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Preface

This book aims at introducing the reader to statistical time series analysis by
dynamic linear models. We have tried to be precise and rigorous in discussing
the main concepts and tools, yet keeping a simple and friendly style of presen-
tation. The main methods and models are widely illustrated with examples
based on real data, implemented in R. Together with the book, we developed
an R package for inference and forecasting with dynamic linear models; the
dim package is available as a contributed package in the Comprehensive R
Archive Network at http://www.r-project.org/.

In the recent years, there has been an enormous growth of interest for sta-
tistical applications of dynamic linear models and, more generally, state-space
models, in a wide range of applied fields, such as biology, economics, finance,
marketing, quality control, engineering, demography, climatology, to mention
only a few. State space models provide a very flexible yet fairly simple tool for
analyzing dynamic phenomena and evolving systems, and have significantly
contributed to extend the classical domains of application of statistical time
series analysis to non-stationary, irregular processes, to systems evolving in
continuous-time, to multivariate, continuous and discrete data. An extremely
wide range of applied problems can be treated inside the framework of dy-
namic linear models or, more generally, state-space models.

The book covers the basic notions of dynamic linear models and state
space models, the celebrated Kalman filter for estimation and forecasting in
a dynamic linear model with known parameters, and maximum likelihood
estimation. It also presents a wide array of specific dynamic linear models
particularly suited for time series analysis, both for univariate and multivari-
ate data. But these topics are of course also covered in other very good books
in the rich literature on dynamic linear models, and several statistical soft-
wares include packages for time series analysis through maximum likelihood
and Kalman filtering. What we felt was somehow missing was an up to date,
rigorous yet friendly reference—and software—for applied Bayesian time se-
ries analysis through dynamic linear models and state space models. This
seemed to be missing despite the fact that the Bayesian approach has become
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more and more popular in applications, due to the availability of modern
and efficient computational tools. So, while also covering maximum likelihood
methods, our focus in the book is on Bayesian time series analysis based on
dynamic linear models.

We do not expect the reader to be an expert in Bayesian inference, so we
begin with a short introduction to the Bayesian approach in Chapter 1. Also
for a Bayesian reader, this is useful to set the notation and to underline some
basic concepts that are used in the following chapters: for example, in present-
ing the simplest notions, such as Bayesian conjugate inference for a Gaussian
model, we underline the recursive structure of the estimates, that will be one
of the basic aspects of inference for dynamic linear models. Chapter 2 intro-
duces the general setting of state space models and dynamic linear models,
including the fundamental algorithms to sequentially update estimates and
forecasts and the Kalman filter. Chapters 3 and 4 are in a sense the core
of the book. In Chapter 3 the reader will find a discussion of a broad spec-
trum of specific models suited for the analysis of many kinds of data showing
different features. Thus, Chapter 3 should be considered as a toolbox, illus-
trating a set of models from which the user can select the most appropriate for
the application at hand. Chapter 4 covers maximum likelihood and Bayesian
inference for dynamic linear models containing unknown parameters—which
is always the case in practice. Many of the models introduced in Chapter 3
are discussed again there in this perspective. For most of the covered mod-
els we provide detailed examples of their use, corredated with the relevant
R code. When possible, Bayesian estimates are evaluated using closed form
algorithms. But in more elaborate models, analytical computations become
intractable and simulation techniques are used to approximate the Bayesian
solutions. We describe Markov chain Monte Carlo methods for Bayesian in-
ference in dynamic linear models. The R package dlm provides functions for
one of the basic steps in Bayesian computations in dynamic linear models,
the so-called forward filtering-backward sampling algorithm, and other com-
putational tools, with many examples, are provided. In Chapter 5, we present
modern sequential Monte Carlo and particle filter algorithms for on-line esti-
mation and forecasting.

Of course we cannot cover all of the extremely rich variety of models, appli-
cations, and problems in Bayesian inference with dynamic linear models, and
many things will be missing. However, we hope to give a solid background
on the main concepts and notions, leading the reader to acquire the skills
for specific, personal elaborations, for which the flexibility of R and the dim
package will provide convenient, helpful tools. On the web site of the book,
definetti.uark.edu/ gpetris/dlm, the reader will find data sets not in-
cluded in the package and the code to run all the examples in the book. In
addition, we plan to post there an updated list of errata.
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The motivation for this book came from the authors’ teaching expe-
rience in courses on time series analysis. We wanted to teach a course
including—besides the classical ARMA models, descriptive techniques, ex-
ponential smoothing, and so on—more modern approaches, in particular
Bayesian inference for time series through dynamic linear models. Again, we
felt that a textbook, and a friendly but flexible software, were missing. So we
started working on this project. We hope students, researchers, and practi-
tioners will find the book and the software that resulted from our effort of
some help.

We would like to thank Springer-Verlag’s referees for their encouragement
and valuable suggestions. Our thanks go also to our editor, John Kimmel, for
his patience and support.

The dim package would not exist without R, for which we thank R-core.
Several people on r-help, the general R mailing list, have contributed their
suggestions and feedback during the development of the package: we thank all
of them. In particular, we thank Spencer Graves and Michael Lavine for their
comments and suggestions on earlier versions of the package. Michael Lavine
taught a course at the University of Massachusets using R and dim from an
early draft of the book, and we thank him for the valuable feedback he gave
us. One of the authors (GP) taught some short courses based on preliminary
versions of the book at Bocconi University and the University of Roma 3
and would like to thank Pietro Muliere, Carlo Favero, Julia Mortera, and his
coauthor, Sonia Petrone, for the kind invitations and the hospitality. SP used
draft versions of the book in her graduate courses on time series analysis at
Bocconi University: students’ feedback has been precious. We thank all our
students at the University of Arkansas, Bocconi University, and the University
of Roma 3 who, with their comments, questions, suggestions, interest and
enthusiasm, have contributed to the development of this book. Among them,
a special thanks goes to Paolo Bonomolo and Guido Morandini.

Needless to say, the responsibility for any remaining mistakes, obscurities,
or omissions—in the book and in the package—Ilies solely with us.

Fayetteville, Arkansas Giovanni Petris
and Sonia Petrone
Milano, Italy Patrizia Campagnoli

December 15, 2008



Contents

1 Introduction: basic notions about Bayesian inference ...... 1
1.1 Basic notions ............o.iiii i 2
1.2 Simple dependence structures . ............. ..., 5
1.3 Synthesis of conditional distributions....................... 11
1.4 Choice of the prior distribution............................ 14
1.5 Bayesian inference in the linear regression model ............ 18
1.6 Markov chain Monte Carlo methods ....................... 22

1.6.1 Gibbssampler ........ ... .. . .. 24
1.6.2 Metropolis-Hastings algorithm ...................... 24
1.6.3 Adaptive rejection Metropolis sampling .............. 25
Problems . ... .. 29

2 Dynamic linear models ........... ... .. ... ... ... ... ... ... 31
2.1 Introduction .......... ... i 31
2.2 Asimple example ......... . 35
2.3 State space models ........ 39
2.4 Dynamic linear models. .......... ... ... . .. . i 41
2.5 Dynamic linear models in packagedlm ..................... 43
2.6 Examples of nonlinear and non-Gaussian state space models .. 48
2.7 State estimation and forecasting........... ... ... ... ... ... 49

2.7.1 Filtering ... ... ... 51
2.7.2 Kalman filter for dynamic linear models .............. 53
2.7.3 Filtering with missing observations .................. 59
2.7.4 Smoothing. ...... ... i 60
2.8 Forecasting ............ ... 66
2.9 The innovation process and model checking ................. 73
2.10 Controllability and observability of time-invariant DLMs .. ... 7
2.11 Filter stability .. ... 80

Problems .. ... 83



XII

Contents

Model specification ............ ... ... 85
3.1 Classical tools for time series analysis ...................... 85
3.1.1 Empirical methods ......... .. ... .. . ... ... 85
3.1.2 ARIMA models . ... 87
3.2  Univariate DLMs for time series analysis ................... 88
321 Trendmodels ...... ... 89
3.2.2 Seasonal factor models ........ ... .. .. ool 100
3.2.3 Fourier form seasonal models ....................... 102
3.2.4  General periodic components ....................... 109
3.2.5 DLM representation of ARIMA models............... 112
3.2.6 Example: estimating the output gap ................. 115
3.2.7 Regression models . ........ ... .. .. . .. 121
3.3 Models for multivariate time series............. ... ... ..... 125
3.3.1 DLMs for longitudinal data ......................... 126
3.3.2  Seemingly unrelated time series equations ............ 127
3.3.3 Seemingly unrelated regression models ............... 132
3.3.4 Hierarchical DLMs ....... ... ... ... ... .. ... ...... 134
3.3.5 Dynamic regression . ........... .. .. ... .. .. ... 136
3.3.6 Common factors ........... .. . .. ... ... 138
3.3.7 Multivariate ARMA models ........................ 139
Problems . ... .. . 142
Models with unknown parameters ......................... 143
4.1 Maximum likelihood estimation ............ ... .. .. .. ..... 144
4.2 Bayesian inference ......... .. . i 148
4.3 Conjugate Bayesian inference ............ ... ... ... ... .... 149
4.3.1 Unknown covariance matrices: conjugate inference . . ... 150
4.3.2 Specification of W, by discount factors ............... 152
4.3.3 A discount factor model for time-varying V;........... 158
4.4 Simulation-based Bayesian inference ............ ... ... ..., 160

4.4.1 Drawing the states given y;.7: forward filtering
backward sampling ......... ... ... . i i 161
4.4.2  General strategies for MCMC ........... ... ... ..... 162
4.4.3 Tllustration: Gibbs sampling for a local level model . ... 165
4.5 Unknown variances ............ .. ... 167
4.5.1 Constant unknown variances: d Inverse Gamma prior .. 167
4.5.2 Multivariate extensions ................... ... ... .. 171
4.5.3 A model for outliers and structural breaks ............ 177
4.6 Further examples ...... ... .. ... i 186
4.6.1 Estimating the output gap: Bayesian inference ........ 186
4.6.2 Dynamic regression .. ... ..., 192
4.6.3 Factormodels......... ... ... .. ... 200

Problems .. ... ... 206



Contents  XIII

5 Sequential Monte Carlo methods .......................... 207
5.1 The basic particle filter. .. ...... .. .. ... .. i 208
51.1 Asimple example ........ ... ... i 213

5.2 Auxiliary particle filter . ........ .. ... o 216

5.3 Sequential Monte Carlo with unknown parameters ........... 219
5.3.1 A simple example with unknown parameters .......... 226

5.4 Concluding remarks ........ ... .. . i 228

A Useful distributions.......... ... ... ... ... ... .. 231
B Matrix algebra: Singular Value Decomposition............. 237
Index . ... 241



1

Introduction: basic notions about Bayesian
inference

Dynamic linear models were developed in engineering in the early 1960’s, to
monitor and control dynamic systems, although pioneer results can be found
in the statistical literature and go back to Thiele (1880). Early famous ap-
plications have been in the Apollo and Polaris aerospace programs (see, e.g.,
Hutchinson; 1984), but in the last decades dynamic linear models, and more
generally state space models, have received an enormous impulse, with appli-
cations in an extremely vast range of fields, from biology to economics, from
engineering and quality control to environmental studies, from geophysical
science to genetics. This impressive growth of applications is largely due to
the possibility of solving computational difficulties using modern Monte Carlo
methods in a Bayesian framework. This book is an introduction to Bayesian
modeling and forecasting of time series using dynamic linear models, present-
ing the basic concepts and techniques, and illustrating an R package for their
practical implementation.

Statistical time series analysis using dynamic linear models was largely
developed in the 1970-80’s, and state space models are nowadays a focus
of interest. In fact, the reader used to descriptive time series analysis or to
ARMA models and Box—Jenkins model specification, may find the state space
approach a bit difficult at first. But the powerful framework offered by dy-
namic linear models and state space models reveals to be a winning asset.
ARMA models can be usefully regarded in terms of dynamic linear mod-
els. But dynamic linear models offer much more flexibility in treating non-
stationary time series or modeling structural changes, and are often more
easily interpretable; and the more general class of state space models extends
the analysis to non-Gaussian and non-linear dynamic systems. There are, of
course, different approaches to estimate dynamic linear models, via general-
ized least squares or maximum likelihood for example, but we believe that a
Bayesian approach has several advantages, both methodological and compu-
tational. Kalman (1960) already underlines some basic concepts of dynamic
linear models that we would say are proper to the Bayesian approach. A first
step is moving from a deterministic to a stochastic system; the uncertainty,

G. Petris et al., Dynamic Linear Models with R, Use R, DOI: 10.1007/b135794 1, 1
© Springer Science + Business Media, LLC 2009



2 1 Introduction: basic notions about Bayesian inference

which is always present due to forgotten variables, measurement errors, or
imperfections, is described through probability. Consequently, the estimation
of the quantities of interest (in particular, the state of the system at time
t) is solved by computing their conditional distribution, given the available
information. This is a general, basic concept in Bayesian inference. Dynamic
linear models are based on the idea of describing the output of a dynamic sys-
tem, for example a time series, as a function of a nonobservable state process
(which has a simple, Markovian dynamics) affected by random errors. This
way of modeling the temporal dependence in the data, by conditioning on la-
tent variables, is simple and extremely powerful, and again it is quite natural
in a Bayesian approach. Another crucial advantage of dynamic linear models
is that computations can be done recursively: the conditional distributions of
interest can be updated, incorporating the new data, without requiring the
storage of all the past history. This is extremely advantageous when data ar-
rive sequentially in time and on-line inference is required, and the reduction
of the storage capacity needed becomes even more crucial for large data sets.
The recursive nature of computations is a consequence of the Bayes formula
in the framework of dynamic linear models.

However, analytical computations are often not manageable, but Markov
chain Monte Carlo algorithms can be applied to state space models to over-
come computational difficulties, and modern, sequential Monte Carlo meth-
ods, which have been enormously improved in the last years, are successfully
used for on-line analysis.

We do not expect that the reader is already an expert in Bayesian statis-
tics; therefore, before getting started, this chapter briefly reviews some basic
notions, with a look to the concepts that are important in the study of dynamic
linear models. Reference books on Bayesian statistics are Bernardo and Smith
(1994), DeGroot (1970), Berger (1985), O’'Hagan (1994), Robert (2001), Ci-
farelli and Muliere (1989), or Zellner (1971), Poirier (1995) and Geweke (2005)
for a more econometric viewpoint.

1.1 Basic notions

In the analysis of real data, in economics, sociology, biology, engineering and
in any field, we rarely have perfect information on the phenomenon of inter-
est. Even when an accurate deterministic model describing the system under
study is available, there is always something that is not under our control,
such as effects of forgotten variables, measurement errors, or imperfections.
We always have to deal with some uncertainty. A basic point in Bayesian
statistics is that all the uncertainty that we might have on a phenomenon
should be described by means of probability. In this perspective, probability
has a subjective interpretation, being a way of formalizing the incomplete in-
formation that the researcher has about the events of interest. Probability
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theory prescribes how to assign probabilities coherently, avoiding contradic-
tions and undesirable consequences.

The Bayesian approach to the problem of “learning from experience” about
a phenomenon moves from this crucial role played by probability. The learn-
ing process consists of the application of probability rules: one simply has to
compute the conditional probability of the event of interest, given the experi-
mental information. Bayes’ theorem is the basic rule to be applied to this aim.
Given two events A and B, probability rules say that the joint probability of A
and B occurring is given by P(AN B) = P(A|B)P(B) = P(B|A)P(A), where
P(A|B) is the conditional probability of A given B and P(B) is the (marginal)
probability of B. Bayes’ theorem, or the theorem of inverse probability, is a
simple consequence of the above equalities and says that

bl — PEAPA)

P(B)
This is an elementary result that goes back to Thomas Bayes (who died in
1761). The importance of this theorem in Bayesian statistics is in the inter-
pretation and scope of the inputs of the two sides of the equation, and in the
role that, consequently, Bayes’ theorem assumes for formalizing the inductive
learning process. In Bayesian statistics, A represents the event of interest for
the researcher and B an experimental result which she believes can provide
information about A. Given P(A) and consequently P(A) = 1 — P(A), and
having assigned the conditional probabilities P(B|A) and P(B|A) of the ex-
perimental fact B conditionally on A or A, the problem of learning about A
from the “experimental evidence” B is solved by computing the conditional
probability P(A|B).

The event of interest and the experimental result depend on the problem.
In statistical inference, the experimental fact is usually the result of a sam-
pling procedure, and it is described by a random vector Y; it is common to
use a parametric model to assign the probability law of Y, and the quantity
of interest is the vector 6 of the parameters of the model. Bayesian inference
on 6 consists of computing its conditional distribution given the sampling
results. More specifically, suppose that, based on her knowledge of the prob-
lem, the researcher can assign a conditional distribution 7(y|#) for Y given 6,
the likelihood, and a prior distribution w(6) expressing her uncertainty on the
parameter §. Upon observing ¥ = y, we can use a generalization of the ele-
mentary Bayes’ theorem, known as Bayes’ formula, to compute the conditional

density of 8 given y:
(yl0)m ()

7(y)
where 7(y) is the marginal distribution of Y,

m(0ly) =

)

w(w) = [ w(ul6)(6) .
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Thus, Bayesian statistics answers an inference problem by computing the
relevant conditional distributions, and the Bayes formula is a basic tool to
achieve this aim. It has an elegant, appealing coherence and simplicity. Dif-
ferently from Bayesian procedures, frequentist statistical inference does not
use a probability distribution for the unknown parameters, and inference on 6
is based on the determination of estimators with good properties, confidence
intervals, and hypothesis testing. The reason is that, since the value of the
parameter 6 does not “vary,” 6 is not interpretable as a random “variable”
in a frequentist sense, neither can the probability that 6 takes values in a
certain interval have a frequentist interpretation. Adopting subjective prob-
ability instead, 6 is a random quantity simply because its value is uncertain
to the researcher, who should formalize the information she has about it by
means of probability. This seems, indeed, quite natural. We refer the reader to
the fundamental works by de Finetti (1970a,b) and Savage (1954) for a much
deeper discussion.

In many applications, the main objective of a statistical analysis is forecast-
ing; thus, the event of interest is the value of a future observation Y*. Again,
prediction of a future value Y* given the data y is solved in the Bayesian ap-
proach simply by computing the conditional distribution of Y* given Y = y,
which is called predictive distribution. In parametric models it can be com-
puted as

() = / iy, Bly) A6 = / (" . 6)m(B]y) 6.

The last expression involves again the posterior distribution of #. As a matter
of fact, apart from controversies about frequentist or subjective probability, a
difficulty with (prior or posterior) probability distributions on model parame-
ters is that, in some problems, they do not have a clear physical interpretation,
so that assigning to them a probability law is debatable, even from a subjec-
tive viewpoint. According to de Finetti, one can assign a probability only to
“observable facts”; indeed, the ultimate goal of a statistical analysis is of-
ten forecasting the future observations rather than learning on unobservable
parameters. Taking a predictive approach, the parametric model is to be re-
garded just as a tool to facilitate the task of specifying the probability law of
the observable quantities and, eventually, of the predictive distribution. The
choice of the prior should be suggested, in this approach, by predictive con-
siderations, that is, by taking into account its implications on the probability
law of Y. We discuss this point further in the next section.

Before moving on to the next, more technical, sections, let us introduce
some notation and conventions that will be used throughout. Observable ran-
dom variables or random vectors will be denoted by capital letters — most
of the times by Y, possibly with a subscript. A possible value of the ran-
dom variable or vector will be denoted by the corresponding lower-case letter.
Note that we are not making any notational distinction between vectors and
scalars, or between random variables and random vectors. This is true also
when writing integrals. For example, [ f(z)dz denotes a univariate integral if
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f is a function of one variable, but a multivariate integral if f is a function of a
vector argument. The correct interpretation should be clear from the context.
A univariate or multivariate time series is a sequence of random variables
or vectors and will be denoted by (Y; : ¢t = 1,2,...), (Y)¢>1, or just (Y3)
for short. When considering a finite sequence of consecutive observations, we
will use the notation Y., for the observations between the rth and sth, both
inclusive. Similarly, y,.s will denote a sequence of possible values for those
observations. Probabiity densities will be generically denoted by 7 (-). We will
adopt the sloppy but widespread convention of using the same symbol 7 for
the distribution of different random variables: the argument will make clear
what distribution we are referring to. For example, 7(f) may denote a prior
distribution for the unknown parameter 6 and 7 (y) the marginal density of
the data point Y. Appendix A contains the definitions of some common fam-
ilies of distributions. We are going to use the same symbol for a distribution
and its density, in this case adding an extra argument. For example, G(a,b)
denotes the gamma distribution with shape parameter a and rate parameter
b, but G(y;a,b) denotes the density of that distribution at the point y. The
k-dimensional normal distribution is N (m, C), but we will omit the subscript
k whenever the dimension is clear from the context.

1.2 Simple dependence structures

Forecasting is one of the main tasks in time series analysis. A univariate or
multivariate time series is described probabilistically by a sequence of random
variables or vectors (Y; : t = 1,2,...), where the index ¢ denotes time. For
simplicity, we will think of equally spaced time points (daily data, monthly
data, and so on); for example, (Y;) might describe the daily prices of m bonds,
or monthly observations on the sales of a good. One basic problem is to make
forecasts about the value of the next observation, Y, 41 say, having observed
data up to time n, Y1 = y1,...,Y, = y, or Y1, = yi., for short. Clearly,
the first step to this aim is to formulate reasonable assumptions about the
dependence structure of the time series. If we are able to specify the probability
law of the time series (Y;), we know the joint densities 7(y1,...,y,) for any
n > 1, and Bayesian forecasting would be solved by computing the predictive
density
Tr(ylszrl)

T(Yim)

In practice, specifying the densities 7(y1,...,y,) directly is not easy, and one
finds it convenient to make use of parametric models; that is, one often finds
it simpler to express the probability law of (Y7,...,Y;,) conditionally on some
characteristic 0 of the data generating process. The relevant characteristic 6
can be finite- or infinite-dimensional, that is, 8 can be a random vector or, as
is the case for state space models, a stochastic process itself. The researcher

7T(ynJrl |y1:n) =
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often finds it simpler to specify the conditional density 7(y1.,|0) of Y1., given
0, and a density 7(6) on 0, then obtain m(y1.,) as m(y1.n) = [ 7(y1.,]0)7(6) d6.
We will proceed in this fashion when introducing dynamic linear models for
time series analysis. But let’s first study simpler dependence structures.

Conditional independence

The simplest dependence structure is conditional independence. In particu-
lar, in many applications it is reasonable to assume that Yi,... Y, are con-
ditionally independent and identically distributed (i.i.d.) given 6: w(y1.,|0) =
[T;=, m(y;|6). For example, if the Y;’s are repeated measurements affected by
a random error, we are used to think of a model of the kind Y; = 6 +¢;, where
the ¢;’s are independent Gaussian random errors, with mean zero and variance
o2 depending on the precision of the measurement device. This means that,
conditionally on 6, the Y;’s are i.i.d., with ;|0 ~ N (6, 0?).

Note that Y7, Y5, ... are only conditionally independent: the observations
Y1, - - -, Yn provide us information about the unknown value of # and, through
0, on the value of the next observation Y;, 1. Thus, Y,,+1 depends, in a prob-
abilistic sense, on the past observations Y7, ...,Y,. The predictive density in
this case can be computed as

T(Yn+1lY1n) = /W(yn+la9|y1:n) dé
:/W(yn+1|07yl:n)ﬂ-(myl:n)de
~ [ a6 Glyr) a0

the last equality following from the assumption of conditional independence,
where 7(0|y1.,) is the posterior density of 6, conditionally on the data
(y1,-.-,Yn). As we have seen, the posterior density can be computed by the
Bayes formula:

" 9
T(Olyrn) = TWLnl7(O) - x Hw vil6) 7 (1.1)

Note that the marginal density 7(y1.,) does not depend on 6, having the role
of normalizing constant, so that the posterior is proportional to the product
of the likelihood and the prior!.

It is interesting to note that, with the assumption of conditional indepen-
dence, the posterior distribution can be computed recursively. This means
that one does not need all the previous data to be kept in storage and repro-
cessed every time a new measurement is taken. In fact, at time (n — 1), the
information available about € is described by the conditional density

! The symbol  means “proportional to”.
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n—1

m(O0lyrn—1) o [ 7(w:l0)7(0),

t=1

so that this density plays the role of prior at time n. Once the new observa-
tion y, becomes available, we have just to compute the likelihood, which is
T(Yn |0, y1:n—1) = 7(yn|0) by the assumption of conditional independence, and
update the “prior” 7(0|y1.,—1) by the Bayes rule, obtaining

n—1

7T(9|yl:n—1ayn) X 7T(0|y1:n—1)7r(yn|9) X H 7T(yt|0)7r(0)’n—(yn‘0)7

t=1

which is (1.1). The recursive structure of the posterior will play a crucial
role when we study dynamic linear models and the Kalman filter in the next
chapters.

To illustrate the idea, let us use a simple example. Suppose that, after
a wreck in the ocean, you landed on a small island, and let # denote your
position, the distance from the coast, say. When studying dynamic linear
models, we will consider the case when 6 is subject to change over time (you
are on a life boat in the ocean and not on an island, so that you slowly move
with the stream and the waves, being at distance 6; from the coast at time
t). However, for the moment let’s consider § as fixed. Luckily, you can see
the coast at times; you have some initial idea of your position #, but you are
clearly interested in learning more about 6 based on the measurements y; that
you can take. Let us formalize the learning process in the Bayesian approach.

The measurements Y; can be modeled as

}/t:9+€t, Etij\sl/\[(070-2)7

where the ¢;’s and 6 are independent and, for simplicity, o2 is a known con-
stant. In other words:

Y1, Ya,... |10 N0, 02).
Suppose you agree to express your prior idea about 6 as
9 ~ ./\/’(’I”I’L()7 C’())7

where the prior variance Cy might be quite large if you are very uncertain
about your guess mg. Given the measurements y;.,,, you update your opinion
about # computing its posterior density, using the Bayes formula. We have
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7(0)y1.,) x likelihood X prior
S| 1 1 1
= | | ——(y — 0)% Y ——— —— (6 — 2
1 V2To P { 202 (yt ) } V21 Cy P { 2Cy ( mO) }
1 ~ - 2 Lo 2
X exp —202<E yt—292 yt+n0>—200(9 —20mg + mg)

1
O {_20200 ((nCo + 0?)6* — 2(nCog + 02m0>9)} '

The above expression might appear complicated, but in fact it is the kernel of
a Normal density. Note that, if § ~ N'(m, C), then 7(0) o exp{—(1/2C) (6% —
2m0)}; so, writing the above expression as

o B 1 92_2n00y+02m09
P\ 72020,/ (nCy + 02) (nCo + 02) ’

we recognize that

0|y1:n ~ N(mna C7L)7

where o 2/
= E(bly.,) = 0 549/ 1.2
m (Oly1:n) o +02/ny+ o +a2/nmo (1.2a)
and .
n 1\ a2Cy

The posterior precision is 1/C,, = n/o? + 1/Cy, and it is the sum of the pre-
cision n/0? of the sample mean and the initial precision 1/Cj. The posterior
precision is always larger than the initial precision: even data of poor qual-
ity provide some information. The posterior expectation m, = E(0|y1.,) is
a weighted average between the sample mean § = > | y;/n and the prior
guess mg = E(#), with weights depending on Cy and o2. If the prior uncer-
tainty, represented by Cp, is small compared to o2, the prior guess receives
more weight. If Cj is very large, then m,, ~ § and C,, ~ o2 /n.

As we have seen, the posterior distribution can be computed recursively.
At time n, the conditional density N (m,,_1,C,,_1) of 8 given the previous data
Y1.:n—1 plays the role of prior, and the likelihood for the current observation is

W(yn|9791:n—1) = ﬂ-(yn|0) = N(ynv 03 02)'

We can update the prior N'(m,,_1,C,,_1) on the basis of the observation y,
using (1.2), with m,,_; and C,_; in place of my and Cy. We see that the
resulting posterior density is Gaussian, with parameters

m. — _Cn1 +(1- _Cn1 m
R Crato?) (1.3a)
Cn—l '
=Mp_1+ (yn - mn—l)

Cnfl + o2
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and variance

1 1\ o2,
==+ = =, 1.3b
C <O‘2+Cn1> 0‘2+Cn,1 ( 3 )

Since Y11 = 6 + €,41, the predictive distribution of Y, 11|y1., is Normal,
with mean m,, and variance C,, + ¢2; thus, m,, is the posterior expected value
of 0 and also the one-step-ahead “point prediction” E(Y;,41|y1.n). Expression
(1.3a) shows that m,, is obtained by correcting the previous estimate m,,_;
by a term that takes into account the forecast error e,, = y,, — m,_1, weighted
by

O G (1.4)

Ch_1+02 o0%2+nCy

As we shall see in Chapter 2, this “prediction-error correction” structure is
typical, more generally, of the formulae of the Kalman filter for dynamic linear
models.

Ezchangeability

Exchangeability is the basic dependence structure in Bayesian analysis. Con-
sider again an infinite sequence (Y; : ¢ = 1,2,...) of random vectors. Sup-
pose that the order in the sequence is not relevant, in the sense that, for
any n > 1, the vector (Y1,...,Y,,) and any permutation of its components,
(Yi,,...,Y; ), have the same distribution. In this case, we say that the se-
quence (Y; : t = 1,2,...) is exchangeable. This is a reasonable assumption
when the Y;’s represent the results of experiments repeated under similar
conditions. In the example of the previous paragraph, it is quite natural to
consider that the order in which the measurements Y; of the distance from
the coast are taken is not relevant. There is an important result, known as de
Finetti’s representation theorem, that shows that the assumption of exchange-
ability is equivalent to the assumption of conditional independence and iden-
tical distribution that we have discussed in the previous paragraph. There is,
however, an important difference. As you can see, here we move from a quite
natural assumption on the dependence structure of the observables, that is,
exchangeability; we have not introduced, up to now, parametric models or
prior distributions on parameters. In fact, the hypothetical model, that is the
pair likelihood and prior, arises from the assumption of exchangeability, as
shown by the representation theorem.

Theorem 1.1. (de Finetti representation theorem). Let (Y; : t =
1,2,...) be an infinite sequence of exchangeable random vectors. Then

1. With probability one, the sequence of empirical distribution functions
1 n
i=1

converges weakly to a random distribution function F, as n — oo;
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2. for any n > 1, the distribution function of (Y1,...,Y,) can be represented
as

P(YV; gyl,...,Yngym:/Hw(y»dw(m
=1

where 7 is the probability law of the weak limit F' of the sequence of the
empirical distribution functions.

The fascinating aspect of the representation theorem is that the hypothet-
ical model results from the assumptions on the dependence structure of the
observable variables (Y;). If we assume that the sequence (Y;) is exchange-
able, then we can think of them as i.i.d. conditionally on the distribution
function (d.f.) F', with common d.f. F. The random d.f. F' is the weak limit
of the empirical d.f.’s. The prior distribution 7 (also called, in this context,
de Finetti measure) is a probability law on the space F of all the d.f.s on the
sample space ) and expresses our beliefs on the limit of the empirical d.f.s.
In many problems we can restrict the support of the prior to a parametric
class Po = {n(:|0) ,0 € ©} C F, where © C RP; in this case the prior is said
parametric. We see that, in the case of a parametric prior, the representation
theorem implies that Y7, Y5, ... are conditionally i.i.d., given 6, with common
d.f. m(:]0), and 0 has a prior distribution 7(6). This is the conditional i.i.d.
dependence structure that we have discussed in the previous subsection.

Heterogeneous data

Exchangeability is the simplest dependence structure, which allows us to en-
lighten the basic aspects of Bayesian inference. It is appropriate when we
believe that the data are homogeneous. However, in many problems the de-
pendence structure is more complex. Often, it is appropriate to allow some
heterogeneity among the data, assuming that

H?"'?Yn‘917"'76n ~ Hft(yt|‘9t)7

t=1

that is, Y1,...,Y,, are conditionally independent given a vector 6 = (64,...,0,),
with Y; depending only on the corresponding ;. For example, Y; could be the
expense of customer ¢ for some service, and we might assume that each cus-
tomer has a different average expense 6;, introducing heterogeneity, or “ran-
dom effects,” among customers. In other applications, ¢ might denote time;
for example, each Y; could represent the average sales in a sample of stores,
at time ¢; and we might assume that Y;|0; ~ N (0;,0?), with 6, representing
the expected sales at time t.

In these cases, the model specification is completed by assigning the prob-
ability law of the vector (61, ...,0,). For modeling random effects, a common
assumption is that 64, ...,0, are i.i.d. according to a distribution G. If there
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is uncertainty about G, we can model 64, ...,0, as conditionally i.i.d. given
G, with common distribution function G, and assign a prior on G.

If (Y; :t=1,2,...) is a sequence of observations over time, then the
assumption that the 6,’s are i.i.d., or conditionally i.i.d., is generally not ap-
propriate, since we want to introduce a temporal dependence among them.
As we shall see in Chapter 2, in state space models we assume a Markovian
dependence structure among the 6,’s.

We will return to this problem in the next section.

1.3 Synthesis of conditional distributions

We have seen that Bayesian inference is simply solved, in principle, by comput-
ing the conditional probability distributions of the quantities of interest: the
posterior distribution of the parameters of the model, or the predictive distri-
bution. However, especially when the quantity of interest is multivariate, one
might want to present a summary of the posterior or predictive distribution.
Consider the case of inference on a multivariate parameter 6 = (61,...,0,).
After computing the joint posterior distribution of 6, if some elements of 6
are regarded as nuisance parameters, one can integrate them out to obtain
the (marginal) posterior of the parameters of interest. For example, if p = 2,
we can marginalize the joint posterior 7(6,62|y) and compute the marginal
posterior density of 6:

7T(91|y) = /W(Ql,eg‘y)deg.

We can provide a graphical representation of the marginal posterior distribu-
tions, or some summary values, such as the posterior expectations E(6;|y) or
the posterior variances Var(6;|y), and so on. We can also naturally show in-
tervals (usually centered on E(6;]y)) or bands with high posterior probability.

The choice of a summary of the posterior distribution (or of the predic-
tive distribution) can be more formally regarded as a decision problem. In a
statistical decision problem we want to choose an action in a set A, called
the action space, on the basis of the sample y. The consequences of action a
are expressed through a loss function L(0,a). Given the data y, a Bayesian
decision rule selects an action in A that minimizes the conditional expected
loss, E(L(0, a)|y) = [ L(0, a)7(]y) df. Bayesian point estimation can be seen
as a decision problem in which the action space coincides with the parameter
space. The choice of the loss function depends on the problem at hand, and,
of course, different loss functions give rise to different Bayes estimates of 6.
Some commonly used loss functions are briefly discussed below.

Quadratic loss. Let 6 be a scalar. A common choice is a quadratic loss func-
tion L(#,a) = (6 — a)?. Then the posterior expected loss is E((0 — a)?|y),
which is minimized at a = E(f|y). So, the Bayes estimate of § with
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quadratic loss is the posterior expected value of #. If 6 is p-dimensional,
a quadratic loss function is expressed as L(6,a) = (0 — a)H(0 — a), for
a symmetric positive definite matrix H. Then the Bayes estimate of 0 is
the vector of posterior expectations E(0|y).

Linear loss. If 0 is scalar and

_Jeala—6]| ifa<é,
L(&,a)—{02a_9| ifa>0,

where ¢; and ¢y are positive constants, then the Bayes estimate is the
c1/(c1 + ¢2) quantile of the posterior distribution. As a special case, if
c1 = co, the Bayes estimate is a posterior median.

Zero-one loss. If 0 is a discrete random variable and

c if a #86,
Lm"”{o ifaie

then the Bayes estimate is a mode of the posterior distribution.

For example, if Yi,...,Y,|0 are ii.d. with Y;|§ ~ AN(0,0%) and 6§ ~
N (my, Cy), the posterior density is N (m,, Cy, ), where m,, and C,, are given by
(1.2). The Bayes estimate of 6, adopting a quadratic loss, is E(0|y1.,) = M,
a weighted average between the prior guess mg and the sample mean 3. Note
that, if the sample size is large, then the weight of the prior guess decreases to
zero, and the posterior density concentrates around ¢, which is the maximum
likelihood estimate (MLE) of 6.

This asymptotic behavior of the posterior density holds more generally. Let
(Y;:t=1,2,...) be a sequence of conditionally i.i.d. random vectors, given 6,
with Y30 ~ 7(y|f) and 6 € RP having prior distribution 7(#). Under general
assumptions, it can be proved that the posterior distribution 7 (8|y1,...,yn),
for n large, can be approximated by a Normal density centered at the MLE
0,,. This implies that, in these cases, Bayesian and frequentist estimates tend
to agree for a sufficiently large sample size. For a more rigorous discussion of
asymptotic normality of the posterior distribution, see Bernardo and Smith
(1994, Section 5.3), or Schervish (1995, Section 7.4).

As a second example, linking Bayes estimators and classical decision the-
ory, consider the problem of estimating the mean of a multivariate Normal
distribution. In its simplest formulation, the problem is as follows. Suppose
that Y1,...,Y, are independent r.v.s, with Y; ~ N (6;,02),t =1,...,n, where
o? is a known constant. This is the case of heterogeneous data, discussed in
Section 1.2. For instance, the Y;’s could be sample means, in n independent
experiments; however, note that here 6 = (61,...,6,,) is regarded as a vector
of unknown constants. Thus we have

Y = (Y1,...,Y,) ~ No(6,0%1,),

where I,, denotes the n-dimensional identity matrix, and the problem is es-
timating the mean vector . The MLE of 0, which is also the uniform min-
imum variance unbiased estimator, is given by the vector of sample means:
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6= é(Y) =Y. However, an important result, which had a great impact when
Stein proved it in 1956, shows that the MLE is not optimal with respect to
the quadratic loss function L(6,a) = (60 — a)'(0 — a) if n > 3. The overall

expected loss, or mean square error, of  is

n

E((0-0v))(0-6(v) =E (Zwt - e}m)?)

t=1

where the expectation is with respect to the density mq(y), i.e., the N, (0, 0%1,,)
distribution of the data. Stein (1956) proved that, if n > 3, there exists another
estimator 0* = 6*(Y'), which is more efficient than the MLE 6 in the sense
that

E((0—0"(Y))'(0 = 07(Y))) <E((6 - 0(Y))'(0 — 0(Y)))

for every 0. For 0 = 1, the Stein estimator is given by 0*(Y) = (1 — (n —
2)/Y'Y)Y; it shrinks the sample means Y = (Y71,...,Y,,) towards zero. More
generally, shrinkage estimators shrink the sample means towards the overall
mean g, or towards different values. Note that the MLE of 6, that is 0, = Y;,
does not make use of the data Y}, for j # ¢, which come from the other
independent experiments. Thus, Stein’s result seems quite surprising, showing
that a more efficient estimator of 6; can be obtained using the information from
“independent” experiments. Borrowing strength from different experiments
is in fact quite natural in a Bayesian approach. The vector 6 is regarded
as a random vector, and the Y;’s are conditionally independent given 6 =
(91, ey Hn), with Yt|9t ~ N(et,UQ), that is

Y0 ~ N, (0,0°1,).

Assuming a N;,(mg, Cy) prior density for 0, the posterior density is M, (my,, C,)
where
My = (Cy ' 4+ 072L,) " H(Cy mo + 02 1y)

and C), = (C’O_1 +072I,)~t. Thus the posterior expectation m, provides a
shrinkage estimate, shrinking the sample means towards the value mg. Clearly,
the shrinkage depends on the choice of the prior; see Lindley and Smith (1972).

Similarly to a Bayes point estimate, a Bayes point forecast of Y,, ;1 given
Y1.n is a synthesis of the predictive density with respect to a loss function,
which expresses consequences of the forecast error of predicting Y,, 11 with a
value g, say. With the quadratic loss function, L(yni1,9) = (Yns1 — 9)?, the
Bayes forecast is the expected value E(Y,,11|y1.n)-

Again, point estimation or forecasting is coherently treated in the Bayesian
approach on the basis of statistical decision theory. However, in practice the
computation of Bayes estimates or forecasts can be difficult. If 6 is multivariate
and the model structure complex, posterior expectations or, more generally,
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integrals of the kind [ g(6)m(f|y)dd, can be analytically untractable. In fact,
despite its attractive theoretical and conceptual coherence, the diffusion of
Bayesian statistics in applied fields has been hindered, in the past, by compu-
tational difficulties, which had restricted the availability of Bayesian solutions
to rather simple problems. As we shall see in Section 1.6, these difficulties can
be overcome by the use of modern simulation techniques.

1.4 Choice of the prior distribution

The explicit use of prior information, besides the information from the data,
is a basic aspect of Bayesian inference. Indeed, some prior knowledge of the
phenomenon under study is always needed: data never speak entirely by them-
selves. The Bayesian approach allows us to explicitly introduce all the informa-
tion we have (from experts’ opinions, from previous studies, from the theory,
and from the data) in the inferential process. However, the choice of the prior
can be a delicate point in practical applications. Here we briefly summarize
some basic notions, but first let us underline a fundamental point, which is
clearly enlightened in the case of exchangeable data: the choice of a prior is in
fact the choice of the pair 7(y|0) and (). Often, the choice of 7(y|0) is called
model specification, but in fact it is part, with the specification of 7(0), of the
subjective choices that we have to do in order to study a phenomenon, based
of our prior knowledge. At any rate, given 7(y|@), the prior () should be an
honest expression of our beliefs about @, with no mathematical restrictions on
its form.

That said, there are some practical aspects that deserve some considera-
tion. For computational convenience, it is common practice to use conjugate
priors. A family of densities on 6 is said to be conjugate to the model 7(y|0) if,
whenever the prior belongs to that family, so does the posterior. In the exam-
ple in Section 1.2, we used a Gaussian prior density A (mg, Cp) on 6, and the
posterior resulted still Gaussian, with updated parameters, N (m,,, Cy,); thus,
the Gaussian family is conjugate to the model 7(y|6) = N (y;0,02) (with o2
known). In general, a prior will be conjugate when it has the same analytic
form of the likelihood, regarded as a function of #. Clearly this definition does
not determine uniquely the conjugate prior for a model 7(y|0). For the expo-
nential family, we have a more precise notion of natural conjugate prior, which
is defined from the density of the sufficient statistics; see for example Bernardo
and Smith (1994, Section 5.2). Natural conjugate priors for the exponential
family can be quite rigid in the multivariate case, and enriched conjugate pri-
ors have been proposed (Brown et al.; 1994; Consonni and Veronese; 2001).
Furthermore, it can be proved that any prior for an exponential family pa-
rameter can be approximated by a mixture of conjugate priors (Dalal and
Hall; 1983; Diaconis and Ylvisaker; 1985). We provide some examples below
and in the next section. Anyway, computational ease has become less strin-
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gent in recent years, due to the availability of simulation-based approximation
techniques.

In practice, people quite often use default priors or non-informative pri-
ors, for expressing a situation of “prior ignorance” or vague prior information.
The problem of appropriately defining the idea of “prior ignorance,” or of a
prior with “minimal effect” relative to the data on the inferential results, has
a long history and is quite delicate; see Bernardo and Smith (1994, Section
5.6.2) for a detailed treatment; or also O’Hagan (1994) or Robert (2001). If
the parameter 6 takes values in a finite set, {67,...,0;} say, then the classi-
cal notion of a non-informative prior, since Bayes (1763) and Laplace (1814),
is that of a uniform distribution, 7 (6) = 1/k. However, even in this simple
case it can be shown that care is needed in defining the quantity of interest
(see Bernardo and Smith; 1994). Anyway, extending the notion of a uniform
prior when the parameter space is infinite clearly leads to improper distribu-
tions, which cannot be regarded as probability distributions. For example, if
0 € (—o0, +0), a uniform prior would be a constant, and its integral on the
real line would be infinite. Furthermore, a uniform distribution for 6 implies
a nonuniform distribution for any nonlinear monotone transformation of 8,
and thus the Bayes—Laplace postulate is inconsistent in the sense that, intu-
itively, “ignorance about #” should also imply “ignorance” about one-to-one
transformations of it. Priors based on invariance considerations are Jeffreys
priors (Jeffreys; 1998). Widely used are also reference priors, suggested by
Bernardo (1979a,b) on an information-decisional theoretical base (see for ex-
ample Bernardo and Smith; 1994, Section 5.4). The use of improper priors is
debatable, but often the posterior density from an improper prior turns out to
be proper, and improper priors are anyway widely used, also for reconstruct-
ing frequentist results in a Bayesian framework. For example, if Y;|0 are i.i.d.
N(0,0?), using an improper uniform prior 7(f) = ¢ and formally applying
Bayes’ formula gives

1 - 2 n 2 —\2
m(0|y1.n) exp{ 52 tzzl(yt 0) } o exp{ 5,2 (0° — 20y) },

that is, the posterior is N (7, 02/n). In this case, the Bayes point estimate
under quadratic loss is ¢, which is also the MLE of 6. As we noted before,
starting with a proper Gaussian prior would give a posterior density centered
around the sample mean only if the prior variance Cj is very large compared
to o2, or if the sample size n is large.

Another common practice is to have a hierarchical specification of the prior
density. This means assuming that 6 has density w(0|\) conditionally on some
hyperparameter A, and then a prior 7(\) is assigned to A. This is often a way
for expressing a kind of uncertainty in the choice of the prior density. Clearly,
this is equivalent to the prior 7(6) = [ 7(0|\)w(A) dA.

In order to avoid theoretical and computational difficulties related to the
use of improper priors, in this book we will use only proper priors. It is im-
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portant, however, to be aware of the effect of the prior on the analysis. This
can be assessed using sensitivity analysis, which, in one of its basic forms,
may simply consist in comparing the inferences resulting from different prior
hyperparameters.

We conlude this section with an important example of conjugate prior.
In Section 1.2 we considered conjugate Bayesian analysis for the mean of a
Gaussian population, with known variance. Let now Y7,...,Y,|0,02 be i.i.d.
N(6,0?), where both 6 and ¢? are unknown. It is convenient to work with
the precision ¢ = 1/0? rather than with the variance 0. A conjugate prior
for (0, ¢) can be obtained noting that the likelihood can be written as

(1016, 8) o "D exp {—;(bns?} o'/ exp {~Zo(n—1)*}

where 7 is the sample mean and s? = Y| (y; — §)?/n is the sample variance
(add and subtract g in the squared term and note that the cross product is
zero). We see that, as a function of (6, ¢), the likelihood is proportional to
the kernel of a Gamma density in ¢, with parameters (n/2 + 1,ns?/2) times
the kernel of a Normal density in §, with parameters (7, (n¢)~'). Therefore,
a conjugate prior for (6,0?) is such that ¢ has a Gamma density with param-
eters (a,b) and, conditionally on ¢, § has a Normal density with parameters
(mo, (nog)~1). The joint prior density is

(0, ¢) = () 7(0]¢) = G(¢; a,b) N(0:mo, (nod) ")
_ n
x ¢~ exp (b} ¢'/2exp {~220(0 —mo)* |,
which is a Normal-Gamma, with parameters (mg, (ng) !, a,b) (see Appendix
A). In particular, E(8]|¢) = mg and Var(8|¢) = (no¢)~! = 02/ng, that is, the
variance of 0, given o2, is expressed as a proportion 1/ng of 2. Marginally,

the variance 02 = ¢! has an Inverse Gamma density, with E(o?) = b/(a—1),
and it can be shown that

0 ~ T (mo, (no a/b)_l, 2a),

a Student-t with parameters mo, (ng a/b)~! and 2a degrees of freedom, with
E(0) = E(E(0]¢)) = mo and Var() = E(c?)/ng = (b/(a — 1)) /no.

With a conjugate Normal-Gamma prior, the posterior of (8, ¢) is still
Normal-Gamma, with updated parameters. In order to show this, we have
to do some calculations. Start with

(0, dly1:n) X
$3+a1 exp {;(b(nsz + 2b)} $? exp {;éfm ((0—7)*+ ”0(90)2)} '

After some algebra and completing the square that appears in it, the last
exponential term can be written as



