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Preface

This book is a labor of love. It is intended to bridge the gap between standard engineering texts and
more popularly accessible descriptions of electric power technology. I discovered this gap as a grad-
uate student struggling to understand power systems, which had always fascinated me, but which
I now needed to understand properly in the context of my passion, implementing solar energy.
Although I had studied physics as an undergraduate, I found the subject of power systems difficult
and intimidating.

The available literature seemed to fall into two categories: easy-to-read, qualitative descriptions
of the electric grid for the layperson on the one hand, and highly technical books and papers on
the other, written for professionals and electrical engineering majors. The second category had the
information I needed, but guarded by a layer of impenetrable phasor diagrams and other symbolism
that clearly required some sort of initiation.

I was very fortunate to study with renowned experts at the University of California, Berkeley,
including Leon Chua and Felix Wu, who were also generous and gifted teachers and brought me up
to speed in deciphering the academic and engineering literature. The formative learning experience
was a research project beginning in 1989 at several large nuclear and fossil-fueled steam generation
plants, where our team interviewed the staff as part of a study on High-Reliability Organizations.
My own subsequent research on power distribution took me into the field with five U.S. utilities and
one in Germany. Aside from the many intriguing things we learned about the operating culture in
these settings, I discovered how clearly the power plant staff could often explain technical concepts
about their working systems. Their language was characteristically plain and direct and was always
guided by practical considerations, such as, What does this dial tell you? What happens when you
push that button?

In hindsight, the defining moment for inspiring this book occurred in the Pittsburg control
room when I revealed my ignorance about reactive power (ironically, having just boasted about my
physics degree, to the operators’ benign amusement). They generously supplied me with a copy of
the plant operating manual, which turned out to contain the single most lucid and comprehensible
explanation of electric generators, including reactive power, I had seen. That manual proved to
me that one can write about electric power systems in a way that is accessible to audiences who
have not undergone the initiation rites of an academic engineering program, but who nevertheless
want to get the real story. I imagined there might be other people much like myself—outside the
engineering profession or the power industry but vitally concerned with it—who could benefit
from such a practical approach.

After finishing my dissertation in 1995, I decided to give it a try. My goal was to write the book
that I would have wanted to read as a student. The guiding principle was to assume a minimum of
prior knowledge on the part of the readers while trying to relate as much as possible to their direct
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experience and intuition. In essence, the book should explain how the electric grid works and what
its relevant technical constraints are. It should convey a sense of the complexity of the system as a
whole and point to the tools used by power engineers to navigate that complexity. Though it could
not be expected to offer a full professional training in the use of these tools, it should prepare readers
for the more specialized literature or advanced coursework. Enough historical context should be
provided to view technological innovation both from the standpoint of modern opportunities and
the challenges presented by the legacy infrastructure.

From the start, I envisioned two main audiences. The first consists of students and researchers
who are learning about electricity and power engineering in an academic setting, and who feel
that their understanding would be enhanced by a qualitative, conceptual emphasis to complement
the quantitative methods stressed in technical courses. This audience might include students of
diverse backgrounds or differing levels of preparation, perhaps transferring into an engineering
program from other disciplines. Such students often need to solidify their understanding of basic
information that is presumed to be second nature to advanced undergraduates in technical fields.
As a supplement to standard engineering texts, the first edition aimed to provide a clear and acces-
sible review of units, definitions, and fundamental physical principles; to explain in words the ideas
shown by equations; to contextualize information, highlighting connections among different top-
ics and pointing out their relevance; and to offer a glimpse into the practical world of the electric
power industry.

The second major audience consists of professionals working in and around the power industry
whose educational background may not be in electrical engineering, but who wish to become more
familiar with some of the technical details and the theoretical underpinnings of the system they
deal with. This group might include analysts, administrators, and managers coming from fields of
business, economics, law, or public policy, as well as individuals with technical or multidisciplinary
training in areas other than power engineering.

The project was more ambitious than I had imagined, and the first edition took a decade to
write—but it also met with more success than I had dared to hope. After 13 years as a professor of
Energy Management & Design at Sonoma State University, I returned to Berkeley in 2012 to teach
a power systems course in the Department of Electrical Engineering and Computer Science and
to direct electric grid research at the California Institute for Energy and Environment. My group’s
research primarily focused on the application of novel sensing, analytics, and control strategies to
facilitate the grid integration of renewable resources. This work gave me the opportunity to connect
with and learn from many experts, especially through the North American Synchrophasor Initia-
tive (NASPI). It also reinforced the sense that a growing audience of scholars and practitioners from
diverse fields could use help understanding how the electric grid works.

The two-semester course Introduction to Electric Power Systems I developed and taught for
10 years gives an overview of the legacy electric grid and highlights opportunities and challenges
associated with incorporating new technologies. The course has served engineering majors as well
as students at both the undergraduate and graduate level from other departments with an interest
in the electric grid and with enough preparation to handle the quantitative assignments. I used
the first edition of this book for my class, but had to supplement it with other resources to cover
some of the more technical aspects. Over time, my accumulated lecture notes evolved into this
substantially expanded second edition, which aims to serve as a reasonably complete stand-alone
text for introductory engineering courses like mine.

To this end, some chapters were amended to cover more technical points and problem-solving
tools, some material was reorganized, and seven new chapters were added. Along with more for-
mal treatment and quantitative examples for many topics, new material in this second edition
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includes Thévenin and Norton equivalents, symmetrical components, ZIP load models, transmis-
sion line analysis, transformer and generator modeling, load frequency control, power transfer
limits, power electronics, measurement and data, and a summary chapter on generation and stor-
age resources. Finally, it includes some end-of-chapter problems, with solutions made available
separately through the publisher’s website.

While meeting the needs of a rigorous engineering text, this second edition should not sacrifice
accessibility for general audiences. It aspires to satisfy readers who think in mathematical terms,
and those who don’t. As a rule, conceptual explanations precede mathematical statements, and
the more technical portions can be skipped without leaving the reader disoriented. Sections are
extensively cross-referenced and intended to be modular. The idea is that the reader can open up
the book to any page that piques their curiosity or answers a nagging question and be assisted
in locating background information and relevant context elsewhere in the book. There are many
plausible ways to organize the material—or likely some subset of it—for a course. Chapters need
not be read or covered in sequence. Instructors should be able to select and tailor material to their
purposes.

One major change in recent years is the availability of technical content on the Internet, including
Wikipedia and YouTube tutorials. Especially for animated visualizations (say, rotating machines!),
some of these resources can be immensely valuable. But aside from reliable quality control, what
the Internet does not provide is coherent guidance and context. For autodidactic readers, this book
aims to serve as a foundation and structure that will support them in the critical consumption and
interpretation of other educational materials about electricity-related topics.

This is a great time for many more students, whether inside or outside traditional academic set-
tings, to develop a passion for understanding electric power systems. The electric grid is central to
our society, our economy, and our efforts to address global climate change. While being host to a
shifting base of energy resources, including inverter-based generation, the infrastructure itself is
in the process of being modernized with digital technology. Nobody yet can answer the question,
“What does the grid of the future look like?” We urgently need diverse talents and skills applied to
this vital problem area. My hope is that this book can make a helpful contribution.

Bishop, CA
February 2024

Alexandra von Meier




