1: Nitrile Oxides, Sulfides, and Selenides S. Kanemasa	17
	3. Kdilettidsd	17
19.2	Product Class 2: Nitrile Imines S. Kanemasa	41
19.3	Product Class 3: Nitrilium Salts S. Kanemasa	53
19.4	Product Class 4: Nitrile Ylides	
	S. Kanemasa ·····	67
19.5	Product Class 5: Nitriles L. R. Subramanian	79
19.5. 1	Construction of the Cyano Group by Functional-Group Transformation from a Nitrogen-Free Starting Material L. R. Subramanian	95
19.5. 2	Construction of the Cyano Group by Functional-Group Transformation from a Nitrogen-Containing Starting Material	100
	L. R. Subramanian · · · · · · · · · · · · · · · · · · ·	109
19.5. 3	Introduction of the Cyano Group by Substitution of Hydrogen A. Schmidt	133
19.5. 4	Introduction of the Cyano Group by Substitution of Metals L. R. Subramanian	163
19.5. 5	Introduction of the Cyano Group by Substitution of a Halogen L. R. Subramanian	173
19.5. 6	Introduction of the Cyano Group by Substitution of Oxygen Functions L. R. Subramanian	197

VIII	Overview	
19.5. 7	Introduction of the Cyano Group by Substitution of Sulfur Functions L. R. Subramanian	215
19.5. 8	Introduction of the Cyano Group by Substitution of Nitrogen Functions L. R. Subramanian	217
19.5. 9	Introduction of the Cyano Group by Addition to a Carbonyl Group M. North	235
19.5. 10	Introduction of the Cyano Group by Addition to an Imino Group M. North	285
19.5. 11	Introduction of the Cyano Group by Conjugate Addition J. Podlech	311
19.5. 12	Introduction of the Cyano Group by Addition to Alkynes J. Podlech	325
19.5. 13	Introduction of the Cyano Group by Addition to Alkenes J. Podlech	333
19.5. 14	Synthesis from Nitriles with Retention of the Cyano Group SI. Murahashi	345
19.5. 15	Applications of Nitriles as Reagents for Organic Synthesis with Loss of the Nitrile Functionality (Including Cycloaddition Reactions) S. J. Collier and P. Langer	402
19.6	Product Class 6: Phosphaalkynes (Alkylidynephosphines) U. Bergsträßer	403 427
19.7	Product Class 7: Isocyanides and Related Compounds M. Suginome and Y. Ito	445
	Keyword Index	531

Table of Contents

	Introduction		
	SI. Murahas	hi	
	Introduction	ı	
19.1	Product Clas S. Kanemasa	s 1: Nitrile Oxides, Sulfides, and Selenides	
19.1	Product Clas	s 1: Nitrile Oxides, Sulfides, and Selenides ·····	1.
19.1. 1	Product Sub	class 1: Nitrile Oxides · · · · · · · · · · · · · · · · · · ·	1.
19.1. 1.1	Synthesis of F	Product Subclass 1 · · · · · · · · · · · · · · · · · ·	19
19.1. 1.1.1 19.1. 1.1.2 19.1. 1.1.3	Method 1: Method 2: Method 3:	Dehydrohalogenation of Hydroximoyl Halides Dehydration of Activated Nitroalkanes and Nitroalkenes Halogenation/Dehydrohalogenation of Aldoximes	19 22 24
19.1. 1.1.4 19.1. 1.1.5	Method 4: Method 5:	Dehydration of Nitroalkanes (The Mukaiyama Reaction) · · · · · · Oxidation of Aldoximes · · · · · · · · · · · · · · · · · · ·	2! 28
19.1. 1.1.6 19.1. 1.1.7	Method 6: Methods 7:	Thermolysis of 1,2,5-Oxadiazole 2-Oxides (Furoxans)	3 ⁻
19.1. 2	Product Sub	class 2: Nitrile Sulfides · · · · · · · · · · · · · · · · · · ·	34
19.1. 2.1	Synthesis of F	Product Subclass 2 ·····	34
19.1. 2.1.1 19.1. 2.1.1.1	Method 1: Variation 1:	Thermolysis of 1,3,4-Oxathiazol-2-ones Thermolysis of 1,3,4-Oxathiazoles	34 36
19.1. 3	Product Sub	class 3: Nitrile Selenides ·····	37
19.2	Product Clas S. Kanemasa	s 2: Nitrile Imines	
19.2		s 2: Nitrile Imines · · · · · · · · · · · · · · · · · · ·	4
19.2. 1	Synthesis of F	Product Class 2 ·····	4
19.2. 1.1 19.2. 1.2	Method 1: Method 2:	Dehydrohalogenation of Hydrazonoyl Halides Oxidation of Hydrazones	46
19.2. 1.3	Methods 3:	Miscellaneous Methods	48
19.2. 1.3.1	Variation 1:	From a Lithiated Diazomethane	48
19.2. 1.3.2	Variation 2:	Thermolysis or Photolysis of Heterocycles · · · · · · · · · · · · · · · · · · ·	49

19.3	Product Class 3: Nitrilium Salts S. Kanemasa		
19.3	Product Clas	s 3: Nitrilium Salts	53
19.3. 1	Synthesis of Product Class 3 ·····		53
19.3. 1.1	Method 1:	Dehydration of Oximes · · · · · · · · · · · · · · · · · · ·	53
19.3. 1.2	Method 2:	N-Alkylation of Nitriles	55
19.3. 1.3	Method 3:	Generation of Nitrilium Salts in Ring-Closure and Rearrangement Reactions Leading to Heterocycles	59
19.3. 1.4	Method 4:	Synthesis from Triazenyl Chlorides and Dialkylcyanamides ····	63
19.4	Product Clas S. Kanemasa	s 4: Nitrile Ylides	
19.4	Product Clas	s 4: Nitrile Ylides ·····	67
19.4. 1	Synthesis of I	Product Class 4 · · · · · · · · · · · · · · · · · ·	67
19.4. 1.1	Method 1:	Dehydrochlorination of Imidoyl Chlorides	67
19.4. 1.2	Method 2:	Preparation of Nitrile Ylide Equivalents	71
19.4. 1.3	Method 3:	Reaction of Nitriles with Carbenes · · · · · · · · · · · · · · · · · · ·	73
19.4. 1.4	Method 4:	Photolysis of Azirines · · · · · · · · · · · · · · · · · · ·	74
19.4. 1.5	Methods 5:	Miscellaneous Methods	76
19.5	Product Clas		
19.5	Product Clas	s 5: Nitriles ·····	79
19.5.1		of the Cyano Group by Functional-Group Transformation gen-Free Starting Material	
19.5. 1		of the Cyano Group by Functional-Group Transformation gen-Free Starting Material	95
19.5. 1.1	Transformation	on of an Aldehyde Group · · · · · · · · · · · · · · · · · · ·	95
19.5. 1.1.1	Method 1:	One-Pot Reactions Involving Intermediate Aldimines	95
19.5. 1.1.1.1	Variation 1:	By Copper-Catalyzed Oxidation · · · · · · · · · · · · · · · · · · ·	95
19.5. 1.1.1.2	Variation 2:	By Nickel-Catalyzed Oxidation · · · · · · · · · · · · · · · · · · ·	96
19.5. 1.1.1.3	Variation 3:	By Oxidation with Manganese(IV) Oxide	96
19.5. 1.1.1.4	Variation 4:	By Oxidation with Ammonium Cerium(IV) Nitrate	97
19.5. 1.1.1.5	Variation 5:	By Oxidation with Iodine	98
19.5. 1.1.1.6	Variation 6:	By Oxidation with Hydrogen Peroxide	98
19.5. 1.1.2	Method 2:	Reactions Involving Intermediate Oximes	99
19.5. 1.1.2.1	Variation 1:	Using Boron Trifluoride–Diethyl Ether Complex · · · · · · · · · · · · · · · · · · ·	99

Table of Contents XI

19.5. 1.1.2.2	Variation 2:	Using 4-Toluenesulfonic Acid · · · · · · · · · · · · · · · · · · ·	100
19.5. 1.1.2.3	Variation 3:	Using Acetic Anhydride · · · · · · · · · · · · · · · · · · ·	100
19.5. 1.1.2.4	Variation 4:	Using Phthalic Anhydride · · · · · · · · · · · · · · · · · · ·	100
19.5. 1.1.2.5	Variation 5:	Using 1-Methylpyrrolidin-2-one · · · · · · · · · · · · · · · · · · ·	101
19.5. 1.1.2.6	Variation 6:	Using Pyridine/Formamide	101
19.5. 1.1.2.7	Variation 7:	Using Sodium Iodide · · · · · · · · · · · · · · · · · · ·	102
19.5. 1.1.2.8	Variation 8:	By Dehydration with Triphosgene	102
19.5. 1.1.2.9	Variation 9:	By Treatment with Iron(II) Chloride Modified	
		Montmorillonite K 10 ·····	102
19.5. 1.1.2.10	Variation 10:	Using Dry Alumina · · · · · · · · · · · · · · · · · · ·	103
19.5. 1.1.2.11	Variation 11:	By Using Microwaves ·····	103
19.5. 1.1.3	Methods 3:	Miscellaneous Methods · · · · · · · · · · · · · · · · · · ·	105
19.5. 1.1.3.1	Variation 1:	Using S,S-Dimethylsulfurdiimide as Iminating Agent	105
19.5. 1.1.3.2	Variation 2:	Using Sodium Azide/Aluminum Trichloride · · · · · · · · · · · · · · · · · · ·	105
19.5. 1.2	Transformation	n of a Carboxylic Acid or Derivatives ·····	105
19.5. 1.2.1	Method 1:	Transformation of Carboxy Groups	105
19.5. 1.2.2	Method 2:	Transformation of Carboxylic Ester Groups	106
19.5. 1.2.3	Method 3:	Transformation of Carboxylic Acid Halides	107
19.5. 2		of the Cyano Group by Functional-Group Transformation en-Containing Starting Material nian	
19.5. 2	from a Nitrog L. R. Subramai Construction	en-Containing Starting Material	109
	from a Nitrog L. R. Subramai Construction	of the Cyano Group by Functional-Group Transformation en-Containing Starting Material	109 109
19.5. 2	from a Nitrog L. R. Subrama Construction from a Nitrog	of the Cyano Group by Functional-Group Transformation en-Containing Starting Material Synthesis from Hydrazones	
19.5. 2 19.5. 2.1	from a Nitrog L. R. Subraman Construction from a Nitrog Method 1:	pen-Containing Starting Material nian of the Cyano Group by Functional-Group Transformation pen-Containing Starting Material Synthesis from Hydrazones By Alkylation Followed by Basic Cleavage	109
19.5. 2 19.5. 2.1 19.5. 2.1.1	from a Nitrog L. R. Subraman Construction from a Nitrog Method 1: Variation 1:	ren-Containing Starting Material hian of the Cyano Group by Functional-Group Transformation en-Containing Starting Material Synthesis from Hydrazones By Alkylation Followed by Basic Cleavage By Oxidation Reactions	109 109
19.5. 2 19.5. 2.1 19.5. 2.1.1 19.5. 2.1.2	Construction from a Nitrog Method 1: Variation 1:	pen-Containing Starting Material hian of the Cyano Group by Functional-Group Transformation pen-Containing Starting Material Synthesis from Hydrazones By Alkylation Followed by Basic Cleavage By Oxidation Reactions By Microwave-Assisted Oxidation with Oxone	109 109 110
19.5. 2 19.5. 2.1 19.5. 2.1.1 19.5. 2.1.2 19.5. 2.1.3	from a Nitrog L. R. Subraman Construction from a Nitrog Method 1: Variation 1: Variation 2: Variation 3:	pen-Containing Starting Material nian of the Cyano Group by Functional-Group Transformation pen-Containing Starting Material Synthesis from Hydrazones By Alkylation Followed by Basic Cleavage By Oxidation Reactions By Microwave-Assisted Oxidation with Oxone Synthesis from Aldoximes	109 109 110 111
19.5.2.1 19.5.2.1.1 19.5.2.1.2 19.5.2.1.3 19.5.2.2	Construction from a Nitrog Method 1: Variation 2: Variation 3: Method 2:	ren-Containing Starting Material hian of the Cyano Group by Functional-Group Transformation ren-Containing Starting Material Synthesis from Hydrazones By Alkylation Followed by Basic Cleavage By Oxidation Reactions By Microwave-Assisted Oxidation with Oxone Synthesis from Aldoximes By Microbial Dehydration of Aldoximes	109 109 110 111 111
19.5.2.1 19.5.2.1.1 19.5.2.1.2 19.5.2.1.3 19.5.2.2 19.5.2.2.1	from a Nitrog L. R. Subraman Construction from a Nitrog Method 1: Variation 1: Variation 2: Variation 3: Method 2: Variation 1:	ren-Containing Starting Material hian of the Cyano Group by Functional-Group Transformation ren-Containing Starting Material Synthesis from Hydrazones By Alkylation Followed by Basic Cleavage By Oxidation Reactions By Microwave-Assisted Oxidation with Oxone Synthesis from Aldoximes By Microbial Dehydration of Aldoximes By Chemical Dehydration at Room Temperature	109 109 110 111 111 112
19.5.2 19.5.2.1.1 19.5.2.1.2 19.5.2.1.3 19.5.2.2 19.5.2.2.1 19.5.2.2.2	Construction from a Nitrog Method 1: Variation 1: Variation 2: Variation 3: Method 2: Variation 1: Variation 1:	ren-Containing Starting Material hian of the Cyano Group by Functional-Group Transformation ren-Containing Starting Material Synthesis from Hydrazones By Alkylation Followed by Basic Cleavage By Oxidation Reactions By Microwave-Assisted Oxidation with Oxone Synthesis from Aldoximes By Microbial Dehydration of Aldoximes By Chemical Dehydration at Room Temperature By Thermal Dehydration with Suitable Reagents	109 109 110 111 111 112 112
19.5.2.1 19.5.2.1.1 19.5.2.1.2 19.5.2.1.3 19.5.2.2 19.5.2.2.1 19.5.2.2.1	Construction from a Nitrog Method 1: Variation 1: Variation 2: Variation 3: Method 2: Variation 1: Variation 1: Variation 3: Method 2: Variation 3: Variation 3:	ren-Containing Starting Material hian of the Cyano Group by Functional-Group Transformation ren-Containing Starting Material Synthesis from Hydrazones By Alkylation Followed by Basic Cleavage By Oxidation Reactions By Microwave-Assisted Oxidation with Oxone Synthesis from Aldoximes By Microbial Dehydration of Aldoximes By Chemical Dehydration at Room Temperature	109 109 110 111 111 112 112 114
19.5.2 19.5.2.1 19.5.2.1.1 19.5.2.1.2 19.5.2.1.3 19.5.2.2.1 19.5.2.2.1 19.5.2.2.2 19.5.2.2.3 19.5.2.2.4	Construction from a Nitrog L. R. Subraman Construction from a Nitrog Method 1: Variation 1: Variation 2: Variation 3: Method 2: Variation 1: Variation 1: Variation 2: Variation 3: Variation 3: Variation 4:	ren-Containing Starting Material hian of the Cyano Group by Functional-Group Transformation ren-Containing Starting Material Synthesis from Hydrazones By Alkylation Followed by Basic Cleavage By Oxidation Reactions By Microwave-Assisted Oxidation with Oxone Synthesis from Aldoximes By Microbial Dehydration of Aldoximes By Chemical Dehydration at Room Temperature By Thermal Dehydration with Suitable Reagents By Microwave Irradiation	109 109 110 111 111 112 112 114 118
19.5.2 19.5.2.1.1 19.5.2.1.2 19.5.2.1.3 19.5.2.2 19.5.2.2.1 19.5.2.2.2 19.5.2.2.3 19.5.2.2.4 19.5.2.3	from a Nitrog L. R. Subraman Construction from a Nitrog Method 1: Variation 1: Variation 2: Variation 3: Method 2: Variation 1: Variation 1: Variation 2: Variation 3: Variation 3: Variation 3: Method 3:	ren-Containing Starting Material hian of the Cyano Group by Functional-Group Transformation ren-Containing Starting Material Synthesis from Hydrazones By Alkylation Followed by Basic Cleavage By Oxidation Reactions By Microwave-Assisted Oxidation with Oxone Synthesis from Aldoximes By Microbial Dehydration of Aldoximes By Chemical Dehydration at Room Temperature By Thermal Dehydration with Suitable Reagents By Microwave Irradiation Synthesis from O-Substituted Aldoximes	109 109 110 111 111 112 112 114 118

19.5. 3	Introduction of the Cyano Group by Substitution of Hydrogen
	A. Schmidt

19.5. 3	Introduction	of the Cyano Group by Substitution of Hydrogen	133
19.5. 3.1	Synthesis of H	Heteroaromatic and Aromatic Cyanides	133
19.5. 3.1.1	Method 1:	Using Cyanogen Bromide · · · · · · · · · · · · · · · · · · ·	133
19.5. 3.1.2	Method 2:	Using Tosyl Cyanide · · · · · · · · · · · · · · · · · · ·	134
19.5. 3.1.2.1	Variation 1:	By Modified Reissert Reactions	135
19.5. 3.1.3	Method 3:	Using Trimethylsilyl Cyanide · · · · · · · · · · · · · · · · · · ·	136
19.5. 3.1.3.1	Variation 1:	By Modified Reissert–Henze Reaction	138
19.5. 3.1.3.2	Variation 2:	By Catalytic Asymmetric Reissert-Type Reactions	139
19.5. 3.1.4	Method 4:	Using Trichloroacetonitrile · · · · · · · · · · · · · · · · · · ·	140
19.5. 3.1.5	Method 5:	Using Chlorosulfonyl Isocyanate	141
19.5. 3.1.6	Method 6:	Using Ethyl (Triphenylphosphoranylidene)carbamate/	
		Boron Trifluoride · · · · · · · · · · · · · · · · · · ·	142
19.5. 3.1.7	Method 7:	Using Triphenylphosphine/Thiocyanogen ·····	143
19.5. 3.1.8	Method 8:	Using Acetone Cyanohydrin	144
19.5. 3.1.9	Method 9:	Using Diethyl Cyanophosphonate	144
19.5. 3.1.10	Method 10:	Using Tetranitromethane · · · · · · · · · · · · · · · · · · ·	145
19.5. 3.1.11	Method 11:	Using Viehe's Reagent ······	146
19.5. 3.1.12	Method 12:	By Anodic Substitution	146
19.5. 3.1.13	Method 13:	By Modified Vilsmeier–Haack Reactions · · · · · · · · · · · · · · · · · · ·	147
19.5. 3.1.14	Method 14:	Oxidative Cyanation of Quinoline 1-Oxides with Potassium	
		Cyanide in the Presence of Potassium Hexacyanoferrate(III) \cdot	147
19.5. 3.1.15	Method 15:	By Nucleophilic Aromatic Substitution of Hydrogen with	
		Cyanides ·····	148
19.5. 3.2	Synthesis of A	Acetylenic Nitriles	148
19.5. 3.2.1	Method 1:	Using Copper(I) Cyanide · · · · · · · · · · · · · · · · · · ·	148
19.5. 3.2.1.1	Variation 1:	In the Presence of Chlorotrimethylsilane	148
19.5. 3.2.1.2	Variation 2:	In the Presence of Bis(trimethylsilyl) Peroxide · · · · · · · · · · · · · · · · · · ·	149
19.5. 3.2.2	Method 2:	Using Tosyl Cyanide and Zinc(II) Iodide	149
19.5. 3.2.3	Method 3:	Using Phenyl Cyanate	149
19.5. 3.2.4	Method 4:	Using 1 <i>H</i> -Imidazole-1-carbonitrile · · · · · · · · · · · · · · · · · · ·	150
19.5. 3.3	Synthesis of V	/inyl Nitriles ·····	151
19.5. 3.3.1	Method 1:	Using Cyanogen Bromide and Cyanogen Chloride	151
19.5. 3.3.2	Method 2:	Using Tosyl Cyanide · · · · · · · · · · · · · · · · · · ·	151
19.5. 3.3.3	Method 3:	Using Phenyl Cyanates · · · · · · · · · · · · · · · · · · ·	152
19.5. 3.3.4	Method 4:	Using Triphenylphosphine/Thiocyanogen ·····	152
19.5. 3.4	Synthesis of A	Aliphatic Nitriles · · · · · · · · · · · · · · · · · · ·	152
19.5. 3.4.1	Method 1:	Using 2,3-Dichloro-5,6-dicyanobenzo-1,4-quinone and	
		Trimethylsilyl Cyanide · · · · · · · · · · · · · · · · · · ·	152
19.5. 3.4.2	Method 2:	By Aerobic Ruthenium-Catalyzed Oxidative Cyanation with	
		Sodium Cyanide · · · · · · · · · · · · · · · · · · ·	154
19.5. 3.4.3	Method 3:	Using Chlorine Dioxide and Sodium Cyanide	154

Table of Contents XIII		

19.5. 3.4.4 19.5. 3.4.5 19.5. 3.4.6 19.5. 3.4.7 19.5. 3.4.8 19.5. 3.4.9	Method 4: Method 5: Method 6: Method 7: Method 8: Method 9:	By Anodic Cyanation Using 2-Chlorobenzyl Thiocyanate Using Sulfonyl Cyanides Using 1,2-Benziodoxole-1-carbonitriles Using Phenyl Cyanate Starting from N-Oxides of Tertiary Amines with Trifluoroacetic Acid Anhydride and Cyanide	155 155 156 157 157
19.5. 4	Introduction L. R. Subrama	of the Cyano Group by Substitution of Metals	
19.5. 4	Introduction	of the Cyano Group by Substitution of Metals	163
19.5. 4.1	Method 1:	From Organozinc Compounds · · · · · · · · · · · · · · · · · · ·	163
19.5. 4.2	Method 2:	From Organocopper Compounds ·····	165
19.5. 4.3	Method 3:	From Organomagnesium Compounds · · · · · · · · · · · · · · · · · · ·	165
19.5. 4.4	Method 4:	From Organolithium Compounds · · · · · · · · · · · · · · · · · · ·	167
19.5. 4.5	Method 5:	From Other Organometallic Compounds	169
19.5. 5	Introduction L. R. Subrama	of the Cyano Group by Substitution of a Halogen	
19.5. 5	Introduction	of the Cyano Group by Substitution of a Halogen ·····	173
19.5. 5.1	Method 1:	From Aliphatic and Alicyclic Halides · · · · · · · · · · · · · · · · · · ·	173
19.5. 5.2	Method 2:	From Vinyl and Alkynyl Halides · · · · · · · · · · · · · · · · · · ·	177
19.5. 5.3	Method 3:	From Aryl Halides · · · · · · · · · · · · · · · · · · ·	179
19.5. 5.3.1	Variation 1:	Using Copper(I) Cyanide · · · · · · · · · · · · · · · · · · ·	180
19.5. 5.3.2	Variation 2:	Using Alkali Metal Cyanides · · · · · · · · · · · · · · · · · · ·	182
19.5. 5.3.3	Variation 3:		104
	variation 5.	By Palladium- and Nickel-Catalyzed Substitutions	184
19.5. 5.3.4	Variation 4:	By Microwave-Assisted Cyanations	184 189
19.5. 5.3.4 19.5. 5.3.5			
	Variation 4:	By Microwave-Assisted Cyanations ·····	189
19.5. 5.3.5	Variation 4: Variation 5: Method 4:	By Microwave-Assisted Cyanations By Electrophilic Cyanation From Heterocyclic Halides of the Cyano Group by Substitution of Oxygen Functions	189 190
19.5. 5.3.5 19.5. 5.4	Variation 4: Variation 5: Method 4: Introduction L. R. Subrama	By Microwave-Assisted Cyanations By Electrophilic Cyanation From Heterocyclic Halides of the Cyano Group by Substitution of Oxygen Functions	189 190
19.5. 5.3.5 19.5. 5.4 19.5. 6	Variation 4: Variation 5: Method 4: Introduction L. R. Subrama	By Microwave-Assisted Cyanations By Electrophilic Cyanation From Heterocyclic Halides of the Cyano Group by Substitution of Oxygen Functions nian	189 190 191 197
19.5. 5.3.5 19.5. 5.4 19.5. 6	Variation 4: Variation 5: Method 4: Introduction L. R. Subrama	By Microwave-Assisted Cyanations By Electrophilic Cyanation From Heterocyclic Halides of the Cyano Group by Substitution of Oxygen Functions mian of the Cyano Group by Substitution of Oxygen Functions	189 190 191 197 197
19.5.5.3.5 19.5.5.4 19.5.6 19.5.6 19.5.6.1	Variation 4: Variation 5: Method 4: Introduction L. R. Subrama Introduction Method 1:	By Microwave-Assisted Cyanations By Electrophilic Cyanation From Heterocyclic Halides of the Cyano Group by Substitution of Oxygen Functions inian of the Cyano Group by Substitution of Oxygen Functions Substitution of a Hydroxy Group in a One-Pot Procedure	189 190 191
19.5.5.3.5 19.5.5.4 19.5.6 19.5.6 19.5.6.1 19.5.6.2	Variation 4: Variation 5: Method 4: Introduction L. R. Subrama Introduction Method 1: Method 2:	By Microwave-Assisted Cyanations By Electrophilic Cyanation From Heterocyclic Halides of the Cyano Group by Substitution of Oxygen Functions mian of the Cyano Group by Substitution of Oxygen Functions Substitution of a Hydroxy Group in a One-Pot Procedure Substitution of Hydroxy Derivatives	189 190 191 197 197 202
19.5.5.3.5 19.5.6 19.5.6 19.5.6.1 19.5.6.2 19.5.6.2.1	Variation 4: Variation 5: Method 4: Introduction L. R. Subrama Introduction Method 1: Method 2: Variation 1:	By Microwave-Assisted Cyanations By Electrophilic Cyanation From Heterocyclic Halides of the Cyano Group by Substitution of Oxygen Functions mian of the Cyano Group by Substitution of Oxygen Functions Substitution of a Hydroxy Group in a One-Pot Procedure Substitution of Hydroxy Derivatives Displacement of Alkyl Sulfonates	189 190 191 197 197 202 202

19.5. 7	Introduction of the Cyano Group by Substitution of Sulfur Functions L. R. Subramanian		
19.5. 7	Introduction	of the Cyano Group by Substitution of Sulfur Functions	
19.5. 7.1	Method 1:	Displacement of a Sulfanyl Group	
19.5. 7.2	Method 2:	Displacement of a Sulfonyl Group · · · · · · · · · · · · · · · · · · ·	
19.5. 8	Introduction L. R. Subrama	of the Cyano Group by Substitution of Nitrogen Functions	
19.5. 8	Introduction	of the Cyano Group by Substitution of Nitrogen Functions	
19.5. 8.1	Method 1:	By Replacement of Amines · · · · · · · · · · · · · · · · · · ·	
19.5. 8.1.1	Variation 1:	From Aliphatic and Alicyclic Amines	
19.5. 8.1.2	Variation 2:	From Aromatic Amines	
19.5. 8.2	Method 2:	By Replacement of a Nitro Group	
19.5. 8.3	Method 3:	By Fragmentation and Rearrangement Reactions	
19.5. 8.3.1	Variation 1:	From Beckmann Fragmentation of Oximes and Derivatives $ \cdots $	
19.5. 8.3.2	Variation 2:	Miscellaneous Reactions · · · · · · · · · · · · · · · · · · ·	
19.5. 9	Introduction M. North	of the Cyano Group by Addition to a Carbonyl Group	
19.5. 9	Introduction	of the Cyano Group by Addition to a Carbonyl Group ······	
19.5. 9.1	Cyanohydrins	Derived from Aldehydes	
19.5. 9.1.1	Method 1:	Addition without External Stereocontrol	
19.5. 9.1.2	Method 2:	Addition to Achiral Substrates in the Presence of	
		a Chiral Catalyst · · · · · · · · · · · · · · · · · · ·	
19.5. 9.1.2.1	Variation 1:	Use of (R)-Oxynitrilase Enzymes · · · · · · · · · · · · · · · · · · ·	
19.5. 9.1.2.2	Variation 2:	Use of (S)-Oxynitrilase Enzymes · · · · · · · · · · · · · · · · · · ·	
19.5. 9.1.2.3	Variation 3:	Use of Cyclic Dipeptides as Catalysts	
19.5. 9.1.2.4	Variation 4:	Use of Chiral Titanium Complexes as Catalysts	
19.5. 9.1.2.5	Variation 5:	Use of Chiral Aluminum Complexes as Catalysts	
19.5. 9.1.2.6	Variation 6:	Use of Other Chiral Metal Complexes as Catalysts	
19.5. 9.2		Derived from Ketones	
19.5. 9.2.1	Method 1:	Addition without External Stereocontrol	
19.5. 9.2.2	Method 2:	Addition to Achiral Substrates in the Presence of	
		a Chiral Catalyst	
19.5. 9.2.2.1	Variation 1:	Use of Oxynitrilase Enzymes	
19.5. 9.2.2.2	Variation 2:	Use of Metal-Based Catalysts	
19.5. 9.2.2.3	Variation 3:	Use of Chiral Lewis Bases	

XV Table of Contents

19.5. 10	Introduction of the Cyano Group by Addition to an Imino Group M. North		
19.5. 10	Introduction	of the Cyano Group by Addition to an Imino Group · · · · · · · ·	28
19.5. 10.1	α-Aminonitri	es Derived from Aldimines · · · · · · · · · · · · · · · · · · ·	285
19.5. 10.1.1	Method 1:	Addition without Stereocontrol	285
19.5. 10.1.1.1	Variation 1:	Strecker Reactions under Aqueous Conditions	286
19.5. 10.1.1.2	Variation 2:	Strecker Reactions under Nonaqueous Conditions	28
19.5. 10.1.1.3	Variation 3:	Using Trimethylsilyl Cyanide · · · · · · · · · · · · · · · · · · ·	289
19.5. 10.1.1.4	Variation 4:	Addition of Cyanide to Aldimines Derived from	
19.5. 10.1.2	Method 2:	Chiral Aldehydes	290 29
19.5. 10.1.2.1	Variation 1:	Use of (1-Phenylethyl)amine · · · · · · · · · · · · · · · · · · ·	29
19.5. 10.1.2.2	Variation 7:	Use of 2-Phenylglycinol · · · · · · · · · · · · · · · · · · ·	292
19.5. 10.1.2.3	Variation 3:	Use of Phenylglycinamide ······	293
19.5. 10.1.2.4	Variation 4:	Use of Sugar-Derived Auxiliaries	293
19.5. 10.1.2.5	Variation 5:	Use of an α -Aminonitrile as a Chiral Auxiliary	294
19.5. 10.1.3	Method 3:	Addition to Achiral Substrates in the Presence of	
		a Chiral Catalyst	29
19.5. 10.1.3.1	Variation 1:	Use of Nonmetallic Catalysts	29
19.5. 10.1.3.2	Variation 2:	Catalysis by Aluminum Complexes	29
19.5. 10.1.3.3	Variation 3:	Catalysis by First-Row Transition-Metal Complexes	299
19.5. 10.1.3.4	Variation 4:	Catalysis by Zirconium Complexes	300
19.5. 10.2	lpha-Aminonitri	es Derived from Ketimines · · · · · · · · · · · · · · · · · · ·	30
19.5. 10.2.1	Method 1:	Addition without Stereocontrol	30
19.5. 10.2.1.1	Variation 1:	Use of Ultrasound · · · · · · · · · · · · · · · · · · ·	30
19.5. 10.2.1.2	Variation 2:	Using Trimethylsilyl Cyanide · · · · · · · · · · · · · · · · · · ·	30
19.5. 10.2.1.3	Variation 3:	Other Addition Reactions · · · · · · · · · · · · · · · · · · ·	302
19.5. 10.2.2	Method 2:	Addition to Substrates Containing a Chiral Auxiliary on the Nitrogen Atom	303
19.5. 10.3	Products Deri	ived from Other Compounds Containing a C=N Bond ······	30:
19.5. 10.3.1	Method 1:	Products Derived from Hydrazones	303
19.5. 10.3.1.1	Variation 1:	Processes Using Trimethylsilyl Cyanide	303
19.5. 10.3.1.2	Variation 2:	Reaction under Phase-Transfer Conditions	304
19.5. 10.3.2	Method 2:	Products Derived from Nitrones · · · · · · · · · · · · · · · · · · ·	30!
19.5. 10.3.3	Method 3:	Products Derived from Sulfinimines	306
19.5. 10.3.4	Method 4:	Products Derived from Oximes	30

19.5. 11	Introduction of the Cyano Group by Conjugate Addition J. Podlech Introduction of the Cyano Group by Conjugate Addition		
19.5. 11			
19.5. 11.1	Method 1:	Hydrocyanation of α,β -Unsaturated Carbonyl Compounds \cdots	31
19.5. 11.1.1	Variation 1:	Using Alkali Metal Cyanides · · · · · · · · · · · · · · · · · · ·	31
19.5. 11.1.2	Variation 2:	Using Acetone Cyanohydrin · · · · · · · · · · · · · · · · · · ·	31.
19.5. 11.1.3	Variation 3:	Using Trimethylsilyl Cyanide · · · · · · · · · · · · · · · · · · ·	314
19.5. 11.1.4	Variation 4:	Using Dialkylaluminum Cyanide or Hydrogen Cyanide/	
		Trialkylaluminum Compounds · · · · · · · · · · · · · · · · · · ·	31
19.5. 11.1.5	Variation 5:	Using Organic Isocyanides · · · · · · · · · · · · · · · · · · ·	32
19.5. 12	Introduction of the Cyano Group by Addition to Alkynes J. Podlech		
19.5. 12	Introduction of the Cyano Group by Addition to Alkynes · · · · · · · · · · · · · · · · · · ·		
19.5. 12.1	Method 1:	Hydrocyanation of Alkynes · · · · · · · · · · · · · · · · · · ·	32!
19.5. 12.2	Method 2:	Addition of Trimethylsilyl Cyanide or	
		Tributylstannanecarbonitrile to Alkynes	32
19.5. 12.2.1	Variation 1:	Addition to Terminal Arylalkynes	32
19.5. 12.2.2	Variation 2:	Addition to Ynamines · · · · · · · · · · · · · · · · · · ·	32
19.5. 13	Introduction of the Cyano Group by Addition to Alkenes J. Podlech		
19.5. 13	Introduction of the Cyano Group by Addition to Alkenes · · · · · · · · · · · · · · · · · · ·		
19.5. 13.1	Method 1:	Hydrocyanation of Alkenes and Arylalkenes	334
19.5. 13.1.1	Variation 1:	Hydrocyanation of Alkenes · · · · · · · · · · · · · · · · · · ·	334
19.5. 13.1.2	Variation 2:	Hydrocyanation of Arylalkenes ·····	33
19.5. 13.2	Method 2:	Hydrocyanation of Conjugated and Isolated Dienes	33
19.5. 13.3	Method 3:	Enantioselective Hydrocyanation of Alkenes	34
19.5. 14	Synthesis from Nitriles with Retention of the Cyano Group SI. Murahashi		
19.5. 14	Synthesis from Nitriles with Retention of the Cyano Group		34
19.5. 14.1	Method 1:	Reaction of α -Cyano Carbanions with Electrophiles $\cdots \cdots$	34
19.5. 14.1.1	Variation 1:	Alkylation by Alkyl Halides · · · · · · · · · · · · · · · · · · ·	34
19.5. 14.1.2	Variation 2:	Alkylation by Alcohols	34
19.5. 14.1.3	Variation 3:	Alkylation by Organoboranes	34
19.5. 14.1.4	Variation 4:	Reaction with Epoxides	34
19.5. 14.1.5	Variation 5:	Reaction with Carboxylic Acid Derivatives	349
19.5. 14.1.6	Variation 6:	Reaction with Carbonyl Compounds (Aldol Reaction) · · · · · ·	34

Table of Contents XVII

19.5. 14.1.7	Variation 7:	Reaction of Active Methylene Compounds Bearing	
		a Cyano Group with Carbonyl Compounds	
		(Knoevenagel Reaction) · · · · · · · · · · · · · · · · · · ·	351
19.5. 14.1.8	Variation 8:	Reaction with Alkenes and Alkynes Bearing	
		Electron-Withdrawing Groups (Michael Addition)	354
19.5. 14.1.9	Variation 9:	Reaction with Nitriles (Thorpe–Ziegler Reaction) · · · · · · · · · · · · · · · · · · ·	356
19.5. 14.2	Method 2:	Wittig Reaction · · · · · · · · · · · · · · · · · · ·	358
19.5. 14.3	Method 3:	Reaction of Organozinc Compounds Bearing	
		Cyano Groups with Electrophiles	360
19.5. 14.4	Method 4:	Reaction of Organocopper Compounds Bearing	
		Cyano Groups with Electrophiles	361
19.5. 14.5	Method 5:	Addition of Radicals Bearing Cyano Groups by	
		Reductive Coupling	362
19.5. 14.6	Method 6:	Friedel–Crafts Reaction · · · · · · · · · · · · · · · · · · ·	363
19.5. 14.7	Method 7:	Addition of Carbenes Bearing Cyano Groups	363
19.5. 14.8	Method 8:	Addition to Alkenenitriles	364
19.5. 14.8.1	Variation 1:	Conjugate Addition of Ketone and Ester Enolates	
		to Alkenenitriles (Cyanoethylation) · · · · · · · · · · · · · · · · · · ·	364
19.5. 14.8.2	Variation 2:	Conjugate Addition of Enamines to Alkenenitriles	
		(Cyanoethylation) · · · · · · · · · · · · · · · · · · ·	365
19.5. 14.8.3	Variation 3:	Conjugate Addition of Metalated Nitriles to Alkenenitriles	367
19.5. 14.8.4	Variation 4:	Conjugate Addition of Metalated Nitroalkanes and	
		Metalated Sulfones and Sulfoxides to Alkenenitriles	368
19.5. 14.8.5	Variation 5:	Addition of Diazonium Salts to Alkenenitriles	
		(Meerwein Reaction) · · · · · · · · · · · · · · · · · · ·	369
19.5. 14.8.6	Variation 6:	Conjugate Addition of Grignard Reagents to Alkenenitriles	369
19.5. 14.8.7	Variation 7:	Conjugate Addition with Organocopper Reagents	370
19.5. 14.8.8	Variation 8:	Conjugate Addition with Organozinc Reagents	371
19.5. 14.8.9	Variation 9:	Nickel-Catalyzed Addition to Alkenenitriles	372
19.5. 14.8.10	Variation 10:	Palladium-Catalyzed Addition to Benzylidenemalononitrile · ·	373
19.5. 14.8.11	Variation 11:	Conjugate Addition of Allylsilanes to Alkenenitriles	373
19.5. 14.8.12	Variation 12:	Conjugate Addition of Thiols to Alkenenitriles	374
19.5. 14.8.13	Variation 13:	Conjugate Addition of Amines to Alkenenitriles	374
19.5. 14.8.14	Variation 14:	Cyanoselenation of Alkenes · · · · · · · · · · · · · · · · · · ·	375
19.5. 14.8.15	Variation 15:	[2+2] Cycloadditions of Alkenenitriles	376
19.5. 14.8.16	Variation 16:	1,3-Dipolar Cycloadditions ·····	377
19.5. 14.8.17	Variation 17:	The Diels–Alder Reaction · · · · · · · · · · · · · · · · · · ·	378
19.5. 14.8.18	Variation 18:	Dimerization and Condensation of Nitriles	379
19.5. 14.9	Method 9:	Metal-Catalyzed Reaction of Alkenes Bearing Cyano Groups ·	380
19.5. 14.9.1	Variation 1:	The Heck–Mizoroki Reaction · · · · · · · · · · · · · · · · · · ·	380
19.5. 14.9.2	Variation 2:	Palladium-Catalyzed Allylation of Nitriles	382
19.5. 14.9.3	Variation 3:	Catalytic Dimerization of Propenenitrile	383
19.5. 14.9.4	Variation 4:	Metathesis Reaction of Alkenenitriles	383
19.5. 14.9.5	Variation 5:	Ruthenium-Catalyzed Addition of Alcohols to Alkenenitriles ·	384
19.5. 14.10	Method 10:	Addition to Alkynenitriles · · · · · · · · · · · · · · · · · · ·	384
19.5. 14.11	Method 11:	Metal-Catalyzed Cross-Coupling Reactions	386

19.5.15.2.2 19.5.15.2.3 19.5.15.3.1 19.5.15.3.2 19.5.15.3.3 19.5.15.3.4 19.5.15.3.5	Variation 2: Variation 3: Method 3: Variation 1: Variation 2: Variation 3: Variation 4: Variation 5:	Reactions with Two Nitrile Molecules Reactions with Three or More Nitrile Molecules Cycloaddition Reactions [2+2+2]-Self-Cyclotrimerization Reactions [2+2+2]-Cyclotrimerization Reactions of Nitriles and Alkynes [4+2]-Cycloaddition Reactions [3+2]-Cycloaddition Reactions [2+2]-Cycloaddition Reactions	407 410 411 411 412 416 419 422
19.6	Product Class 6	5: Phosphaalkynes (Alkylidynephosphines)	
	U. Bergsträßer		
19.6	Product Class 6	5: Phosphaalkynes (Alkylidynephosphines) · · · · · · · · · · · · · · · · · · ·	427
19.6. 1	Synthesis of Pro	oduct Class 6 ·····	428
19.6. 1.1	Method 1:	Elimination of Hydrogen Halides · · · · · · · · · · · · · · · · · · ·	428
19.6. 1.1.1	Variation 1:	From Alkyldichlorophosphines	428
19.6. 1.1.2	Variation 2:	From Substituted (Dihalomethyl)phosphines	428
19.6. 1.2	Method 2:	Elimination of Organometallic Compounds	430
19.6. 1.2.1	Variation 1:	Of Chlorotrimethylsilane	430
19.6. 1.2.2	Variation 2:	Of Hexamethyldisiloxane	430
19.6. 1.2.3	Variation 3:	Of Lithium Trimethylsilanolate	432
19.6. 1.3	Method 3:	Rearrangement of Halophosphaalkenes	432
19.6. 1.4	Method 4:	Rearrangement of Alkynylphosphines	433
19.6. 1.5	Method 5:	Rearrangement of Phosphiranes or Allylphosphines by	
		Flash-Vacuum Pyrolysis · · · · · · · · · · · · · · · · · ·	434

Table of Contents XIX

Method 6:	Rearrangement of 1-Aza-3-phosphaallenes · · · · · · · · · · · · · · · · · · ·	434
Methods 7:	Other Methods	435
Applications of	of Product Class 6 in Organic Synthesis ·····	436
Method 1:	Cycloaddition Reactions of Phosphaalkynes	436
Variation 1:	[2+1] Cycloadditions ······	436
Variation 2:	[3+2] Cycloadditions ······	436
Variation 3:	[4+2] Cycloadditions ······	437
Method 2:	1,2-Addition Reactions of Phosphaalkynes · · · · · · · · · · · · · · · · · · ·	438
Variation 1:	Addition of Enophiles	438
Variation 2:	Addition of Organometallic Groups	438
Method 3:	Phosphaalkynes as Ligands in Transition-Metal Complexes \cdots	439
Method 4:	Cyclooligomerization Reactions of Phosphaalkynes · · · · · · · · · · · · · · · · · · ·	440
	·	
		445
		446
Synthesis of F	Product Subclass 1 · · · · · · · · · · · · · · · · · ·	446
Method 1:	Nucleophilic Substitution of Halides with Metal Cyanides · · · ·	446
Variation 1:	·	446
Variation 2:	From Epoxides and Oxetanes ·····	450
Method 2:	Reduction of Isocyanates and Related Compounds	453
Method 3:	Reduction of Carbamates · · · · · · · · · · · · · · · · · · ·	455
Method 4:		455
Method 5:	Dehydration of Formamides	456
Variation 1:	With Phosgene · · · · · · · · · · · · · · · · · ·	457
Variation 2:	With Trichloromethyl Chloroformate (Diphosgene)	457
Variation 3:	With Bis(trichloromethyl) Carbonate (Triphosgene)	459
Variation 4:	With Thionyl Chloride/Dimethylformamide	
	(Vilsmeier Reagent) · · · · · · · · · · · · · · · · · · ·	460
Variation 5:	With Phosphoryl Chloride · · · · · · · · · · · · · · · · · · ·	461
Variation 6:	With Arenesulfonyl Chlorides · · · · · · · · · · · · · · · · · · ·	466
Variation 7:	With Other Reagents · · · · · · · · · · · · · · · · · · ·	468
Method 6:	By α -Elimination Reactions Involving Fragmentation of	
	Heterocyclic Compounds	472
Method 7:	Addition of Cyanides to Alkenes	475
Method 8:	Reaction of Dihalocarbenes with Primary Amines	478
Method 9:	From Other Isocyanides through Their α -Anions \cdots	480
Variation 1:	Reaction with Alkyl Halides and Epoxides · · · · · · · · · · · · · · · · · · ·	480
Variation 2:	·	484
Variation 3:	Elimination and C=C Transposition Reactions	486
Applications of	of Product Subclass 1 in Organic Synthesis	488
Method 1:	Simple α -Additions	488
	Methods 7: Applications of Method 1: Variation 2: Variation 3: Method 2: Variation 1: Variation 2: Method 3: Method 4: Product Clase M. Suginome Product Subsessive Synthesis of Fee Method 1: Variation 1: Variation 1: Variation 2: Method 3: Method 3: Method 3: Method 4: Method 3: Method 4: Method 5: Variation 1: Variation 1: Variation 2: Variation 3: Variation 4: Variation 5: Variation 6: Variation 7: Method 6: Method 7: Method 8: Method 9: Variation 1: Variation 2: Variation 3: Applications of	Methods 7: Other Methods Applications of Product Class 6 in Organic Synthesis Method 1: Cycloaddition Reactions of Phosphaalkynes Variation 1: [2+1] Cycloadditions Variation 3: [4+2] Cycloadditions Method 2: 1,2-Addition Reactions of Phosphaalkynes Variation 1: Addition of Enophiles Variation 2: Addition of Organometallic Groups Method 3: Phosphaalkynes as Ligands in Transition-Metal Complexes Method 4: Cyclooligomerization Reactions of Phosphaalkynes Product Class 7: Isocyanides and Related Compounds M. Suginome and Y. Ito Product Subclass 1: Carbon-Bound Isocyanides Synthesis of Product Subclass 1: Carbon-Bound Isocyanides Synthesis of Product Subclass 1 Method 1: Nucleophilic Substitution of Halides with Metal Cyanides Variation 1: From Halides and Equivalents Variation 2: From Epoxides and Oxetanes Method 3: Reduction of Isocyanates and Related Compounds Method 4: Dehalogenation of Isocyanide Dihalides Method 5: Dehydration of Formamides

19.7. 1.2.1.1	Variation 1:	Addition of Brønsted Acids	488
19.7. 1.2.1.2	Variation 2:	Addition of Hydrogen—Heteroatom Bonds and	
		Heteroatom—Heteroatom Bonds · · · · · · · · · · · · · · · · · · ·	489
19.7. 1.2.1.3	Variation 3:	Addition of Metal Hydrides and Bimetals	490
19.7. 1.2.1.4	Variation 4:	Addition of Organometallic Compounds	491
19.7. 1.2.1.5	Variation 5:	Oxidative α -Additions Including the Addition of	
		Halogen-Containing Reagents	494
19.7. 1.2.1.6	Variation 6:	Addition of Acid Chlorides and Related Compounds	494
19.7. 1.2.1.7	Variation 7:	Synthesis of Heteroaromatic Compounds by Intramolecular	
		$\alpha\text{-}Addition$ Reactions of $\textit{ortho}\text{-}\text{Functionalized}$ Aryl Isocyanides	495
19.7. 1.2.1.8	Variation 8:	Addition to $\pi\text{-Systems}$ (Including Aromatic Compounds) $\ \cdots$	496
19.7. 1.2.2	Method 2:	Cyclizations Utilizing Isocyanides as One-Carbon Donors · · · ·	497
19.7. 1.2.3	Method 3:	The Passerini Reaction and Ugi Reaction:	
		Multicomponent Couplings by an α -Addition Reaction $\cdots \cdots$	499
19.7. 1.2.3.1	Variation 1:	The Passerini Reaction: Synthesis of α -Acyloxycarboxamides	
		by the Three-Component Coupling of an Isocyanide,	
		a Carbonyl Compound, and a Carboxylic Acid	500
19.7. 1.2.3.2	Variation 2:	The Ugi Reaction: Synthesis of α -Acylaminocarboxamides	
		by the Four-Component Coupling of an Isocyanide,	
		a Carbonyl Compound, an Amine, and a Carboxylic Acid	504
19.7. 1.2.4	Method 4:	Cycloadditions via α -Isocyanomethyl Anions $\cdots \cdots \cdots$	509
19.7. 1.2.5	Method 5:	Transition-Metal Catalysis Involving Activation of	
		C—H Bonds α to the Isocyano Group $\cdots \cdots \cdots$	512
19.7. 1.2.6	Method 6:	Oligomerization and Polymerization	514
19.7. 1.2.6.1	Variation 1:	Of Monoisocyanides · · · · · · · · · · · · · · · · · · ·	514
19.7. 1.2.6.2	Variation 2:	Of Diisocyanides	515
19.7. 1.2.7	Method 7:	Reactions Accompanied by Cleavage of the C—NC Linkage:	
		Isomerization to Nitriles and Removal of the Isocyano Group	516
19.7. 1.2.8	Method 8:	Use of Transition-Metal Complexes of Isocyanide as Catalysts	518
19.7. 2		ass 2: Oxygen-, Sulfur-, Nitrogen-,	
	and Phosphor	us-Bound Isocyanides ·····	520
19.7. 2.1	Synthesis of Pr	oduct Subclass 2 ·····	521
19.7. 2.1.1	Method 1:	Dehydration · · · · · · · · · · · · · · · · · · ·	521
19.7. 2.1.2	Method 2:	Fragmentation of Heterocyclic Compounds	523
19.7. 2.1.3	Methods 3:	Miscellaneous Methods	523
	Keyword Inde	x	531
	Author Index		557
	Abbreviations		589

S.-I. Murahashi

This volume covers the synthesis of compounds with three carbon—heteroatom bonds which include nitrile oxides, nitrile sulfides, nitrile imines, nitrilium salts, nitrile ylides, nitriles, phosphaalkynes, and carbon- and heteroatom-bound isocyanides. These are shown in Table 1, together with the sections in which they appear.

Table 1	Structures and Nomenclature for the Three Carbon—Heteroatom Bond
Containi	ng Compounds Covered in Volume 19

Product Class	Structural Formula	Section
nitrile oxides	$R^1C \equiv N^+ - O^-$	19.1.1
nitrile sulfides	$R^1C \equiv N^+ - S^-$	19.1.2
nitrile imines	$R^2C \equiv N^+ - N^- R^1$	19.2
nitrilium salts	$R^2C \equiv N^+ - R^1$	19.3
nitrile ylides	$R^2C \equiv N^+ - C^-R^1$	19.4
nitriles	$R^1C \equiv N$	19.5
phosphaalkynes	$R^1C \equiv P$	19.6
isocyanides	$R^1N=C$	19.7.1
heteroatom-bound isocyanides	YN=C (Y = N, S, O, P)	19.7.2

References to reviews on these specific functional groups are given in each section. Discussion of each specific group is generally subdivided into methods that have been selected as the most useful for the preparation of the product class or subclass in question. Each method is presented separately as follows:

- 1. Introduction: comparison with other methods.
- 2. Presentation of the scope of the method to include background, discussion of representative examples, safety; mechanistic information where relevant to the use of the method in synthesis; a table of examples (for selected methods); reaction schemes.
 - 3. Representative experimental procedures.

In some cases, methods are further subdivided into variations on a method, each variation being presented according to the above format.

The coverage is not exhaustive, rather the most useful and reliable methods for the synthesis of each functional group have been selected. In some cases, methods that are recommended for limited use, or that have not yet been fully developed, are listed at the end of a section for reference. Tables and representative experimental procedures are given to illustrate the applicability of each approach.

This introduction will outline the individual product classes together with highlighted synthetic methods.

Nitrile oxides are 1,3-dipoles containing the same array of atoms in the functional group as nitrones, but at one oxidation level higher. Nitrile oxides **2** are readily prepared, mainly from hydroximoyl halides **1**, which are obtained through the halogenation of ald-

oximes with a variety of halogenating reagents^[1] or by treatment of activated nitroalkanes with thionyl chloride in the presence of triethylamine (Scheme 1).^[2] As they are difficult to isolate and store, nitrile oxides are normally generated in the presence of a reactive dipolarophile, giving the appropriate adduct directly; however, some nitrile oxides with bulky substituents are stable. Cycloaddition to a substituted ethene proceeds regioselectively, and the products are highly useful as precursors for a variety of other compounds and their functionality is readily unmasked. Typically, metal ion promoted cycloadditions to give dihydroisoxazoles 3 are highly useful reactions (Scheme 1). Stereospecific syntheses of dihydroisoxazoles can be achieved using effective chiral auxiliaries and metal ions. Typically, in the presence of magnesium ions the cycloaddition of nitrile oxides to allylic alcohols proceeds in a highly *syn*-selective manner when α -chiral dipolarophiles are used.^[3]

Scheme 1 Synthesis of Nitrile Oxides from Hydroximoyl Halides and Stereospecific 1,3-Dipolar Addition to Alkenes $^{[2-4]}$

Nitrile oxides can also be prepared directly by oxidation of aldoximes with sodium hypochlorite or *N*-bromosuccinimide in the presence of a base such as triethylamine. Such oxidations are normally combined with cycloaddition reactions with a suitable dipolarophile already present in the same pot. One typical example is the intramolecular cycloaddition of an aldoxime to give tricycle **4**, which contains the ring skeleton of natural product streptazolin (Scheme 2).^[5]

Scheme 2 Direct Synthesis of a Nitrile Oxide and Its Application in the Partial Synthesis of Streptazolin^[5]

Nitrile sulfides are unstable and it is impossible to isolate them. Nitrile sulfides are generated by the thermal decomposition of five-membered heterocyclic compounds, such as 1,3,4-oxathiazol-2-one, and trapped immediately with a suitable dipolarophile, thereby providing access to several classes of heterocycles that are obtained only with difficulty by other means.

Nitrile imines **6**, which can be generated by the base-induced dehydrohalogenation of stable hydrazonoyl halides **5**, are trapped by a variety of 1,3-dipolarophiles such as alkenes and alkynes to afford 4,5-dihydropyrazoles and pyrazoles, respectively (Scheme 3).^[6,7]

 $\begin{tabular}{ll} \textbf{Scheme 3} & \textbf{Generation of Nitrile Imines from Hydrazonoyl Halides and Entrapment with Alkenes and Alkynes$^{[6,7]}$ \\ \end{tabular}$

$$X \longrightarrow N$$

$$R^{2} \longrightarrow NHR^{1}$$

$$S \longrightarrow R^{4} \longrightarrow N$$

$$R^{2} \longrightarrow R^{4} \longrightarrow N$$

$$R^{3} \longrightarrow R^{2}$$

$$R^{4} \longrightarrow N$$

$$R^{1} \longrightarrow R^{2}$$

$$R^{3} \longrightarrow R^{4} \longrightarrow N$$

$$R^{1} \longrightarrow R^{2}$$

$$R^{2} \longrightarrow R^{4} \longrightarrow N$$

$$R^{3} \longrightarrow R^{2}$$

$$R^{4} \longrightarrow N$$

$$R^{1} \longrightarrow N$$

$$R^{2} \longrightarrow R^{4} \longrightarrow N$$

$$R^{3} \longrightarrow R^{4} \longrightarrow N$$

$$R^{3} \longrightarrow R^{4} \longrightarrow N$$

$$R^{4} \longrightarrow N$$

$$R^{4}$$

Nitrilium salts are intermediates in a number of reactions that include the Beckmann rearrangement producing amides from oximes, [8,9] the Ritter reaction producing amides from alcohols and nitriles, [10-12] the von Braun amide degradation reaction producing alkyl halides and nitriles, [13] the Bischler–Napieralski reaction producing dihydroisoquinolines and related ring-fused imines from amides and arenes, [13] the Hoesch acylation reaction from arenes and nitriles, [14] the Gattermann formylation reaction of arenes and hetarenes, [15] and the Schmidt reaction producing amides from ketones and hydrazoic acid. [16] In most cases, the nitrilium ions are formed and reacted instantly, but stable nitrilium salts can be isolated. The acid-mediated dehydration of oximes is better known as the Beckmann rearrangement. N-Alkylation of nitriles provides one of the most convenient and direct routes to nitrilium salts. Nitrilium salts are also prepared by the interaction of alkyl chloroformates with Lewis acid complexes of nitriles.

Nitrile ylides are 1,3-dipoles and can be prepared by several methods^[7,17] including the elimination of hydrogen chloride from imidoyl chlorides, the reaction of carbenes and carbenoids with nitriles, and the photochemical ring opening of aziridines. Pyrroles and dihydropyrroles are obtained by the 1,3-dipolar cycloaddition of nitriles ylides with alkynes and alkenes.

Nitriles are an extremely important class of compounds in organic synthesis. Nitriles have a strong dipole, oriented with the negative end toward the nitrogen, and the cyano group is recognized as a powerful electron-withdrawing substituent. Nitriles have unique properties, and thus various reactions for the synthesis and the unique transformations of nitriles have been developed.

A typical method for the synthesis of nitriles is the construction of the cyano group by functional group transformation from various starting materials, such as aldehydes, carboxylic acids and their derivatives, hydrazones, aldoximes, carboxamides, and thioamides. [18–20]

The oxidation of hydrazones and aldoximes are important synthetic routes to nitriles, although the direct conversion of aldehydes in a one-pot reaction can be carried out by oxidation of the in situ formed aldimines. One of the most typical transformations is the preparation of nitriles by nucleophilic substitution of alkyl, allyl, and benzyl halides (at the sp³-carbon—halogen bonds) with various cyanide reagents. Substitution at the sp²-carbon—halogen bonds is very difficult; however, the palladium-catalyzed coupling reaction of *Z*- and *E*-vinyl halides with sodium cyanide in the presence of 18-crown-6 was introduced in 1977 as the first transition-metal-catalyzed cyanation reaction of sp²-carbon—halogen bonds to give *Z*- and *E*-vinyl cyanides stereospecifically. This reaction

led to the discovery of palladium- and nickel-catalyzed cyanations of aryl halides and vinyl and aryl trifluoromethanesulfonates. The conversion of the aryl chlorides into aryl cyanides is very convenient.^[24]

Aromatic and heteroaromatic nitriles can be prepared by direct cyanation of aromatic and heteroaromatic compounds with cyanogen bromide or trichloroacetonitrile in the presence of Friedel–Crafts catalysts. Heterocyclic *N*-oxides such as pyridine, quinone, pyrazine, pyrimidine, quinoxaline, or isoquinoline *N*-oxide undergo reaction with trimethylsilyl cyanide in the presence of a base to give the cyanation products directly. The reactions of pyridine 1-oxide with dimethylcarbamoyl chloride and trimethylsilyl cyanide give the corresponding carbonitriles in excellent yields (modified Reissert–Henze reaction). Catalytic asymmetric Reissert-type reactions of quinoline and isoquinoline derivatives using a Lewis acid–Lewis base bifunctional catalyst are highly useful; for example, with a catalyst obtained from ligand 7 and diethylaluminum chloride, 1-(2-furylcarbonyl)-6,7-dimethoxy-1,2-dihydroquinoline-2-carbonitrile (8) is obtained in 91% ee (Scheme 4).

Scheme 4 Aluminum-Catalyzed Asymmetric Reissert-Type Reaction of a Quinoline^[27]

Direct cyanation of the sp-C—H bond of acetylenes is performed by treatment with copper(I) cyanide and chlorotrimethylsilane, [28] or butyllithium and phenyl cyanate. [29] Direct cyanation of the sp³-C—H bond is extremely difficult; however, aerobic oxidative cyanation of tertiary amines with sodium cyanide has been demonstrated. Thus, the treatment of N,N-dimethylaniline with catalytic ruthenium(III) chloride hydrate and sodium cyanide under molecular oxygen (1 atm) gives α -cyanated amine $\mathbf{9}$ (Scheme 5), which is the precursor of amino acids and 1,2-diamines, in excellent yields. The direct C—H activation of an amine α to nitrogen with a ruthenium catalyst forms the intermediate iminium ion and this is the key step of this interesting reaction. [30]

Scheme 5 Aerobic Ruthenium-Catalyzed Oxidative Cyanation of a Tertiary Amine with Sodium Cyanide^[30]

Introduction of the cyano group by substitution of the metals in organometallic compounds can also be used for nitrile synthesis. Typically, the substitution reaction of organozinc or copper compounds with tosyl cyanide is highly useful.^[31]

Nitriles can also be synthesized by the transformation of other substrates such as amines, alcohols, and nitro compounds. The oxidative transformation of primary amines to nitriles is performed by aerobic oxidation of primary amines in the presence of a hydroxyapatite-bound ruthenium complex [Ru-HAP(II)], which is prepared by mixing calcium hydroxyapatite $[Ca_{10}(PO_4)_6(OH)_2]$ with aqueous ruthenium(III) chloride. [32]

The synthesis of cyanohydrins and especially the asymmetric synthesis of these compounds are extremely important; therefore, many methods have been developed. The cyanohydrins of aldehydes are prepared upon treatment with potassium or sodium cyanide/18-crown-6, acetone cyanohydrins with a metal complex catalyst, and trimethylsilyl cyanide with a catalyst. The most significant advances in the area of cyanohydrin chemistry since 1985 have been the development of catalysts for the asymmetric addition of cyanide to aldehydes. The reaction can be induced by a variety of catalysts, of which enzymes, synthetic peptides, and chiral metal complexes are the three most common. The synthesis of these compositions are common.

The cyclic dipeptide containing histidine residue catalyzes the asymmetric addition of hydrogen cyanide to benzaldehyde, giving optically active mandelonitrile with up to 90% ee. [39] A number of organometallic reagents based on chiral complexes of titanium, [40–42] aluminum, lanthanide, [41,43,44] and other metals [45] have been found to catalyze the asymmetric addition of hydrogen cyanide or trimethylsilyl cyanide to aldehydes. Typically, the chiral titanium–salen complex **10** catalyzes the asymmetric addition of potassium cyanide and acetic anhydride to aldehydes affording the cyanohydrin acetates **11** with high enantioselectivities (Scheme 6).

 $\begin{array}{ll} \textbf{Scheme 6} & \text{Titanium-Catalyzed Asymmetric Addition of Potassium Cyanide and Acetic Anhydride to Aldehydes} \\ ^{[43,44]} & \end{array}$

The Strecker reaction is a three-component condensation reaction between a carbonyl compound, an amine, and a cyanide to produce an α -aminonitrile. The reaction proceeds via in situ formation of an imine, followed by addition of cyanide to the imine.

The asymmetric addition of cyanide to imines is important in organic synthesis. $^{[46-50]}$ The enantioselective addition of hydrogen cyanide or trimethylsilyl cyanide to imines in the presence of a chiral catalyst such as a cyclic dipeptide, $^{[51]}$ or an aluminum, $^{[52,53]}$ titanium, $^{[54]}$ or zirconium $^{[55]}$ complex is very important in the synthesis of optically active α -aminonitriles. Typically, enantioselective addition of hydrogen cyanide to imines gives aminonitriles 13 using 5 mol% of the chiral aluminum–salen complex 12 (Scheme 7). $^{[52]}$

Scheme 7 Enantioselective Addition of Hydrogen Cyanide to Imines Catalyzed by a Chiral Aluminum–Salen Complex^[52]

Hydrocyanation of α , β -unsaturated carbonyl compounds and related compounds is performed upon treatment with diethylaluminum cyanide (prepared from HCN and Et₃Al), trimethylsilyl cyanide and a Lewis acid, or acetone cyanohydrin. Hydrogen cyanide itself is normally incapable of adding to Michael acceptors.

The hydrocyanation of alkynes is a very important and useful process since it generates highly versatile α,β -unsaturated nitriles from easily accessible starting materials. The tetrakis(triphenyl phosphite)nickel(II)-catalyzed hydrocyanation of diphenylacetylene gives 1,2-diphenylethanenitrile selectively. [56,57]

The Dupont process for the synthesis of adiponitrile (hexanedinitrile, 14) from buta-1,3-diene is the most important application of hydrocyanation. The overall reaction consists of three stages, the first being the synthesis of a mixture of pent-3-enenitrile and 2-methylbut-3-enenitrile (7:3) by the nickel-catalyzed addition of 1 equivalent of hydrogen cyanide to buta-1,3-diene. The isomeric nitriles are separated by distillation, and the unwanted branched product is isomerized in a second step using a similar nickel(0) catalytic system in the presence of a Lewis acid. In the final part of the process, the mixture of unbranched pentenenitriles is isomerized and concomitantly hydrocyanated resulting in the product adiponitrile (14) with selectivities of up to 90% (Scheme 8). [58–60]

Scheme 8 Nickel-Catalyzed Hydrocyanation of Buta-1,3-diene To Give Adiponitrile^[58–60]

There are many methods for the synthesis of nitriles from other nitriles with retention of the cyano group. The reactions of α -cyano carbanions with electrophiles are one of the fundamental synthetic routes to nitriles, which include reaction with alkyl halides, epoxides, the aldol reaction, the Knoevenagal reaction, the Michael reaction, and the Thorpe–Ziegler reaction. Usually α -cyano carbanions can be generated upon treatement of nitriles with strong bases such as lithium diisopropylamide and potassium *tert*-butoxide; however, C—H activation α to the nitrogen of nitriles with a low-valent transition-metal catalyst such as dihydridotetrakis(triphenylphosphine)ruthenium(II) is highly useful. The aldol reaction, the Knoevenagel reaction, and the Michael reaction of nitriles can be carried out in a highly selective manner with low-valent transition-metal complexes such as dihydridotetrakis(triphenylphosphine)ruthenium(II) as the redox Lewis acid catalyst under neutral and mild reaction conditions. [61,62] Typically, the reaction of ethyl cyanoacetate with 4-hydroxybenzaldehyde gives the product **15** in 98% yield (Scheme 9). The reaction can be carried out under neutral conditions and acidic substrates are tolerated in the

reaction. Another example is the Michael addition of ethyl 2-cyanopropanoate (**16**) to a base-sensitive substrate of prop-2-enal to give **17** (Scheme 9). These reactions provide non-salt processes that are environmentally benign. ^[63]

Scheme 9 Ruthenium-Catalyzed Aldol Condensation and Michael Addition^[61,62]

NC
$$CO_2Et$$
 + HO $RuH_2(PPh_3)_4 (cat.)$ CO_2Et + HO $RuH_2(PPh_3)_4 (cat.)$ CO_2Et + CHO $RuH_2(PPh_3)_4 (cat.)$ CO_2Et + CHO $RuH_2(PPh_3)_4 (cat.)$ CO_2Et + CHO $RuH_2(PPh_3)_4 (cat.)$ CO_2Et CO_2Et 17

The Thorpe–Ziegler reaction has been carried out using a stoichiometric amount of a strong base, such as sodium hydride, to give aminonitriles from dinitriles; however, pentahydridobis(triisopropylphosphine)iridium(V) can be used instead of a strong base, and the catalytic reaction of **18** can be carried out to give **19** under neutral conditions (Scheme 10).^[64]

Scheme 10 Iridium-Catalyzed Thorpe–Ziegler Condensation of a Nitrile^[64]

Conjugate additions of reactive nucleophiles to alkenes or alkynes are important C—C and carbon—heteroatom bond-forming reactions for making a variety of nitriles. [65,66] Various nucleophiles such as oxo enolates, ester enolates, enamines, metalated nitriles, metalated nitroalkanes, organometallic compounds, allylsilanes, thiols, and amines add to alkenenitriles selectively to give numerous nitrile compounds.

[2+2] Cycloaddition, 1,3-dipolar cycloaddition, and the Diels–Alder reaction are convenient for the stereoselective synthesis of cyclic compounds bearing a nitrile. Iminoacetonitriles, which are readily prepared from alcohols, are useful azodienophiles for intramolecular hetero-Diels–Alder reactions (Scheme 11).^[67]

Scheme 11 Aza-Diels–Alder Reaction of an Iminoacetonitrile^[67]

The Heck–Mizoroki reaction, palladium- and nickel-catalyzed cross-coupling reactions with various organometallic compounds, and palladium-catalyzed reactions of allyl esters are extremely useful for the synthesis of nitrile compounds, especially alkenenitriles.

Nitriles have unique properties, and, therefore, various transformations of nitriles have been developed. Functional group transformations of nitriles to amines, imines, aldehydes, ketones, amides, amidines, amidrazones, imidates, and carboxylic acids are widely known, and these transformations have been described in sections of other volumes within *Science of Synthesis*.

The applications of nitriles in the construction of more complex molecules are also described in this volume. Three-component reactions, one-pot cyclization, cycloaddition, and domino reactions are often used for the synthesis of various heterocyclic compounds. Typically, the reaction of 20 with trimethylsilyl trifluoromethanesulfonate, followed by disiloxydiene 21 affords the open-chain product 22. Treatment of 22 with triethylamine affords the benzopyrano[2,3-b]pyridine 23 (Scheme 12). [68]

Scheme 12 Reaction of 4-Oxo-4*H*-1-benzopyran-3-carbonitrile with a Disiloxy-1,3-diene^[68]

One of the unique properties of nitriles is their ability to strongly coordinate to metals. Using this property, new types of practical catalytic reactions of nitriles have been developed. Typically, the ruthenium-catalyzed reaction of amines, nitriles, and water under neutral reaction conditions to give amides and ammonia is an extremely useful reaction which can also be applied to the synthesis of polyamides from diamines and dinitriles (Scheme 13).^[63,69]

Scheme 13 Ruthenium-Catalyzed Amidation of Nitriles with Amines and Water^[69]

$$R^{1}CN + R^{2}R^{3}NH + H_{2}O \xrightarrow{RuH_{2}(PPh_{3})_{4} (cat.)} NR^{2}R^{3}$$

A novel three-component reaction involving nitriles, alkenenitriles, and water in the presence of pentahydridobis(triisopropylphosphine)iridium(V) as a Lewis acid and base ambiphilic catalyst affords glutarimides **24**, which are versatile intermediates in the synthesis of biologically active compounds (Scheme 14).^[64]

Scheme 14 Iridium-Catalyzed Three-Component Reaction of Nitriles, Alkenenitriles, and Water To Give Glutarimides^[64]

A wide range of pyridines have been prepared by the [2+2+2] cyclotrimerization of nitriles and alkynes. Cobalt complexes are the most common catalysts.^[70] The complex fused heterocycles can be prepared using cobalt-catalyzed cycloaddition reactions.^[71]

Two alternative approaches to the cyclotrimerization were reported, although both result in the formation of a stoichiometric transition-metal species. Thus, titanium(II) alkoxide [prepared in situ from $Ti(OiPr)_4$ and $iPrMgCl]^{[72]}$ and $bis(\eta^5$ -cyclopentadienyl)(diethyl)zirconium(IV)^[73] promote this type of reaction (Scheme 15).

Scheme 15 Zirconium-Mediated Pyridine Synthesis^[73]

$$R^{1} \longrightarrow R^{2} + R^{3}CN \xrightarrow{Zr(Et)_{2}(Cp)_{2}} \xrightarrow{R^{3}} \stackrel{R^{2}}{\underset{N}{\bigvee}} Cp \xrightarrow{R^{4} \longrightarrow R^{5}} \underset{50 \text{ °C}}{\underset{50 \text{ °C}}{\bigvee}} R^{5}$$

Demko and Sharpless demonstrated the formation of substituted tetrazoles from nitriles and azides by heating neat tosyl cyanide with an unhindered azide, giving quantitative conversion into the 1-substituted 5-tosyltetrazole **25** (Scheme 16), which can be readily elaborated by nucleophilic substitution of the tosyl group.^[74] This is a "click chemistry" transformation in that no solvent is required.

Scheme 16 The "Click Chemistry" Approach to Tetrazoles^[74]

$$R^1N_3$$
 + TsCN $\xrightarrow{\text{neat}}$ $Ts \xrightarrow{N-N}$ N

Phosphaalkynes are unstable molecules, and their chemistry resembles that of alkynes rather than nitriles. The P=C bond system shows a pronounced tendency to undergo cycloaddition and cyclooligomerization reactions.

Methylidynephosphine (**26**), ethylidynephosphine (**27**), and fluoromethylidynephosphine (**28**) (Scheme 17) can be generated and characterized, but must be stored under dry argon at low temperature.^[75]