
Advanced
interactive
interfaces
with Access

Building Interactive Interfaces
with VBA
—
Alessandro Grimaldi

Advanced interactive
interfaces with

Access
Building Interactive Interfaces

with VBA

Alessandro Grimaldi

Advanced interactive interfaces with Access: Building Interactive

Interfaces with VBA

ISBN-13 (pbk): 979-8-8688-0807-4		 ISBN-13 (electronic): 979-8-8688-0808-1
https://doi.org/10.1007/979-8-8688-0808-1

Copyright © 2024 by The Editor(s) (if applicable) and The Author(s), under

exclusive license to APress Media, LLC, part of Springer Nature

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava
Development Editor: Laura Berendson
Editorial Assistant: Kripa Joseph

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1
New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub. For more detailed information, please visit https://www.apress.
com/gp/services/source-code.

If disposing of this product, please recycle the paper

Alessandro Grimaldi
Frankfurt am Main, Germany

https://doi.org/10.1007/979-8-8688-0808-1

To my parents. Nothing would have been possible
without them.

v

Table of Contents

About the Author��ix

About the Technical Reviewers��xi

Acknowledgments��xiii

Introduction���xv

Chapter 1: �Writing Code: Good Practices and Tips��������������������������������1

1.1. �Option Explicit���2

1.2. �Option Compare��3

1.3. �Variable Names���4

1.4. �Private/Public��7

1.5. �User-Defined Types (UDT)��9

1.6. �Service Functions���11

1.7. �Boolean Parameters��12

1.8. �Optional Parameters���16

1.9. �Control Names��17

1.10. �Control Tags��18

1.11. �Function Exit Point��19

1.12. �Function Returning Value��21

1.13. �Indenting, Spacing, Commenting��23

1.14. �Object Destruction��28

1.15. �Wall of Declarations��29

vi

1.16. �Dim ... As New���32

1.17. �Make Variant Explicit���34

1.18. �Boolean and Date Data Type���34

1.19. �SELECT CASE��36

1.20. �Call Instruction��39

1.21. �Feedback��41

1.22. �Conclusion��41

Chapter 2: �VBA Classes���43

2.1. �Creating a Class��46

2.2. �Instantiating a Class��47

2.3. �Properties��49

2.4. �Methods��54

2.5. �“Companion” Module��55

2.6. �Nested Classes���57

2.7. �Conclusion��63

Chapter 3: �The Presence Vector Technique���65

3.1. �Conclusion��86

Chapter 4: �Advanced Interfaces: Drag and Drop���������������������������������87

4.1. �How to Make an Image Draggable��88

4.2. �Adding More Images���104

4.3. �Connecting Two Images with Lines���108

4.4. �Connecting Multiple Images���127

4.5. �The “Ghost Label” Technique��150

4.6. �Sliding Forms��164

4.7. �Conclusion��185

Table of Contents

vii

Chapter 5: �Advanced Interfaces: Scrollable Timeline������������������������187

5.1. �Design the Timeline��188

5.2. �Make It Scrollable���191

5.3. �Add Navigation Controls��216

5.4. �Placing Objects���227

5.5. �Conclusion��267

Chapter 6: �Outro��269

��Index��271

Table of Contents

ix

About the Author

Alessandro Grimaldi was born in Rome,

Italy, where he first approached the computer

world in 1982. He has been a professional

VBA developer since 1998. For several years,

Alessandro consulted for the World Food

Programme (WFP), a major United Nations

agency for which he worked in Afghanistan,

North Korea, Ethiopia, and Italy. He has also

worked in Vienna, Austria, for the CTBTO,

another UN agency. Since 2014, he has lived

in Frankfurt, Germany, where he worked for

the European Central Bank for about five years. In all these places, he has

developed VBA tools, ranging from simple automation tools to complex,

multiuser, distributed, enterprise-level applications.

In recent years, Alessandro has produced several videos about drag

and drop and the scrolling timeline and delivered live workshops and

presentations explaining these techniques. He has an online VBA shop

(AlessandroGrimaldi.com/Shop) where he sells VBA tutorials, workshops,

and tools. He also has a YouTube channel (@AlxGrim) where he publishes

VBA-related videos.

xi

About the Technical Reviewers

Simone Bardi, a database solution designer and developer, has over 20

years of national and international experience in developing tools for data

collection, monitoring, and analysis for organizations such as the United

Nations World Food Programme (Afghanistan and Italy), UN International

Organization for Migration, European Central Bank (Germany), and

Vodafone Italy, among others.

Simone has a strong background in MS Access databases (VBA) and

MS Excel applications (VBA) for data collection and analysis as well as in

cyber security, with many years of experience in ICT security in the private

telecommunications sector, focusing on GDPR-related matters, data

protection, and fraud prevention. 

Colin Riddington has been an Access

developer for over 25 years, with many years

creating database solutions for schools in the

United Kingdom. After taking early retirement

from teaching, he set up his own company,

Mendip Data Systems, to focus on database

development and consultancy. He has been

awarded Microsoft Most Valuable Professional

(MVP) status for the past three years, starting in

2022. Colin is co-president of the Access Europe

user group and a member of the Access Forever team. He is also active on

many forums with the username Isladogs. Colin’s Isladogs on Access website

includes many Access articles, example apps, sample code, and security

challenges, together with commercial applications for businesses, schools,

and developers. He also runs his own YouTube channel. His focus is on

stretching the boundaries of what can be achieved using Access. 

xiii

Acknowledgments

There are several people I have to thank, who somehow contributed not

only to this book but to my work in general.

Stefano Valenzi1 has been a brother to me for the last 30 years,

always helping me and supporting me with his immense knowledge and

experience. He gave me the idea to write this book.

Simone Bardi2 is a good friend of mine. His VBA and logical skills

helped me a lot in developing my initial interfaces, and I still call him

whenever I need a second brain. He’s one of the reviewers of this book.

Karl Donaubauer (Access MVP),3 the “great guru” of the Access

community worldwide. In 2021, he invited me to talk about my work at

his Access Developer Conference that year, and since then, my career has

taken a decisive turn.

Colin Riddington (Access MVP),4 the second reviewer of this book.

I consider him my mentor and my guide in the complex world of online

meetings. Extremely supportive toward me, he did me the honor of

nominating me cochairman of AUG Europe.

David Nealey5 is a fan of my work, and I do admire his. With almost no

line of code, he can create amazing infocharts in his Access applications.

He’s always been very supportive toward me, even choosing me as his

cochairman for his LinkedIn group “Modern Access Design.”

1 www.linkedin.com/in/StefanoValenzi/
2 www.linkedin.com/in/SimoneBardi/
3 www.donkarl.com/
4 https://isladogs.co.uk/
5 www.linkedin.com/in/DNealey/

http://www.linkedin.com/in/StefanoValenzi/
http://www.linkedin.com/in/SimoneBardi/
http://www.donkarl.com/
https://isladogs.co.uk/
http://www.linkedin.com/in/DNealey/

xv

Introduction

In April 2021, I was invited to the Access Developer Conference (DevCon),

probably the biggest and most important gathering of Access developers

from all around the world (well, mainly the United States and Europe). Karl

Donaubauer (25 times MVP, at the moment I’m writing), the organizer,

had happened to see some of my Access works on the Web and asked me

to show them at the convention. Despite my previous decades of activity,

that was my first exposure to the international Access community, and I

didn’t really know what to expect. But it went very well; my work received

a lot of compliments, and no one in the audience mentioned they had

already seen anything similar. Apparently, I had created something new!

During the convention, I met David Nealey, a talented Access developer

who creates amazing charts in Access practically without code, something

that has always amazed me. He forged the term “Access on steroids” to

highlight the originality and the visual impact of my interfaces.

I am somehow the opposite of David: I write tons of code, and

sometimes I write code to do operations that Access does by default

just because I like to have control on every single bit (pun intended)

of my applications. And I like to experiment. In the early 2000s, I had

this weird idea of experimenting on interactive interfaces with Access,

and eventually, the first “drag-and-drop” engine was born. Since then, I

have applied this basic engine to almost all of the applications I’ve been

developing through the years, with several variations and improvements,

always experimenting, always trying to go “beyond,” always pushing

Access to its limits.

xvi

Why this book? During the last few years, I produced several tutorials

and workshops (check my YouTube channel and my online VBA shop), but

I eventually decided to collect everything in one single place to reduce the

fragmentation and explain things in a more coherent way. I tried to make

things as clear as possible, to reach not only the experienced developers

but also those with a more limited experience who want to dive deeper

into this amazing programming language – even though, of course, a full

and solid knowledge of VBA is absolutely required, as the goal of this book

is NOT teaching VBA.

We’ll start with a quick overview of my favorite “best practices” and a

short digression on VBA classes. And that’s because in the third part, when

I discuss some of my favorite dynamic interfaces, I will make large use of

those very personal conventions, which (I’m aware) don’t match the more

common, “mainstream” conventions. So you’ll know what to expect.

I said dynamic interfaces: that’s how I like to call what I do, more

than graphical interfaces, because at the end of the day, every interface

is graphical, but mine does something more, since there’s a lot of things

moving, and they allow the user to interact with the objects on the screen,

pretty much like Windows does.

One final note: I’m Italian. I studied English mostly by myself, and I’m

sadly aware that my English is quite far from being perfect. This means that

in this book, you’ll find mistakes, wrong words, and expressions that may

sound strange to an English native speaker. I refuse to use ChatGPT or any

other AI tools to correct it because I still like to use my own brain and I’m

not yet ready to turn it off. I just beg you to be so kind as to bear with it –

but if you find something really horrible and incomprehensible, please let

me know, and I’ll be happy to correct it!

Well, I hope you may find at least some interesting input in these

pages, and I kindly ask you to mention my name, should you implement in

your applications any of the techniques explained here.

Introduction

1© The Editor(s) (if applicable) and The Author(s),
under exclusive license to APress Media, LLC, part of Springer Nature 2024
A. Grimaldi, Advanced interactive interfaces with Access,
https://doi.org/10.1007/979-8-8688-0808-1_1

CHAPTER 1

Writing Code: Good
Practices and Tips
…where I explain my coding conventions, which will be used throughout

the entire book.

There is an old saying that goes: “Write your code as if your

replacement is a psycho killer.” The meaning should be clear: your code

should be comprehensible, well written, and easy to understand and

modify. Whoever is given the task to read and edit it, you won’t want him

to get angry with you because you left him with an incomprehensible

bunch of messy lines.

Of course, this is slippery ground. We all have a different mind and,

above all, a different concept of “order.” What is perfectly clear to me may

be totally absurd for another programmer. That is why what follows is by

no means a list of “best” practices and tips: it’s just a list of “good” practices

and tips that have been working well for me in the last decades. Depending

on your experience, some are obvious, some may be obvious, and some

may be less obvious. In any case, I’m not claiming you must embed them in

your programming style: all I’m saying is that they proved to be reasonable

habits, and I hope that some of them may make some sense to some of

you. In any case, I’m going to use these conventions in the rest of the book,

as I’m going to show you my original code.

https://doi.org/10.1007/979-8-8688-0808-1_1

2

1.1. � Option Explicit
I always use the Option Explicit clause at the top of every module.

Always. This forces me to declare (Dim) every single variable I use in my

code, allowing VBA to check if the values I assign them are compatible with

their declared type. This can dramatically reduce some kinds of errors – for

example, syntax errors. Consider the following fragment of code:

Public Sub Multiply(num1, num2)

 Debug.print numl * num2

End Sub

Of course, this is very basic, but it’s just to illustrate the point. If you

call the function (e.g., from the Immediate Window), you will always get

a result of 0. Can you understand why? If you look closer, you will notice

that the first parameter of the function is <num1> (N-U-M-1), while inside

the function, it’s misspelled as <numl> (N-U-M-L). Finding these kinds

of errors may be rather difficult and time-consuming, particularly if the

misspelled variable is a global one and appears several times throughout

your code.

What happens if we use Option Explicit? When we run the function

(or when we compile the code), the execution stops, the misspelled

variable is highlighted, and an error message box says “Variable not

defined.”

There are even subtler errors that may occur due, for example, to a

variable name used twice in different contexts, maybe holding different

value types, etc. The list of errors that can be avoided using Option

Explicit is too long to mention: I just use it every time and strongly

suggest you do the same.

Chapter 1 Writing Code: Good Practices and Tips

3

1.2. � Option Compare
Strangely enough, many VBA programmers disregard this statement,

which automatically appears as the very first line of each new code

module. Yet, it’s an important statement that can dramatically change the

behavior of our code, so it’s a good thing to thoroughly understand how

it works. It basically has to do with string comparisons, for example, in If

statements. Its parameter has three possible values:

Option Compare Database

This option is only available in Access (not in Excel, Word, etc.).

Practically speaking, the string comparison is based on the sort order

determined by the local international settings, so it follows the rules of the

local language.

Option Compare Text

The comparison is performed on a case-insensitive basis, so “John”

and “john” are considered the same string.

Option Compare Binary (default)

The comparison is based on the binary representation of the

characters – practically, their ASCII codes. In this context, “John” and

“john” are different.

An additional note of the term “default,” which in this case can be a

little confusing. When you create a module, Access adds Option Compare

Database on the first line, so this is actually a kind of “default.” The point

is that if you remove that line, and if you don’t make explicit which of the

three methods you’re using, Access assumes it’s the Binary, which makes

it the real “default.”

Choosing one or the other of these statements can make a substantial

difference. The results of your code can be greatly impacted, so you

should pay some attention to this choice. For example, if your code

Chapter 1 Writing Code: Good Practices and Tips

4

checks for duplicates, you’ll probably have something like if (newName =

oldName) then.... This kind of instruction is influenced by the Option

Compare directive, and you may or may not want to consider the different

letter cases.

A real-life example (it happened to me!): I was checking the field

names of a recordset, and something kept going wrong. I finally realized

that the test fld.Name = "Title" kept failing because the actual field

name was title and there was no Option Compare directive specified – so

Option Compare Binary was active. Lesson learned.

1.3. � Variable Names
Sometimes we tend to be lazy and name variables with short, meaningless

names: tID, clNo, pAvg, and such. This is NOT a good practice. Even

though they can be extremely clear in your mind, it makes the code hard to

read, hard to understand, and almost impossible for anyone to follow your

procedures. And this includes YOU if you happen to look back again to

your code after a few months.

Spend some more time, but give your variables comprehensible

names: tempID, clientNumber, priceAverage, and so on. It may be OK to

use a name like i when you run a loop:

For i = 1 to 10

It’s a rather standard practice, and no one will blame you for that. Of

course, a more meaningful name is always well accepted, for example:

For clientNdx = 1 to 10

is definitely better.

Chapter 1 Writing Code: Good Practices and Tips

5

Talking about variable naming, there are two vexed questions:

	 1.	 What case should I use?

Basically, there are four styles which are

widely used:

Snake Case: number_of_registered_clients

Letters are all lowercase, and words are separated

by an underscore character. It’s typically used in

Python. A variation is the so-called “Screaming

Snake Case,” with all capital letters such as in

NUMBER_OF_REGISTERED_CLIENTS.

Personally, I do not like it very much, as you need to

type the extra character “_“ for each word. Typically,

I use the “Screaming Snake Case” to declare

constants only.

Kebab case: number-of-registered-clients

Like the previous one, it just uses a dash instead

of an underscore. You see a lot of that in web

addresses. It goes without saying that I do not like it

either because of the extra characters. Anyway, it’s

not accepted in VBA.

Pascal case: NumberOfRegisteredClients

No additional characters, here: every word is

capitalized, so it’s easy to see where a word ends and

another begins. This style is widely used, especially

for naming classes. And this could be my favorite, if

it wasn’t for the fourth style…

Camel Case: numberOfRegisteredClients

Chapter 1 Writing Code: Good Practices and Tips

6

What’s the difference? The first letter, which is in

lowercase. This style is especially used in Java and

Javascript for creating functions, methods, and

variable names. Why do I prefer this? I don’t know,

really. It’s just a personal preference, without a

rational explanation.

Whichever style you decide is best for you, the

important thing is that you maintain coherence

throughout your whole application. Mixing styles

may be confusing and definitely gives a sense of

disorder, inaccuracy, and superficiality.

	 2.	 Do I have to add a prefix to explicit the variable type?

This discussion has always been very popular. If

I declare the variable itemNumber as an integer,

do I have to name it intItemNumber? If I declare

clientName as a string, should I actually name it

strClientName? Well, in my opinion, the answer is a

resounding no. If you choose the name wisely, most

of the times the prefix is useless. I mean, clientName

is obviously a string. isOK is clearly a Boolean, so do

we really need to name it blnIsOk? itemCodeNumber

is a number, intuitively an integer or a long (does

it really matter? Do you make calculations on item

code numbers?). I think these prefixes reduce the

readability, overloading the code with (mostly)

useless information.

Some cases are borderline, I know. For example,

itemCode is an integer, a long, a string, or what?

Well, it’s not that important to me. Once I see that

itemCode is declared as a string, I do not find it too

Chapter 1 Writing Code: Good Practices and Tips

7

difficult to remember it when I meet this variable

in the code. But again, this is how MY mind works.

Yours may very well be very different and appreciate

those extra characters in every occurrence of your

variables.

1.4. � Private/Public
We all know that a variable or a function defined in a code module is

always public. And we all know that in a form module, a variable or a

function is private by default. But I think it’s a very good practice to always

make it explicit. So, in a module, I never write

Sub somePublicSub()

 [...]

End Sub

but I always go for

Public Sub somePublicSub()

 [...]

End Sub

Similarly, for the private routines, I always write

Private Sub somePrivateSub()

 [...]

End Sub

I think it makes everything much clearer and unambiguous.

Chapter 1 Writing Code: Good Practices and Tips

8

And if I have a lot of subs/functions, sometimes I go one step further

and prefix loc (for local) to all private routines:

Private Sub locSomePrivateSub()

 [...]

End Sub

This way, in the procedure combo box, they will be all grouped

together, and it’s easier to tell a public function from a private one, as

shown in Figure 1-1.

Figure 1-1.  List of procedures

Chapter 1 Writing Code: Good Practices and Tips

9

1.5. � User-Defined Types (UDT)
Most of the problems with variable names disappear when you use UDTs.

A UDT looks like this:

Private Type recClient

 clientName As String

 Code As String

 officeNumber As String

 personalMobileNumber As String

 officeMobileNumber As String

 Date as Long

End Type

Private Client as recClient

Why are UDTs so great? For several reasons:

•	 They allow you to group a coherent set of variables

(as many as you need) under one single name (in the

previous example, Client). You only need to remember

that name and forget about the many single variables.

•	 You exploit VBA’s Intellisense engine. When you type

Client. (with a dot) in your code, you can see all the

variables inside the structure. You can select one with

the keyboard arrows or just type its first letters and then

hit TAB.

•	 For this reason, you can use longer and more

meaningful names (see the two telephone numbers

in the preceding example) since you do not have to

remember them nor to type them.

Chapter 1 Writing Code: Good Practices and Tips

10

•	 A medium project can have dozens of variables. It’s

easy to forget one or two of them, and you may forget

to update them when needed. This can’t happen with a

UDT since you always have the list of all the variables at

a glance.

•	 In a UDT, you can also use names that normally are

forbidden, as they are part of the standard VBA syntax,

such as Date in the preceding example. And this is

possible because since they are enclosed in a higher

level structure, there’s no space for ambiguity: Access

knows that a reference to Date and a reference to

Client.Date are two different things.

Personally, I always use a (public) UDT named recGlobals in all my

projects, in a module, collecting all the global variables. Then I declare

Public Globals as recGlobals.

And that immensely helps me keep track of my global variables (which

in a big application can be a lot), to reduce typos, and to make the code

more readable. Besides, in every form module, I always use a similar

technique for the local variables, defining

Private Type recLocals

 [...]

End Type

Private Locals As recLocals

Side note: Why do I prefix rec to a UDT name? Historical reasons. In

1987, I had to work with COBOL, and COBOL had this type of structured

data, called “record,” extremely similar to a UDT in VBA. I used the

“rec” prefix a lot, to name those records, and I kept this habit when I

moved to VBA.

Chapter 1 Writing Code: Good Practices and Tips

11

1.6. � Service Functions
A service (or convenience) function is a small function that performs a

single, specific task; it doesn’t really matter if big (tens of lines) or small

(one single line). For example:

•	 Performs a calculation with numbers or dates

•	 Builds a string according to a complex pattern

•	 Reads a value from a table

•	 Initializes a set of variables

•	 Enables/disables controls on a form

A service function can be very useful, in case you need it several times.

For example, the following function is only one line long, but it’s extremely

useful to generate a pseudo-random ID with max four digits:

Public Function getRandomID() As Long

 getRandomID = Int(Rnd(Timer - Int(Timer)) * 10000)

End Function

If you need to generate IDs in your application, remembering and

retyping this line several times can be frustrating, boring, and prone to

errors. Instead, you can call getRandomID() and forget about the details.

Moreover, if one day you decide to change the formula that generates the

ID, you will only have to change it once, in this function, leaving the rest of

the code unaltered, and all generated IDs will keep their consistency.

If you make such functions Public, they become in all respects like a

native VBA function, which you can use anywhere in your code, or query,

or report, or even in a form control. So, don’t be shy, use them often, and

appreciate their advantages:

•	 You do not have to write the same stuff over and over.

•	 Type less, thus reducing typos and errors.

Chapter 1 Writing Code: Good Practices and Tips

12

•	 You do not have to remember long/complex formulas

or code snippets.

•	 Easier code maintenance and modification.

•	 Easier coherence and consistency control.

•	 Code readability (a function name vs. complex code).

1.7. � Boolean Parameters
Sometimes, a function needs many parameters, where “many” may vary

from person to person, but for me, it means three or four. In my mind, if

a function needs more parameters than that, something might be wrong,

and the code might need to be restructured. Of course, this is not always

the case: a function MAY actually need a higher number of parameters.

In many cases, though, it’s not real parameters you need to pass but rather

True/False values. For example, if you have a function that formats a date into

a string, you may want to be very flexible and specify the following options:

•	 Show/hide the leading zeros (e.g., 01-09-2024 vs.

1-9-2024)

•	 Show/hide the year (e.g., 01-09-2024 vs. 01-09)

•	 Show/hide the day (e.g., 01-09-2024 vs. 09-2024)

•	 Use two digits for the year instead of four (e.g., 24

vs. 2024)

•	 Show/hide the time (e.g., 01-09-2024 09:46:23 vs.

01-09-2024)

•	 Show/hide the seconds (e.g., 09:46:23 vs. 09:46)

•	 Use AM/PM rather than a 24-hour clock (e.g., 07:00:00

PM vs. 19:00:00)

Chapter 1 Writing Code: Good Practices and Tips

13

And of course, you may think of even more formatting options. Now,

normally you would specify a parameter for each of these options. This, of

course, would be a terrible choice. The function signature would look like

Function formatDate(dt As Date, _

 leadingZeros As Boolean, _

 showYear As Boolean, _

 showDay As Boolean, _

 use4DigitYear As Boolean, _

 hideTime As Boolean, _

 showSeconds As Boolean, _

 useAM_PM_Format As Boolean) As String

End Function

plus, other necessary parameters such as the date format (e.g., DD/MM/

YY), the separator (colon, space, dash, etc.), and maybe more, which

would obviously result in a huge, unacceptable signature.

I saw many applications where the developer solved the problem by

creating a class, using these pieces of info as properties. Frankly, to me, this

looks like shooting a fly with a cannon. A UDT would be sufficient.

Or, we can use a binary-based technique usually called “bit-field.”

Since we’ll examine this technique later in this book, this can be a good

occasion to see a possible application of it. In a nutshell, the bit-field

technique considers the binary representation of a number: since each

bit can be either 0 or 1, it can be seen as a “presence indicator” for a set of

items. Each bit is logically associated with one specific item. If the bit is 0,

the value of its associated item is False; if the bit is 1, the associated value

is True. Let’s see how this can help in this case. Consider this enumeration:

Enum enmDateOptions

 doLEADING_ZEROS = 1

 doSHOW_YEAR = 2

 doSHOW_DAY = 4

Chapter 1 Writing Code: Good Practices and Tips

14

 doTWO_DIGIT_YEAR = 8

 doSHOW_TIME = 16

 doSHOW_SECONDS = 32

 doUSE_AM_PM = 64

End Enum

It’s my habit to name an enumeration with the enm prefix and a two-

word name (in this case, DateOptions). Each value is then prefixed with

the initials of these two words (in this case, do). This makes it easier, when I

write the code, to remember which enumeration each value belongs to.

Note how each item has a value which is a power of 2. We won’t dive

into the details of the binary system for now: all you need to understand

here is that this set of values guarantees that every combination (sum) of

values is unique. For example, the number 98 can only be obtained by

doUSE_AM_PM + doSHOW_SECONDS + doSHOW_YEAR

and no other combination can give the same value. The new signature

for the function will then be

Function formatDate(dt As Date, Options As enmDateOptions)

As String

which is much more readable than the previous one with eight

parameters. How do we call this function? Here’s an example:

result = formatDate (Date(), doLEADING_ZEROS Or doSHOW_YEAR

Or doSHOW_DAY)

The body of the function will check the value of Options and take

actions accordingly. In our example:

Function formatDate(dt As Date, Options As enmDateOptions)

As String

 if (Options And doLEADING_ZEROS) then ...

 if (Options And doSHOW_YEAR) then ...

Chapter 1 Writing Code: Good Practices and Tips

15

 if (Options And doSHOW_DAY) then ...

 if ...

End Function

According to the binary math, the AND operation returns 0 if Options

does not contain the tested value, otherwise returns a nonzero value (more

precisely, the value itself). So, in our example:

Options And doLEADING_ZEROS = doLEADING_ZEROS (≠0)
Options And doSHOW_YEAR = doSHOW_YEAR (≠0)
Options And doSHOW_DAY = doSHOW_DAY (≠0)

but:

Options And doTWO_DIGIT_YEAR = 0

Options And do_SHOW_TIME = 0

and so on, so the associated if actions won’t be executed.

And the best thing is that every time an enumeration value is required,

the Intellisense engine shows a list of all the available values, so you do not

have to remember them, as shown in Figure 1-2.

Figure 1-2.  UDT components

Now, why Or and not +? In this case, the two symbols are equivalent.

But I always prefer to use Or in place of the plus sign when I’m dealing with

Boolean values because it’s more logical and because, in some cases, they

produce different results. We’ll talk in more detail about this topic in the

chapter dedicated to this technique.

Chapter 1 Writing Code: Good Practices and Tips

16

Its advantages should nonetheless be already clear:

•	 Compact signatures.

•	 Code readability in function calls (meaningful constant

names rather than a long series of TRUE/FALSE).

•	 Scalability and flexibility: You can add enumeration

values, but the signature and all the calls to the function

remain the same because the number of parameters

(two in this case) doesn’t change.

1.8. � Optional Parameters
Do you ever use the OPTIONAL clause in a function signature? Sometimes

it’s very handy, especially when you find out you need an extra parameter

in the middle of your development and do not want to break the existing

code. You add the parameter as OPTIONAL, and all the code will keep

working. Or, more commonly, you do not want to specify the same

parameter over and over every time you call that function, so you declare it

as OPTIONAL giving it that value as default.

Function someName(parm1 As Integer, Optional parm2 As

Integer = 0)

Personally, I tend to avoid this clause, though. The problem is that

when you compile the code, you won’t catch all those calls that do NOT

specify the optional parameter. So, it’s very much possible that sooner

or later, you call the function without specifying the optional parameter

even when you should and never be aware of that. The output may be

wrong, but you may never notice that, and keep thinking that everything

is fine – until someone realizes that there’s a problem, and this is never a

good thing. I’m very careful when it comes to using OPTIONAL, and usually,

I prefer to take some more time to call the function with all its parameters,

every time.

Chapter 1 Writing Code: Good Practices and Tips

