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CHAPTER 1

Introduction

This book is an introduction to the hash table data structure. When
implemented and used appropriately, hash tables are exceptionally
efficient data structures for representing sets and lookup tables. They
provide constant time, low overhead, insertion, deletion, and lookup. This
book assumes you are familiar with programming and the C programming
language. The theoretical parts of the book also assume some familiarity
with probability theory and algorithmic theory, but nothing beyond what
you would learn in an introductory course.

Hash tables are constructed from two fundamental ideas: reducing
application keys to a hash key—a number ranging from 0 to some
N — 1—and mapping that number into a smaller range from0tom — 1,

m < N. You can use the small range to index into an array with constant
time access. Both ideas are simple, but how they are implemented in
practice affects the efficiency of hash tables.

Consider Figure 1-1, which illustrates the main components of storing
values in a hash table. Potentially complex application values are mapped
to hash keys, which are integer values in a range of size N, usually 0 to
N — 1. In the figure, N = 64. Doing this simplifies the representation of the
values. You now only have integers as keys, and if N is small, you can store
the integers in an array of size N. You use their hash keys as their index
into the array. However, if N is large, this is not feasible. If, for example,
the space of hash keys is 32-bit integers, then N = 4,294,967,295; slightly
more than four billion. An array of bytes of this size would take up more
than 4GB of space. You would need between four and eight times as
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CHAPTER 1 INTRODUCTION

much memory to store pointers or integers, for example, which are still
simple objects. It is impractical to use this size of an array to store some
application keys.

Even if N is considerably smaller than four-byte words, if you plan to
store n <« N keys, you waste a lot of space to have the array. Since this array
needs to be allocated and initialized, merely creating it will cost you O(N).
Even if you get constant time insertion and deletion into such an array, the
cost of producing it can easily swamp the time your algorithm will spend
while using the array. If you want an efficient table, you should be able to
initialize it and use it to insert or delete n keys, all in time O(n). Therefore,
N should be in O(n).

The typical solution is to keep N large, but include a second step
that reduces the hash key range to a smaller bin-range of size m with
m € O(n)—this example uses m = 8. If you keep m small (i.e., in O(n)), you
can allocate and initialize it in linear time and get any bin in it in constant
time. To insert, check, or delete an element in the table, you map the
application value to its hash key and then map the hash key to a bin index.
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Figure 1-1. Value maps to hash keys that then maps to table bins

You can reduce values to bin indices in two steps. The first step,
mapping data from your application domain to a number, is program-
specific and cannot be part of a general hash table implementation.!
Moving from large integer intervals to smaller, however, can be
implemented as part of the hash table. If you resize the table to adapt it to
the number of keys you store, you need to change m. You do not want the
application programmer to provide separate functions for each m. You can

'In some textbooks, you will see the hashing step and the binning step combined,
called hashing. Then, you have a single function that maps application-specific
keys directly to bins. I prefer to consider this as two or three separate functions,
and it is usually implemented as such.
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think of the hash key space, [N] = [0, ..., N — 1], as the interface between the
application and the data structure. The hash table itself can map from this
space to indices in an array, [m] = [0,...,m — 1].

The primary responsibility of the first step is to reduce potentially
complicated application values into simpler hash keys. For example, to
map application-relevant information like positions on a board game or
connections in a network down to integers. These integers can then be
handled by the hash table data structure. The second responsibility of the
function is to make the hash keys uniformly distributed in the range [V].
The binning strategy for mapping hash keys to bins assumes that the hash
keys are uniformly distributed to distribute keys evenly into bins. If this is
violated, the data structure does not guarantee (expected) constant time
operations. Here, you can add a third step between the two previous that
maps from [N] — [N] and scrambles the application hash keys to hash
keys with a better distribution. See Figure 1-2. These functions can be
application-independent and part of a hash table library.

Chapters 6 and 7 return to these functions. Having a middle step does
not eliminate the need for application hash functions. You still need to
map complex data into integers. The middle step only alleviates the need
for an even distribution of keys. The map from application keys to hash
keys still has some responsibility for this, though. If it maps different data
to the same hash keys, the middle step cannot do anything but map the
same input to the same output.
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Figure 1-2. Ifthe application maps values to keys, but they are not
uniformly distributed, then a hashing step between the application
and the binning can be added

Strictly speaking, you do not need the distribution of hash keys to
be uniform as long as the likelihood of two different values mapping to
the same key is improbable. The goal is to have uniformly distributed
hash keys, which are easiest to work with when analyzing theoretical
performance. The runtime results in Chapter 3 assume this, and therefore,
you can as well. Chapter 7 considers techniques for achieving similar
results without the assumption.

The book is primarily about implementing the hash table data
structure and only secondarily about hash functions. When implementing
hash tables, the concerns are these: given hash keys with application
values attached to them, how do you represent the data so that you
can update and query tables in constant time? The fundamental idea
is, of course, to reduce hash keys to bins and then use an array of bins
containing values. In the purest form, you can store your data values
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directly in the array at the index that the hash and binning functions
provide. Still, if m is relatively small compared to the number of data
values, you are likely to have collisions, which are cases where two hash
keys map to the same bin. Although different values are unlikely to hash

to the same key in the range [V], this does not mean that collisions are
unlikely in the range [m] if m is smaller than N (and as the number of

keys you insert in the table, n, approaches m, collisions are guaranteed).
Dealing with collisions is a crucial aspect of implementing hash tables and
a topic that’s covered in a sizeable portion of this book.



CHAPTER 2

Hash Keys, Indices,
and Collisions

As mentioned in the introduction, this book is primarily about
implementing hash tables and not hash functions. So, to simplify the
exposition, I initially assume that the data values you store in tables are
simply hash keys. Chapter 5 addresses the changes you have to make to
store application data together with keys, but for most of the theory of hash
tables, you only need to consider hash keys. Everywhere else, you will view
additional data as black box data and just store their keys.

While the code snippets cover all that you need to implement the
concepts in this chapter, you cannot easily compile them from the book,
but you can download the complete code listings from https://github.
com/mailund/JoyChapter2.Idid notinclude the necessary header files in
the source code snippets throughout the book, but you can access them in
the repository links found at the beginning of each chapter.

I assume that the keys are uniformly distributed in the interval
[N =[0,..., N — 1], where Nis the maximum unsigned int, and consider the
most straightforward hash table I can imagine. It consists of an array where
you can store keys and a number holding the size of the table, m. To be able
to map from the range [N] to the range [m], you need to remember m, and
that is why you store it. If you always had the same table size, you wouldn'’t
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even need that, and a hash table would be an array. But you will allow for
different table sizes (when you get to Chapter 4), so you need to store the
number m in the variable size using the following structure:

struct bin { ... };
struct hash table {
struct bin *table;
unsigned int size;

};

If your bins are just an array of hash keys with no further information,
you have an interesting problem. If you find a key k in the bin where you
expect to find k, does that mean it is actually there? After all, an array is
usually uninitialized memory, so it could happen that k was there by pure
chance. Admittedly, this is extremely unlikely to happen, and I wouldn’t
worry about it happening in real life if the space of keys is large, but we
might as well consider and deal with the issue.

If the bits you have in a bin are precisely the bits you have for hash
keys, there is little that you can do about it. You need at least one bit of
information to indicate whether an array entry is initialized. There are
clever ways of representing such information without putting it in bins,
but that puts the extra information elsewhere, in auxiliary data structures.
You need a simple table here, so I do not want to go there, now or ever.

A simple solution is to add one bit of information to each bin:

struct bin {
int is_free : 1;
unsigned int key;

};

struct hash table {
struct bin *table;
unsigned int size;

};
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That increases the size of the bins and leaves enough bits for the keys
and the initialization indicator. Unfortunately, even though you only ask
for one bit for the is_free flag, you can potentially get a lot more. The
struct bin has to contain enough memory for both is_free and key,
but your computer does not allocate memory in bit-sized chunks, so the
size must be rounded up. Furthermore, the memory alignment of various
types will usually result in even more rounding up. If your computer
stores integers as four bytes, it might also demand that all integers are at
offsets that are multiples of fours, and when it sees a struct like this, it
will set aside two integers per struct bin. So, by adding one bit, you have
doubled the bin size.

You should rarely worry about this, but it can be wasteful. Instead,
you could remove one bit from the hash keys, using, for example, 31 bits
for keys, and then one bit for is_free, packing both neatly into a 32-bit
integer. In practice, there is not much difference between 31-bit and 32-
bit keys, but you have just halved the space of keys, which also feels a bit
dramatic. So I won'’t go there, especially because cutting the key space in
half is unnecessary to represent whether a bin is initialized or not. You
could reserve a unique key value to indicate that and require that no one
uses that hash key for anything else. Zero, for example. Then bins can be
unsigned int, and you don’t need extra space.

#define RESERVED KEY ((unsigned int)o)
struct hash table {

unsigned int size;

unsigned int *bins;

};

For the user who has to generate hash keys, avoiding a reserved key
is a potential problem, but if that is the case, the previous solution is an
adequate fallback choice. In any case, once you get to more complicated
tables, you will need more data in bins in any case, and then the extra
is_free bit will be free, or you will need more special values for reserved
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keys, and you will need to deal with these anyway. So, I go with the two
cases without complicating it further, and later in the book, you will see
more variations on both themes.

A function for allocating a table can then look like this for the variant
with struct bin:

struct hash_table *
new_table(unsigned int size)

{
// Allocate table and bins

struct hash table *table = malloc(sizeof *table);
table->size = size;
table->bins = malloc(size * sizeof *table->bins);

// Set all bins to free

struct bin *beg = table->bins, *end = beg + size;

for (struct bin *bin = beg; bin != end; bin++) {
bin->is free = true;

}

return table;

And it can look like this for the variant with a reserved key:

struct hash _table *
new_table(unsigned int size)

{
// Allocate table and bins

struct hash table *table = malloc(sizeof *table);
table->bins = malloc(size * sizeof *table->bins);

// Initialize the bins with the reserved key
unsigned int *beg = table->bins, *end = beg + size;

10
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for (unsigned int *bin = beg; bin != end; bin++) {
*pin = RESERVED KEY;
}

return table;

They are pretty similar. In both cases, you allocate the hash_table

structure and then allocate the bins, after which you iterate through all the

bins to initialize them.

I haven’t dealt with allocation errors (malloc() returning NULL) in

either function. You could easily do it here. For example, the “reserved

key” initialization could look like this:

struct hash _table *
new_table(unsigned int size)

{

// Allocate table and bins

struct hash_table *table = malloc(sizeof *table);
unsigned int *bins = malloc(size * sizeof *bins);
if (!table || !bins) goto error;

*table = (struct hash table){.size = size, .bins = bins};

unsigned int *beg = table->bins, *end = beg + size;

for (unsigned int *bin = beg; bin != end; bin++) {
*pbin = RESERVED KEY;

}

return table;

€rror:

}

free(table);
free(bins);
return NULL;

11
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However, once you start resizing tables in Chapter 4, dealing with
allocation errors gets far more complicated. Especially when every
allocation error potentially has to propagate out from deeply nested
function calls, and C doesn’t have any convenient mechanism for error
propagation. While I believe that learning how to handle allocation errors
is important, my attempts at doing that for the more complicated code you
will see in that chapter overshadowed the hash-table lessons, and the book
is about hash tables and not error handling in C. That may be an exciting
topic for a later book, but it will not be this one. What I am saying is that I
won't be handlingmalloc() errors in the book. If you want, pretend that
my malloc() is a variant that calls exit() if it fails.

One more thing I want to say about memory allocation is this: if you
can pack your data into fewer allocations, it is easier to work with. You
could have done that by putting the bins in a “flexible array member” as so:

struct hash_table {
unsigned int size;
struct bin bins[]; // flexible array member

}s

A flexible array member is an array you declare at the end of a struct
without specifying its length. If you have such a member, you can allocate
the hash_table and the bins in a single call to malloc():

struct hash _table *
new_table(unsigned int size)

{
// Allocate table and bins

struct hash_table *table =
malloc(sizeof *table + size * sizeof *table->bins);

if (table) {
table->size = size;
struct bin *beg = table->bins, *end = beg + size;

12
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for (struct bin *bin = beg; bin != end; bin++) {
bin->is_free = true;
}
}

return table;

}

The trick is to allocate enough memory in the malloc() call for both
the struct and the elements you want to put in the array. Here I do
that by simply adding the size of the struct to the size of the bins array.
Depending on the memory layout of the struct members, this might be
slightly more than I need, and I could instead add the offset of the array to
the size of the array, but the difference hardly matters.

I don’t use a flexible array member in this book, and it is for the same
reason that I don’t include allocation error handling. While the flexible
array member is often helpful, it can get complicated if you need to
reallocate memory to grow or shrink your tables. Suppose you allocate
one block of memory for the table plus the bins. In that case, you cannot
easily add or remove bins later because every pointer to the table has to
be updated to point to the newly allocated version. If you have a pointer
to a table, and it has a pointer to its bins, you can update the bins pointer
once, and everyone will have access to it. Because of this, I allocate bins
separately from the hash_table structure.

To free a table’s memory again, you need to free both the table
structure and the bins array. For the two first versions, where you allocated
the bins separately, it looks like this:

void
delete table(struct hash table *table)

{
free(table->bins);

free(table);
}

13



