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Welcome Message from the INCoS-2024 Organizing
Committee

Welcome to the 16th International Conference on Intelligent Networking and Col-
laborative Systems (INCoS-2024), which is held from September 19–21, 2024, at
Soonchunhyang (SCH) University, Asan, South Korea.

INCoS is a multidisciplinary conference that covers the latest advances in intelli-
gent social networks and collaborative systems, intelligent networking systems, mobile
collaborative systems, secure intelligent cloud systems, and so on. Additionally, the con-
ference addresses security, authentication, privacy, data trust, and user trustworthiness
behavior, which have become crosscutting features of intelligent collaborative systems.

With the fast development of the Internet, we are experiencing a shift from the
traditional sharing of information and applications as themain purpose of the networking
systems to an emergent paradigm,which locates people at the very center of networks and
exploits the value of people’s connections, relations and collaboration. Social networks
are playing a major role as one of the drivers in the dynamics and structure of intelligent
networking and collaborative systems.

Virtual campuses, virtual communities, and organizations strongly leverage intel-
ligent networking and collaborative systems by a great variety of formal and infor-
mal electronic relations, such as business-to-business, peer-to-peer, and many types of
online collaborative learning interactions, including the virtual campuses and e-learning
systems. Altogether, this has resulted in entangled systems that need to be managed
efficiently and in an autonomous way. In addition, the conjunction of the technologies
based on IoT, cloud, mobile, and wireless infrastructures are bringing new dimensions
of collaborative and networking applications a great deal by facing new issues and
challenges.

The aim of this conference is to stimulate research that will lead to the creation
of responsive environments for networking and the development of adaptive, secure,
mobile, and intuitive intelligent systems for collaborative work and learning.

The successful organization of the conference is achieved thanks to the great col-
laboration and hard work of many people and conference supporters. First, we would
like to thank all authors for their continued support to the conference by submitting their
researchwork and for their presentations and discussions during the conference days.We
would like to thank PC Co-chairs, Track Co-chairs, TPC members, and external review-
ers for their work by carefully evaluating the submissions and providing constructive
feedback to authors.

We would like to acknowledge the excellent work and support by the International
Advisory Committee. Our gratitude and acknowledgment for the conference keynotes
for their interesting and inspiring keynote speeches.
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We greatly appreciate the support by Web Administrator Co-Chairs. We are very
grateful to Springer as well as several academic institutions for their endorsement and
assistance.

Finally, we hope that you will find these proceedings to be a valuable resource in
your professional, research, and educational activities.
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A Vector Database Approach for Natural Environment
Monitoring and Analysis

Prof. Kosuke Takano

Kanagawa Institute of Technology, Atsugi, Japan

Abstract.By using spatiotemporal data obtained from various sensor devices can
be analyzed the changes in the natural environment. However, to semantically and
spatiotemporally analyze the massive amount of sensor data accumulated daily, it
is important to realize observation data management by balancing resource size,
computational cost, and semantic quality. In this, keynote talk will be introduced
a vector database approach that can be applied to data retrieval, analysis, and pre-
diction during the observation of global and local changing natural and ecological
environments. Our approach can increase the reusability of massive observation
data by compressing them to the feature vectors as embedding matrices using
appropriate neural networks, achieving fast semantic retrieval and spatiotem-
poral analysis. We will present some research results to evaluate the proposed
approach.



Taxonomy Construction of Anti-Tampering Technology
Schemes from System Programmer’s View

Prof Ki-Woong Park

Sejong University, Seoul, South Korea

Abstract. In this talk, we analyze the recent anti-tampering technologies from a
“system programmer’s” perspective. We have constructed a taxonomy matrix for
these technologies and introduced a specialized classification framework. Using
this framework, we assign identification numbers to the detailed technologies and
operating principles embedded in existing anti-tampering solutions based on the
“sensing & actions” perspective and their “stackable position”. This approach
enables the creation of a roadmap for anti-tampering technologies and facili-
tates anti-tampering orchestration to build secure systems. Finally, we introduce
software-defined orchestration for anti-tampering, which allows selecting of the
most suitable anti-tampering technology for a given system.
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Abstract. Mood disorders, such as depression, manifest in various psy-
chological and physical symptoms. Persistent feelings of sadness can dis-
rupt daily functioning, while accompanying issues like insomnia and loss
of appetite further exacerbate the condition. If left untreated, depression
can lead to a range of complications, including severe illnesses and poten-
tially life-threatening outcomes. In recent years, there has been a notable
rise in psychiatric disorder cases, with a significant increase observed in
mood disorders, particularly depression. Many individuals either fail to
recognize their symptoms or are hesitant to seek professional help. As a
result, only a fraction of affected individuals receive adequate treatment.
This paper proposes a method for estimating depressive tendencies by
analyzing observable data, such as conversational content between users
and chatbots, as well as their usage patterns. By leveraging these insights,
we aim to improve early detection and intervention strategies for indi-
viduals at risk of depression.

1 Introduction

Depression is a mood disorder that manifests as mental symptoms, such as per-
sistent sadness interfering with work and daily life, and physical symptoms,
including insomnia and loss of appetite. Early detection and treatment increase
the probability of a complete cure, but delayed treatment may prolong symptoms
and lead to various illnesses or, in the worst case, prove fatal.

In recent years, the total number of patients with psychiatric disorders has
been increasing, with a significant rise observed in mood disorders, particularly
depression [1–3]. However, many individuals experiencing depression are either
unaware of their condition or hesitant to seek medical care, even when experi-
encing subjective symptoms, resulting in few receiving treatment.

Research has shown a preference for interacting with chatbots over humans
when sharing their situation [4]. In this paper, we examine a method for estimat-
ing depressive tendencies by analyzing observable data, such as conversational
content and chatbot usage patterns, based on natural interactions between users
and chatbots. We propose some algorithms for the method and evaluate the
performance of the algorithms.
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2 Previous Research

According to [5], people with depressive tendencies use more perfectionistic
words such as “completely,” “absolutely,” etc., in addition to negative words.
This indicates a desire to view things in black and white. [6–8] also showed that
people with depression tend to use negative words and the first person singular
more frequently. People who frequently use the first person singular subcon-
sciously distinguish between themselves and others, while those who frequently
use the first person plural believe that they are part of society. These two types
of thinking may be related to depressive tendencies.

[9] is the study on estimating depressive tendencies. In this study, we detected
students with depression with an accuracy rate of 85.7 percent by collecting stu-
dents’ location information, smartphone usage, call history, and sleep informa-
tion, and extracting features using machine learning. The system also detected
students with changes in the severity of their depression symptoms with an
accuracy rate of 85.4% and the degree of change with an accuracy rate of 82.9%.
However, because this system requires the use of a wide variety of personal infor-
mation, the burden of collecting such information is too great to be practically
feasible.

According to [10–12], the psychological tendencies of users can be determined
from their social networking texts. [13–19] predicts the tendency to depression
based on Twitter comments, usage, and other factors. [13] uses commonly used
words, usage patterns, and relationships with other users as features, and clas-
sifies them using decision trees, polynomial simple Bayesian classifiers, linear
SVM, and radial basis function kernel SVM. The classification accuracy of the
linear SVM was the best, achieving an accuracy of 82.5%. In addition, [14,15]
analyzed the tweets of depressed users in the year before they were diagnosed
with depression and found that frequently used words, emotions, degree of inter-
est in society, and changes in relationships with other users were effective in
predicting the onset of depression. The classification accuracy was 70%.

[16,17] analyzed the content of users’ tweets and the emotions of frequently
used emojis and emoticons, and by using these as features, classification could be
performed with high accuracy using linear SVM. According to [18], which used
tweets to estimate the mental changes of postpartum mothers, they analyzed
the contents and emotions of 376 mothers’ tweets before and after childbirth,
and their relationships with other users. They predicted mothers at risk of post-
partum depression by SVM with 71% accuracy. The accuracy was improved
by using tweets from the first three weeks postpartum, and it was found that
classification was possible with an accuracy of 83%. In addition, [19] used fre-
quently used words, emotions, usage status, and relationships with other users
as features, and used radial basis function kernel SVM for classification, which
resulted in 66% accuracy. The comparison of accuracy by changing the time
period of tweets used showed that a time period of about two months is suffi-
cient for predicting depression, and that tweets from earlier time periods may
contain outdated information and may not represent the user’s current state. In
addition to the time and content of tweets, these studies used Twitter-specific
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information such as the number of followers, number of followings, number of
retweets, and replies to other users, which may not be used in other SNSs.

[20] is a study to predict depressive tendencies from textual data, and it
predicted these tendencies using blog entries over a long period of time. In this
study, they estimated nine depressive symptoms based on the DSM-5 diagnostic
criteria, which are often used to diagnose depression in practice. Using these
symptoms as features, they estimated the depressive tendencies of blog authors.
The results enabled estimation with an accuracy of approximately 80%. However,
since blogs are often written in long sentences, it is difficult to encourage bloggers
to continue posting regularly.

Furthermore, [21] is a study on the estimation of depressive tendencies using
chatbots. This method estimates whether a user has a tendency to depression
by having a one-question-and-one-answer conversation with a chatbot that asks
questions such as “How have you been feeling since last week?” and “What do
you think about the future?” It can estimate the user’s current mental state
but cannot track changes over time. It is difficult to repeat the process casu-
ally because 55% of the users felt that the questions were designed to estimate
whether they are depressed, and because the conversation is in a question-and-
answer format rather than a natural one. In addition, this system assumes that
the individual correctly recognizes their own state, uses the diagnostic system
at the appropriate time, and gives answers that enable accurate diagnosis by
the algorithm. However, it is difficult to expect a person in a psychologically
unstable state to always satisfy this assumption.

3 Estimating Depressive Tendencies

In this section, we describe the depression tendency estimation method (ses also
Fig. 1). The data used include the contents of conversations with chatbots and
their usage status, which are analyzed to estimate depressive tendencies. For
the analysis of conversational content, we estimate the psychological tenden-
cies of users’ statements by using generative AI and morphological analysis of
these statements. For the analysis of usage, we estimate the time until the user
responds to the chatbot’s message, the time at which the user responds, and
the number of times the user responds, analyzing the changes over time and the
deviation from the average to predict users whose motivation is declining.
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Fig. 1. The depression tendency estimation method

In this paper, we implemented a chatbot based on IBM Watson, an AI-based
question answering service, combined with ChatGPT. By using IBM Watson, the
chatbot is able to accurately respond to expected questions, and by combining it
with ChatGPT, the chatbot is able to provide natural responses to unexpected
questions. This enables a natural conversation with the user, and we have built
a chatbot that can be used continuously.

Next, we describes a method (algorithm) for analyzing conversational con-
tent. We use morphological analysis and generative AI to estimate the psycholog-
ical tendencies of user utterances. The method using generative AI estimates the
psychological tendency of each sentence, rather than dividing the user’s utterance
into words. The method using morphological analysis first analyzes the user’s
utterance and divides it into morphemes, which are the smallest units that have
meaning in language. The number of perfectionist words, the number of negative
words, the number of affirmative words, the number of first person singular pro-
nouns, and the number of first person plural pronouns are then determined. For
the extraction of perfectionist words, we use the perfectionist word dictionary
found in the reference [5]. To extract negative and positive words, we use the
Word Emotional Polarity Mapping Table [22]. The word polarity correspondence
table is a table of words, readings, parts of speech, and emotional polarity. The
emotional polarity of a word is a number indicating whether the word is positive
or negative. The more positive the word is, the closer the emotional polarity
approaches 1; the more negative the word is, the closer the emotional polarity
approaches -1. This table can be used to extract negative and positive words
from an utterance. The proportion of each word category is used to estimate the
psychological tendency of the user’s utterance. Since the goal of this paper is to
extract users with depressive tendencies, we set a threshold value higher than the
user average for the percentages of perfectionist words, negative words, and first
person singular pronouns, and check whether the threshold value is exceeded or
not. For the percentages of positive words and first person plural pronouns, we
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set the threshold value lower than the user average and check if it is below the
threshold.

According to [14], which estimated depressive tendencies based on the content
of Twitter posts and conversations with other users, the depressed user group
posted 38% fewer posts and 32% fewer responses than the non-depressed user
group, and both numbers decreased over time. This can be said to indicate a
decrease in motivation, which is one of the symptoms of depression. Therefore,
in this paper, we will observe and analyze user activity over a long period of
time. The data used includes the times when the chatbot sends a conversation
request and when the user responds to the request.

From this data, we obtain the time until the user responds to the chatbot’s
conversational prompts, the time when the user responds, and the number of
times the user responds. We then look at changes over time and deviations from
the average. As an evaluation metric, we set a threshold for the response time
that exceeds the user’s average response time and check whether this threshold
is exceeded. The average response time is calculated each week, and the increase
from the previous week is determined. A threshold is set for the increase amount
to be greater than the average increase of other users, and we check whether it
exceeds this threshold. Thus, we can identify users whose response times tend
to increase over time and whose motivation is gradually declining.

Then, the difference in the number of reactions during the day and at night is
analyzed. To analyze the difference in the number of responses between day and
night, we divide the day into two periods: daytime (from 6:00 am to 6:00 pm)
and nighttime (the rest of the day). We then determine the difference between
the number of responses during the night and during the day. For users who
respond more frequently at night, a threshold is set for the difference that is
larger than the user average. Users who respond more frequently at night than
during the day are identified by checking if the difference exceeds the threshold.
The average number of responses during the day and night is calculated for each
week, along with the increase from the previous week. A threshold is set for the
increase amount, which is greater than the average increase of other users, and
we check if it exceeds this threshold. This allows us to determine if the difference
in the number of responses between daytime and nighttime tends to increase over
time, and if this trend is significant. Thus, we can identify users whose difference
in the number of responses between day and night tends to increase over time,
indicating they are more active at night and may have a disturbed life rhythm.

Furthermore, a threshold is set for the number of reactions to a value smaller
than the user average, and it is checked whether it is below the threshold. The
average number of responses per week is calculated, and the decrease from the
previous week is determined. For the decrease amount, we set a threshold to a
value smaller than the average decrease of other users and check whether it is
below the threshold. This method identifies users whose number of responses
tends to decrease over time and whose motivation is gradually decreasing.

Furthermore, a threshold is set for the number of reactions to a value smaller
than the user average, and users with a low number of reactions are extracted by
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checking whether the number of reactions is below the threshold. The average
number of responses in each week is calculated, and the amount of decrease
from the previous week is determined. For the amount of decrease, we set a
threshold to a value smaller than the average of other users, and check whether
it is below the threshold. In this way, we extract users whose number of responses
tends to decrease over time, and whose tendency is remarkable, i.e., users whose
motivation is gradually decreasing.

4 Performance Evaluation

4.1 Analysis Algorithm Using Conversation Contents

The classifiers used in our analysis are linear SVM, SVM with radial basis func-
tion kernels, decision trees, and logistic regression, which were used in [13–19]
on estimating depressive tendencies and showed high accuracy. SVM is a clas-
sifier that can discriminate high-dimensional data with high accuracy and low
risk of overfitting by maximizing the distance between the boundary for sep-
arating different classes and the nearest point to the boundary. In this paper,
we use linear SVMs and SVMs with radial basis function kernels. The linear
SVM also allows for the separation of intermediate layers by applying a soft
margin to allow for misclassification. Decision trees are a method for analyzing
data in a tree structure. The tree structure visualizes the classification process
and facilitates interpretation of the results. Logistic regression is a classifier that
categorizes classes by predicting the probability of the occurrence of the target
variable from the explanatory variables. Since the probability of the occurrence
of the target variable can be calculated, it has the advantage of showing the
degree of influence of each explanatory variable. In our analysis, we compare the
classification accuracy of these four classifiers.

To evaluate the performance of the algorithm for analyzing conversational
content, we analyzed Twitter conversations. Using the Twitter API to collect
two months of tweets from 59 depressed users and 104 nondepressed users, and
predicted the results using a classifier, as shown in Table 1. When we focus on
the recall, which indicates the percentage of users who are actually depressed
and can be predicted to be depressed, the highest recall is 0.67 for linear SVM.
The F value, the harmonic mean of the precision and recall, which is important
for building a well-balanced model, was also highest for linear SVM, at 0.69.

Table 1. Evaluation of Analysis Algorithm Using Conversation Contents

Accuracy Precision Recall F-measure

Linear SVM 0.78 0.73 0.67 0.69

SVM with radial basis function kernels 0.77 0.71 0.62 0.66

Decision tree 0.67 0.55 0.53 0.54

Logistic regression 0.78 0.73 0.63 0.66


