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Preface

My goodness, it has been 13 years since we published the first edition of this text – in
essence, based on lectures we provide for our undergraduate and postgraduate sport and
exercise science and the sports/performance nutrition students at Liverpool John Moores
University. Guess it is time for an update! The world does not stand still and certainly,
neither does scientific endeavour. As Isaac Newton stated, ‘To me there has never been
a higher source of earthly honour or distinction than that connected with advances in
science’. This is so true of the significant developments in techniques over the past 13 years
or so – notably in the understanding of not only cellular and molecular control mechanisms
but also cell structures. It is the technical developments that have enabled scientists to get
a greater understanding of research into human metabolism. Tools such as magnetic res-
onance imaging and spectroscopy, mass spectrometry, more sophisticated ergometers and
improvements in some biochemical testing apparatuses have contributed to the plethora of
scientific investigations reported in peer-reviewed journals. To this end, we have updated
our original text to that which you are ready to explore. Of course, there is a limit to what
we can change since most of the biochemistry is in essence the same. To this end, we have
made some subtle modifications. We have included a chapter on biochemical techniques
in order to furnish you with some background as to how the reported metabolic changes
during exercise have been achieved and have made a few additions in the three chapters on
metabolism.

As sport and exercise scientists, ultimately, we are left with the task of critically evaluating
research (both our own and those of others) concerning exercise metabolism in the hope
of integrating training and nutritional strategies which maximize performance. Underpin-
ning all of this demands a knowledge and understanding of some biochemical principles
associated with the macronutrients involved in energy production and the likely mecha-
nisms controlling these events. We hope that after completing this text of Biochemistry for
Sport and Exercise Metabolism, you will possess the appropriate platform for which to do
so! Furthermore, we hope you will have been stimulated sufficiently to further engage in a
deeper understanding of your chosen area of interest. Best wishes and good luck!

Don MacLaren and James Morton
Research Institute for Sport & Exercise Sciences
Liverpool John Moores University
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Energy Sources for Muscular Activity

Learning Outcomes
After studying this chapter, you should be able to:

● outline the key energy sources for exercise;
● distinguish between anaerobic and aerobic sources of energy;
● describe the essential structure of ATP;
● draw and explain the components of the energy continuum;
● describe the role of PCr in ATP synthesis;
● explain how PCr is resynthesized;
● describe the involvement of carbohydrates and fats as energy sources for exercise;
● explain reasons why an athlete is unable to sprint a marathon;
● describe the amounts and sources of energy in the body and their rates of energy

formation;
● show how and where the main energy sources are derived and utilized;
● discuss how amino acids can be used as an energy source during exercise.

This chapter presents a brief overview of the energy sources used by muscles in order to
engage in various activities. It is a ‘taster’ that will (hopefully) encourage you to delve a
bit more deeply into the basic biochemistry of the macronutrients which provide energy,
as well as to gain an understanding of the likely regulation of the processes which pro-
duce energy. From this perspective, this chapter examines the energy-yielding processes
from a superficial level in addressing issues of energy for sprinting and for more prolonged
events.

Key words

energy continuum
energy sources for exercise

aerobic energy sources
anaerobic energy sources

protein synthesis
protein degradation

Biochemistry for Sport and Exercise Metabolism, Second Edition. Don MacLaren and James Morton.
© 2024 John Wiley & Sons Ltd. Published 2024 by John Wiley & Sons Ltd.



2 1 Energy Sources for Muscular Activity

1.1 Adenosine Triphosphate: The Energy Currency

In order for muscles to contract and provide movement, energy is required. Such energy
is provided by adenosine triphosphate (ATP) and is the only energy capable of being used
for muscle contraction in humans. Figure 1.1 provides the structure of an ATP molecule.
As you can see from this diagram, ATP consists of a base (adenine) attached to a sugar
(ribose), to which is attached three phosphate molecules. The phosphates are attached by
‘high energy’ bonds which, when removed, provide energy.

ATP ↔ ADP + Pi + Energy (7.3 kcal or 30.5 kJ)

The process is reversible, which means that ATP may be re-formed from adenosine
diphosphate (ADP) as long as there is sufficient energy to restore the missing phosphate
molecule on to the ADP. The latter can be achieved by phosphocreatine (PCr) or by
processes such as anaerobic glycolysis, and aerobic processes.

The stores of ATP in muscle tissue are rather limited, so there is a constant need to resyn-
thesize it for survival, let alone movement. The amount of ATP in a muscle cell amounts to
25 mM/kg dry muscle or about 40–50 g in total, which is sufficient to enable high intense
activity for around 2–4 seconds if it is the only useable source of energy available. This is not
a great amount – hence the importance of resynthesis of ATP at rates sufficient to enable
appropriate levels of exercise to ensue, i.e. fast rates of resynthesis for sprinting and slower
rates for prolonged exercise.

1.2 Energy Continuum

The major energy sources for exercise are dependent on the intensity and duration of the
activity. Examination of Figure 1.2 highlights that there appears to be three such sources, i.e.
PCr, glycolytic and aerobic. These energy-producing processes predominate exercise from
1 to 10 seconds, 10 to 60 seconds and beyond 60 seconds respectively.

Another way of expressing the energy continuum is represented in Figure 1.3, which
shows the major energy sources for running events of varying distances. Note that short,
highly intense sprinting bouts lasting 1–10 seconds use PCr predominantly, while events
such as the 400 m mainly use anaerobic glycolysis, and thereafter aerobic metabolism
predominates.

Adenine

High-energy bond

Phosphates

P

Ribose

PP

Figure 1.1 Adenosine triphosphate (ATP).
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1.3 Energy Supply for Muscle Contraction

ATP is not stored to a great degree in muscle cells. Therefore, once muscle contraction starts,
the regeneration of ATP must occur rapidly. There are three primary sources of ATP; these,
in order of their utilization, are PCr, anaerobic glycolysis and aerobic processes.

Energy from ATP derives from cleaving the terminal phosphate of the ATP molecule.
The resulting molecule is ADP. PCr converts ADP back to ATP by donating its phosphate in
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the presence of the enzyme creatine kinase (CK), and in turn the PCr forms creatine (Cr),
i.e. the dephosphorylated form of PCr.

ADP + PCr ⇔
CK

ATP + Cr

The reaction of PCr with ADP to form ATP is very rapid, but is short-lived since the cell
does not store high amounts of PCr (the muscle concentration of PCr is about 80 mM/kg dry
muscle or 120 g in total). However, during short, high-intensity contractions, PCr serves as
the major source of energy. This form of energy generation is sometimes referred to as anaer-
obic alactic, because it neither produces lactic acid nor requires oxygen. It is of paramount
importance in sports requiring bursts of speed or power, such as sprints of 1 to10 seconds,
lifting weights, engaging in a high/long jump or a throw in an athletics field event.

Figure 1.4 provides a schematic to show the synthesis of ATP from ADP using PCr at the
muscle crossbridge, as well as the regeneration of PCr from Cr by ATP at the mitochondria.
This is known as the ‘PCr shuttle’.

Thus, Cr is produced from PCr during intense bouts of exercise, while Cr is
re-phosphorylated to PCr by ATP produced in the mitochondria during an aerobic
recovery phase. Oxygen is needed for recovery of PCr, as can be seen in Figure 1.5, which
clearly demonstrates that recovery of exercise-depleted PCr only happens when the blood
supply to the exercising muscle is not occluded, i.e. there is an intact blood supply taking
oxygen to the cells. If the blood supply is occluded (e.g. via a tourniquet), then PCr
resynthesis fails. As a consequence, there is the need for a low level (so-called active)
recovery in between bouts of intense exercise.

The enzyme CK, which regulates PCr activity, exists in a number of forms known as
isoforms (this will be dealt with later). Note that not only is there a CK which favours the for-
mation of ATP from PCr, but there is also another form, CKmito, which is present at the mito-
chondria and favours the synthesis of PCr from Cr using ATP. In effect, the same enzyme
(CK) but in different isoforms which results in either the breakdown or synthesis of PCr.

You should also note from Figure 1.5 that there is a rapid loss of PCr during intense
exercise and that it is rapidly recovered (PCr stores may even be depleted if the exercise
is sufficiently intense or prolonged). Nearly 75% of PCr is resynthesized within the first

PCr ATPATP

ADP Cr

Oxidative
Phophorylation

Cr

ADP

mi-CK mm-CK CrT

Figure 1.4 PCr shuttle (mi-CK is mitochondrial CK; mm-CK is skeletal muscle CK; CrT is creatine
transporter).
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Figure 1.5 Resynthesis of PCr after exercise with and without an occluded blood supply (adapted
from Hultman et al. , 1990).

minute of recovery and the rest over the next 3–5 minutes. The graph is biphasic, i.e. rapid
restoration at first, then a second, slower phase.

As soon as muscle contraction starts, the process of anaerobic glycolysis also begins.
Anaerobic glycolysis does not contribute as large an amount of energy as PCr in the short
term, but its contribution is likely to predominate from 10 to 60 seconds.

During glycolysis, locally stored muscle glycogen, and possibly some blood-borne glu-
cose, supply the substrate for energy generation. Glycolysis takes place in the cytoplasm,
where no oxygen is required, so the process is called anaerobic. It has been referred to as
‘anaerobic lactic’, since lactic acid is formed as the end product. Sufficient lactic acid for-
mation can lower the pH of the cell (i.e. make it more acid) to the extent that further energy
production may be reduced.

The major substrate for anaerobic glycolysis (see equation below) is glycogen stored
within the muscle, so prior hard exercise without adequate repletion of glycogen will limit
further high-intensity short-term work.

Glycogen → Glucose-1-P → Lactic acid + ATP

Exercise beyond 60 seconds requires mainly aerobic energy sources, such as the complete
oxidation of glucose or fatty acids to carbon dioxide and water. These processes necessitate
oxygen and take place in the mitochondria of the cells. The equations below illustrate the
essence of aerobic metabolic reactions:

Glucose + Oxygen → Carbon dioxide + Water + ATP

Fatty acid + Oxygen → Carbon dioxide + Water + ATP

More detail about these processes are presented in Chapters 5 and 6.
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Figure 1.6 Carbohydrate and fat use at
three exercise intensities (adapted from
Romijn et al. , 1993).

Aerobic activities invariably occur at lower exercise intensities (which are those lasting
longer than one minute), and the contributions of carbohydrate and fat at these levels of
intensity can be realized in Figure 1.6. Note that fats contribute a greater percentage (and
amount) of energy at 25% VO2max (i.e. walking pace) than carbohydrate, around 50% of the
energy at 65% VO2max (i.e. steady state pace), and around 25% of the energy at 85% VO2max
(i.e. an intense aerobic bout with some significant anaerobic energy involved).

1.4 Energy Systems and Running Speed

Based on world record times, humans can maintain maximum sprinting speed for approx-
imately 200 m. The average speeds for the 100 and 200 m world records are similar, at 22.4
and 21.6 mph, respectively. However, with increasing distances, average speeds decline. The
average speed for the marathon world record is about 12 mph, which is 55% of the world
sprint record. This is quite a remarkable pace, since the marathon distance is more than
200 times the length of a 200 m race.

Although natural selection plays a crucial role in elite sprinting and marathon perfor-
mance, the energy systems must also be highly trained and exercise-specific to be successful.
For example, the energy needed to maintain an average sprinting speed of 22 mph for 200 m
or less, and that required for an average running speed of 12 mph for the marathon, are
acquired by two very different systems (the predominant energy systems required for run-
ning at different speeds can be seen in Figure 1.3). The primary energy source for sprinting
distances up to 100 m is PCr. From 100 to 400 m, anaerobic glycolysis is the primary energy
source. For distances longer than 800 m, athletes rely primarily on aerobic metabolism.

The rate of glycogen and fat utilization varies according to the relative running speed.
Although the rate of glycogen utilization is low while running a marathon, the duration
of the event increases the possibility of depleting glycogen stores. In contrast, the rate of
glycogen utilization is substantially higher during a 5000 m run, but glycogen depletion is
not a concern because of the shorter duration of the event.

Maximum maintainable speed decreases by approximately 7 mph as running distance
increases from 200 to 1500 m. However, as the distance increases from 1500 m to 42.2 km,
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Figure 1.7 Sustainable running speed and distance run.

maximum maintainable speed only drops by an additional 3.5 mph. On average, a healthy,
fit, non-elite, male athlete can be expected to sprint at an average speed of 16–18 mph for
100–200 m and at approximately 6–8 mph for a marathon (see Figure 1.7).

1.5 Why Can’t a Marathon be Sprinted?

Figure 1.7 clearly demonstrates the inability to sustain high running velocities for a pro-
tracted duration. So why is an athlete unable to keep up higher running speeds over a
marathon distance? The different energy sources have already been noted above, but what
it is necessary to understand is that each of these energy sources resynthesizes ATP at vary-
ing rates. Table 1.1 highlights the likely rates of ATP production, and you should note the
hierarchy.

The PCr system is the most rapid of these ATP-producing systems. A calculated rate of
9 mM⋅kg−1⋅s−1 dry muscle is more than twice as fast as ATP generation from anaerobic
glycolysis which in turn is twice as fast as aerobic oxidation of carbohydrates. Furthermore,

Table 1.1 Maximum rates of energy production.

Metabolic process Maximum power (mM⋅kg−1⋅s−1)

PCr→ATP 9

CHO→ lactate+ATP 4

CHO→CO2 +H2O+ATP 2

Fat→CO2 +H2O+ATP 1
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the aerobic breakdown of carbohydrates produces ATP at twice the rate of fats (i.e. 2 vs.
1 mM⋅kg−1⋅s−1). It thus seems that energy processes in the cytoplasm produce ATP at a
faster rate than those which require oxidation via the mitochondria, and that carbohydrates
produce ATP quicker than fats.

In Chapters 5 and 6, we will see that whereas PCr generation of ATP is a single reaction,
anaerobic glycolysis entails 10 reactions, aerobic breakdown of glucose necessitates around
26 reactions (if the TCA cycle is used twice), and somewhere in the region of 90–100 reac-
tions are required for complete fatty acid oxidation. No wonder, there are varying rates for
ATP production.

Since the muscle stores of PCr are rather limited, and the end product of the rapid ATP
generation from anaerobic glycolysis produces lactic acid, it would appear that it is not pos-
sible for an athlete to keep running at a sprint pace when undertaking a marathon – either
they would run out of PCr, or the pH of their muscles would be significantly reduced
due to lactic acid production. In addition, there are also limited stores of muscle and liver
carbohydrate (glycogen) which would seem to be problematic as a source of energy for a
complete marathon, so the need to employ fatty acids is important in energy production.
Fatty acids produce the slowest rates of ATP synthesis – hence the fact that when these
stores are engaged, running speeds are lowered.

1.6 Energy Sources and Muscle

Figure 1.8 provides an important overall schema as to how carbohydrates and lipids con-
tribute as the major energy sources for muscle activity – the relevance of amino acids will
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Table 1.2 Energy sources available to working muscle including amounts and likely duration
before depletion.

ATP PCr
Anaerobic
glycolysis

Carbohydrate
oxidation

Fatty acid
oxidation

Total amount 40 g 120 g 350 g of CHO 500 g of CHO 15,000 g of fatty
acids

Duration of exercise
before depleted stores

4–6 sec 1–2 min 1–2 h >6 h

Max rate of ATP
synthesis (mM⋅kg−1⋅s−1)

9 4 2 1

be described in Chapter 4. It is a figure that we shall return to, albeit in greater detail,
throughout the text. In summary, you will note that the so-called anaerobic energy pro-
cesses from ATP, PCr and anaerobic glycolysis occur in the cytoplasm, whereas the aerobic
energy processes from muscle glycogen, blood-borne glucose, intramuscular triacylglycerol
and blood-borne free fatty acids take place in the mitochondria. The blood-borne glucose
arises from the liver due to both the breakdown of liver glycogen and the ability of the
liver to produce glucose from glycerol (in essence the breakdown of triacylglycerol) as well
as amino acids such as leucine and glutamine. Furthermore, it is clear that in order for
blood-borne sources to enter a muscle there is a need for some form of membrane transport
mechanism for each of the extramuscular energy sources to enter a muscle cell as rapidly as
possible. In Chapters 5 and 6 we will explore, in more detail, the nature of these transporters
as well as examine the production of energy in skeletal muscle.

A final consideration is to deliberate as to how much energy these sources contain and
how quickly a muscle can utilize them. Table 1.2 highlights a number of key points in rela-
tion to energy sources for muscle. These include:

1. the total amount of the energy source, from which it is quite apparent that the faster
ATP-producing sources normally present within the muscle are limited (notably PCr and
intramuscular glycogen for anaerobic glycolysis) whereas the slower ATP-producing and
essentially extramuscular sources are more plentiful;

2. the likely duration for which these energy sources will last if they are the only source
of ATP production, from which it is apparent that extramuscular sources provide longer
lasting energy compared with intramuscular sources;

3. the maximal rates by which they can produce ATP from which it is apparent that
intramuscular sources which do not require oxygen (anaerobic processes) rapidly
generate ATP, whereas those requiring oxygen (aerobic processes) generate ATP more
slowly.

1.7 Can Muscle Use Protein for Energy?

So far there has been little mention of using proteins for energy. Muscles are made of pro-
teins in the main, but can muscle protein provide energy? The answer is, to a limited extent,
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yes. A major difference between carbohydrates and fats is that they are essentially made up
of carbon, hydrogen and oxygen only, whereas protein molecules also contain an amino
group (i.e. a nitrogen). The end result of carbohydrate and fat oxidation is the generation of
carbon dioxide and water, whereas oxidation of proteins requires the removal of nitrogen.

Figure 1.9 illustrates the fact that amino acids (the basic structural component of proteins)
can, after the removal of the nitrogen (which ends up as urea), be converted to carbohy-
drates, which can then be oxidized. During prolonged exercise, the amino acids alanine and
glutamine are converted to glucose in the liver, and the glucose is then oxidized by muscle.
In addition, the muscle also has a limited capacity to oxidize the amino acid leucine. In
total, amino acids usually accounts for 5% of the energy needed by muscle.

1.8 Key Points

● Adenosine triphosphate (ATP) is the useable form of energy for muscle contraction.
● Phosphocreatine (PCr), anaerobic glycolysis and aerobic processes enable ATP to be

resynthesized during exercise.
● High intensity bouts of exercise demand a faster rate of ATP generation if the activity is

to proceed and this is achieved by the faster ‘anaerobic’ sources, i.e. PCr and anaerobic
glycolysis.

● Low to moderate bouts of exercise use aerobic energy processes such as complete oxida-
tion of carbohydrates and fats.

● ATP and PCr content are limited in muscle and hence the reduced capability to engage
in very intense levels of activity for prolonged periods.

● Anaerobic glycolysis results in lactic acid formation which is considered by some research
to contribute to fatigue.

● Aerobic energy sources can be present within muscle (intramuscular glycogen and intra-
muscular triacyglycerol) or brought to the muscle as exogenous sources (glucose, acids
and amino acids).
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● Carbohydrate sources of energy (glycogen) are limited in comparison with fat sources.
● Amino acids from protein breakdown can contribute to energy production in a limited

manner.
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2

Skeletal Muscle Structure and Function

Learning Outcomes
After studying this chapter, you should be able to:

● describe the gross anatomical structure of skeletal muscle;
● list the main sub-cellular components of the muscle fibre and outline their location and

function;
● draw and label the sarcomere including the A-band, I-band, M-line and H-zone;
● describe the structure of the thick and thin filaments;
● define the term motor unit;
● explain the structure and function of the neuromuscular junction;
● explain and outline the main stages involved in the process of muscle contraction;
● compare and contrast the structural, biochemical and functional properties of type I, type

IIa and type IIx muscle fibres;
● explain how muscle fibres are recruited with varying exercise intensities;
● define what is meant by lengthening, shortening and isometric muscle contractions;
● highlight and explain the phases of a twitch contraction;
● describe how stimulation frequency affects contractile force and define the term tetanus;
● explain the length–tension and force–velocity relationships;
● define the terms fatigue, central fatigue and peripheral fatigue.

Key words

skeletal muscle structure
muscle contraction

muscle relaxation
sliding filament mechanism

muscle fibre types
central and peripheral fatigue
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2.1 Skeletal Muscle Structure

In Chapter 1, we provided an introductory overview of the energy sources and systems
involved in producing energy for muscular activity. Given that our focus is on the provi-
sion of energy for working skeletal muscle, it follows that we should now develop a sound
understanding of both the structure and function of muscle itself. These topics are there-
fore the central theme of this chapter. Much of what will be discussed herein relates to the
combined interplay between a variety of sub-cellular components and proteins involved
in co-ordinating muscle contraction. For this reason, readers not familiar with general cell
structure or protein function may wish to initially read sections of Chapter 4 prior to reading
this chapter.

Skeletal muscle can be considered an organ as it is composed of cells from multiple tis-
sues, i.e. nervous tissue, connective tissue, etc. and, of course, cells from muscle tissue itself.
In this context, skeletal muscle is the largest organ in the human body, comprising 40–50%
of total body weight.

There are over 600 muscles in our bodies, all performing common functions:

1. producing body movements;
2. maintaining posture;
3. storing and moving substances within the body; and
4. generating heat.

Skeletal muscle is so called because it primarily functions to move bones of the skeleton
and as such, muscle tissue is connected to bones by connective tissue known as tendons.
Each end of a specific skeletal muscle is attached to a bone that is essentially stationary
(termed the point of origin) or to a bone that is moved (termed the point of insertion) during
the specific muscle contraction. For example, the biceps brachii muscle has its points of
origin and insertion in the scapula and radius bones, respectively.

2.1.1 Gross Anatomical Structure

The gross anatomical structure of skeletal muscle is shown in Figure 2.1. Surrounding
the entire whole muscle is a strong sheet of fibrous connective tissue known as fascia.
Three separate layers of connective tissue then extend from the outermost layer of fascia
to strengthen and protect the muscle further.

The initial layer encompassing the whole muscle is known as the epimysium. If we were
to cut through the epimysium, we would then encounter the perimysium. The perimysium
encloses groups of 10–100 muscle cells and essentially separates them into muscle cell bun-
dles known as fascicles. In turn, each muscle cell within this bundle is also separated from
one another by a layer of connective tissue known as the endomysium.

2.1.2 The Muscle Fibre

Skeletal muscle cells are more commonly referred to as muscle fibres and they differ from
many other cells in the body for a number of reasons. Muscle fibres have a unique shape


