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Preface

We are delighted to present the proceedings of the International Conference on Energy
Engineering (ICEE 2023), held in the vibrant city of Xi’an, China, from December 14–
16, 2023. ICEE brought together researchers and professionals from around the world
to exchange knowledge, share insights, and discuss the latest advancements in the field
of energy engineering.

The 81 papers included in this compilation represent a diverse array of topics, cov-
ering key areas such as new transportation energy, power and energy, applied thermal
energy, oil and natural gas engineering, and emerging trends in energy research. The con-
tributions within these proceedings reflect the collective efforts of researchers dedicated
to addressing the pressing challenges and opportunities in the ever-evolving landscape
of energy engineering.

We extend our sincere appreciation to all the authors who submitted their work and
the diligent efforts of the peer reviewers who ensured the quality and relevance of the
contributions. Special gratitude is also extended to the organizing committee, sponsors,
and participants who made this conference a resounding success.

Thank you for all contributions and dedication to advancing the frontiers of energy
research.
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Abstract. The amount of recoverable resources by in-situ conversion technol-
ogy of medium and low maturity shale oil is about (700–900) × 108 t, which
is an important replacement resource for oil and gas development. Air injection
technology of medium and low maturity shale oil is considered to be an efficient
means to improve the recovery of this kind of reservoir. This technology real-
izes the thermal cracking and transformation of solid kerogen by injecting air and
oxidizing organic matter to release a large amount of heat. At present, the oxida-
tion kinetics, thermal endothermic and exothermic characteristics of medium-low
maturity shale oil in Chang 7 reservoir in the southern margin of Ordos Basin
have not been studied. Chang 7 reservoir was selected as a homogeneous sample,
and its pyrolysis and oxidation characteristics in N2 and Air atmospheres were
tested by TG/DTG/DSC, and the relevant activation energy was calculated based
on Arrhenius theory. The results show that TOC content of Chang 7 shale oil sam-
ple is 21.75%. The oxidative heat release is 8.14 times of the thermal desorption
heat, in which the oxidative heat release is 10300.13 J/g, and the thermal desorp-
tion heat is 1265.19 J/g. The oxidation and pyrolysis activation energies of the
sample are 93.02 kJ/mol and 107.09 kJ/mol, and the pre-factor is 6.73E+09 s−1

and 2.71E+14 s−1, respectively. The research results provide basic parameters for
the numerical simulation of air injection development of Chang 7 reservoir in the
southern margin of Ordos Basin.

Keywords: Medium and low maturity shale oil · Oxidation characteristics ·
Pyrolysis characteristics · Activation energy · Preexponential factor

1 Introduction

China’s crude oil consumption and crude oil imports are growing year by year, accord-
ing to the data of the National Bureau of Statistics of China by 2020, crude oil imports
reached 78% of crude oil consumption, and crude oil dependence on foreign countries
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is serious [1]. The National Development and Reform Commission and the National
Energy Administration jointly issued the “14th Five-Year Plan for Modern Energy Sys-
tem” requiring that oil production should recover to 200 million tons by 2022 and
achieve stable production for a longer period of time [2]. In the current “dual carbon”
background, China has entered an important period of energy structure transformation.
The State Council issued the “complete, accurate and comprehensive implementation
of the new development concept to do a good job of carbon peak carbon neutral work”
and “2030 carbon peak action Plan Notice”, emphasizing the reasonable regulation of
energy consumption, accelerate the development of unconventional oil and gas strate-
gies. Therefore, the accelerated development of unconventional energy is an important
guarantee for China’s energy transition.

Shale oil is one of the important unconventional oil and gas resources, which is
produced by in-situ conversion of medium and low maturity shale oil and kerogen in
oil shale [3]. China’s shale oil resource endowment, low maturity shale oil (maturity
between 0.5% and 1.0%) in-situ conversion technology recoverable resources of about
(700~900) × 108 t [4], is an important oil and gas replacement resources.

However, in medium and low maturity shale oil and oil shale, organic matter mainly
exists in the form of solid kerogen, which is difficult to be directly extracted to the
surface by existing technology, and needs in-situmodification to transform solid kerogen
into free hydrocarbons for exploitation [5–11]. To solve this problem, in recent years,
scholars have proposed the air-injected in-situ combustion technology for medium and
low maturity shale oil or oil shale reservoir [12, 13]. Its principle is to carry out air-
injected in-situ combustion based on a complex pressure fracture network, and convert
solid kerogen into free hydrocarbons, such as oil and natural gas, through the heat
generated by in-situ combustion, and then exploit the converted free hydrocarbons along
the fracture channels. Qin et al. [12] mainly evaluated the air injection development
potential of Jimsar shale oil through numerical simulation methods, but they did not test
the oxidation/pyrolysis kinetics of kerogen in Jimsar shale oil reservoir. The oxidation
kinetic parameters used in the model refer to Lyudmila’s results on Bazhenov Shale
Formation [14]. In addition, Chang 7 shale reservoir in the southern margin of Ordos is
a medium and low maturity shale oil reservoir, and its pyrolysis hydrocarbon generation
kinetics has attracted much attention from scholars [15–19], but there are few reports
on its oxidation kinetics, thermal endothermic characteristics and oxidative exothermic
characteristics.

Therefore, based on the Chang 7 shale reservoir in the southern margin of Ordos
Basin, the heat absorption and heat release characteristics of medium and low maturity
shale oil under pyrolysis and oxidation conditions were studied by TG/DTG/DSC tech-
nology, and the thermal desorption heat and oxidation heat release heat were calculated.
The activation energy and pre-exponential factor of the pyrolysis/oxidation reactionwere
calculated by Arrhenius theory. The research results provide basic parameters for the
numerical simulation of air injection development of Chang 7 reservoir in the southern
margin of Ordos Basin.



Study on Oxidative Exothermic and Pyrolytic Endothermic 3

2 Experimental

First, the sample is treated as powder (> 100 mesh), thoroughly mixed evenly to reduce
sample heterogeneity. The total organic carbon content of the sample was measured,
and the pyrolysis characteristic curves of the sample under inert atmosphere and the
oxidation characteristic curves under air atmosphere were measured by TG/DSC. Based
on the integral of DSC characteristic curve, the heat required for pyrolysis and the heat
released by oxidation of a unit sample are calculated. It also provides data support for
dynamic calculation.

2.1 Samples Preparation

The study sample is black shale, taken from Chang 7 reservoir in the southern margin of
Ordos Basin, which belongs to medium and low maturity shale oil, as shown in Fig. 1.
The sample was ground to powder by grinding device, and less than 100 mesh powder
was screened through a 100-mesh screen, and fully stirred to mix it evenly.

Fig. 1. Sample sampling location and preparation.

2.2 Total Organic Carbon (TOC) Test

Total organic carbon refers to the organic carbon content per unit of sedimentary rock,
which is an important parameter to evaluate the amount of oil and gas resources. Free
hydrocarbons and solid organic matter (kerogen) usually exist in shale oil reservoirs
in medium and low maturity. TOC content is the important factor that determines
the heat endothermic of pyrolysis and heat release of oxidation combustion. TOC in
the sample was analyzed and studied by the Laboratory Equipment Corporation (type
SC832) to determine the pyrolysis/oxidation potential in the sample, as shown in Fig. 2.
The TOC analysis method is based on the Chinese national standard the standard that
Determination of Total organic carbon in Sedimentary rocks, GB/T 19145-2003.
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Fig. 2. Organic sulfur carbon analyzer (Laboratory Equipment Corporation, type SC832).

2.3 Synchronous Thermal Analysis Test

Synchronous thermal analysis combines thermogravimetric analysis (TG/DTG) with
differential thermal analysis (DSC). It is a reactor that develops a system to obtain ther-
mogravimetric loss and differential thermal signal of test samples simultaneously under
different gas flows. The thermogravimetric and differential thermal characteristics of
samples under different gas atmospheres were tested by a synchronous thermal ana-
lyzer to clarify the endothermic and exthermic characteristics of the test samples, and
to provide experimental data for the calculation of their pyrolysis or oxidation kinetics.
The NETZSCH STA 449F3 PC/PG equipped with TG/DSC (Fig. 3 France) was used
to conduct synchronous thermal analysis tests on the samples. The test gas types were
N2 and Air, respectively, the heating rate was 10k/min, and the heating interval was
30 °C~600 °C.

Fig. 3. NETZSCH STA 449F3 PC/PG equipped with TG/DSC (France).
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3 Kinetic Theory

Organic carbon, a hydrocarbon with very different chemical and physical properties,
exists in the form of free hydrocarbons and kerogen. Therefore pyrolysis/oxidation of
shale oil with lowmaturity has a complex phenomenon characterizedwhichmany simul-
taneous reactions. In this study, the kinetic data of pyrolysis reaction/oxidation reaction
of shale oil reservoirs with lowmaturity were obtained by DSC curves in N2 atmosphere
and Air atmosphere. The oxidation or pyrolysis reaction process of low-maturity shale
oil is considered to conform to the first-order reaction characteristics, because the gas is
always excessive relative to the test sample content (5 to 10 mg) under the development
system experiment.

Due to the high sampling frequency of DSC devices in non-isothermal sampling,
rapid reactions occurring in infinitesimal time intervals are considered to be isothermal
reactions based on differential ideas. Therefore, Formula (1) can be used to characterize
the oxidation or pyrolysis reaction rate of low mature shale oil.

dα

dt
= kf (α) (1)

In the above equation, t is the time corresponding to the chemical reaction, s. α is
the percentage of the change in energy (mass) in total energy (mass) at a given time.
K is the reaction rate constant corresponding to the chemical reaction, s−1. f (α) is a
transformation mechanism function. Arrhenius equation is the most important equation
of chemical reaction, which is often used to characterize temperature and chemical
reaction rate.

k = Aexp(−E/RT ) (2)

In the above equation, A is the Arrhenius constant (referring to the preexponential
factor), S−1. T is temperature, k. E is the activation energy of a chemical reaction, kJ/mol.
R is the gas constant, kJ·mol−1·K−1. The reaction model was considered to be a first-
order kinetic reaction, then the corresponding n= 1. Therefore, the conversion function
can be expressed in the form of Formula (3).

f (α) = (1− α)n (3)

When n = 1, it can be seen that the rate of chemical reaction depends only on the
reaction rate constant, the energy (mass) of the remaining sample, and the temperature
[19, 20]. The essence of the DSC curve is the change of reaction energy corresponding
to each moment, so the conversion rate corresponding to the DSC curve at each moment
can be calculated by Eq. (4).

α = Ht

H0
(4)

Ht is the enthalpy released at time t, kJ. H0 is the total enthalpy released when a
chemical reaction terminates, kJ. H is the enthalpy to be released, kJ. The reaction rate
equation is expressed in the form of Eq. (5) when Eqs. (2)~(4) are substituted into Eq. (1).

Ht
dt

H0
= A exp(−E/RT )

(
1− Ht

H0

)
(5)
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Equation (5) will be rewritten in the form of Eq. (6) when H = H0 − Ht .

Ht
dt

H
= A exp(−E/RT ) (6)

Take the logarithm of both sides of Eq. (6) to get Eq. (7).

Lg

(
Ht
dt

H

)
= LgA− E/2.303RT (7)

By linear fitting the relation curve between Lg(dHt/dt/H ) and 1/T, the related linear
equation can be obtained. The value of E can be obtained from the slope of the linear
equation, and the value of A can be estimated from the linear equation intercept. It should
be noted that the composition of organicmatter in shale oilwithmediumand lowmaturity
is complicated,which leads to its oxidation and pyrolysis reactions. Therefore, the kinetic
data obtained according to Eq. (7) should be considered as apparent parameters.

It must be noted that the chemical stage of medium to low mature shale oil contains
multiple reaction regions due to its complex composition. Therefore, if the whole reac-
tion stage is fitted linearly, there may be a phenomenon that the calculation of activation
energy is distorted due to poor fitting accuracy. In addition, the individual activation
energy of each region does not account for the contribution of each region to the total
reactivity. Therefore, the weighted average activation energy Ewm is often used to deter-
mine the activation energy of the entire reaction stage. The concept of weighted average
activation energy Ewm was first proposed by Cumming (1982) to determine the overall
reaction kinetic parameters of coal samples. Pu et al. (2015) used thismethod to calculate
the total activation energy of crude oil and crude oil + catalyst through TG/DTG/DSC.
In this paper, Ewm can be expressed as Formula (8).

Ewm = F1E1 + F2E2 + F3E3 (8)

Awm = F1A1 + F2A2 + F3A3 (9)

where Ewm and Awm are weighted average activation energy and Arrhenius constant
respectively. E1, E2, E3 and A1, A2, A3 are the single activation energies and Arrhenius
constants obtained in each region of the reaction stage, respectively. F1, F2 and F3 are
respectively the enthalpy fraction of the combustion material released in each region of
the sample.

4 Results and Discussion

4.1 TOC Test Results

The organic sulfur carbon analyzer was used to carry out two tests on the sample, the test
sample mass was 0.1030g and 0.0980g, respectively, the test TOC results were 21.9%
and 21.6%, and the relative error was 1.4%, as shown in Table 1. The TOC test result
was stable, and the average value of the total organic carbon content of the sample was
21.75%.
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Table 1. TOC test results.

Number of experiments Sample weight/g TOC/%

1 0.1030 21.9

2 0.0980 21.6

4.2 Pyrolysis Characteristics of Medium and Low Maturity Shale Oil

Theorganicmatter inmediumand lowmaturity shale oil reservoir exists as free hydrocar-
bon and solid kerogen, and free hydrocarbon volatilizes before 300 °C during pyrolysis.
After 300 °C, the solid kerogen gradually generates soft asphalt at high temperature, and
the soft asphalt is pyrolyzed again at high temperature to form oil and gaseous hydrocar-
bons. The TG/DTG/DSC characteristic curve tested under nitrogen atmosphere is shown
in Fig. 4. The mass loss is 1.8% at 30 °C~300 °C for the thermal volatilization stage,
and 15.8% at 300 °C~600 °C for the thermal cracking stage. It shows that most organic
matter exists in the form of kerogen, which is consistent with the pyrolysis characteristics
of medium and low maturity shale oil.

The non-isothermal absorption curve of DSC is regarded as countless isothermal
absorption processes, and the unit isothermal absorption heat is calculated by the formula
W = P·t, and the heat energy absorbed by the sample in the thermal volatilization and
thermal pyrolysis stages is calculated by integrating the time t. Therefore, the relationship
curve between DSC and time is drawn by Origin software, as shown in Fig. 5. As can
be seen from Fig. 5, all phases from 540 s to 3420 s are endothermic, and its integration
is the energy required in the pyrolysis process of medium and low maturity, and the
integration result is -1265.19 J/g. Therefore, in the pyrolysis process of this sample,
the complete pyrolysis of organic matter in each g sample requires 1265.19 J of heat
absorption.

Mass loss 1.8%

Thermal volatilization

Thermal cracking

Mass loss 

15.8%

Fig. 4. The relationship between TG/DTG/DSC and temperature in nitrogen atmosphere.



8 X. Jin et al.

-1265.19J/g
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Fig. 5. The relationship between DSC and time in nitrogen atmosphere.

4.3 Analysis of Oxidation Characteristics of Medium and Low Maturity Shale
Oil

Due to the complex state of organic matter in medium to low maturity shale oil, the
oxidation process becomes intricate. The oxidation of free hydrocarbons, which are
low-carbon hydrocarbons, involves a low-temperature oxidation reaction with oxygen,
releasing a significant amount of heat. Distinguishing the combustion deposition stage
from the oxidation of crude oil is challenging. Therefore, in this study, the oxidation
characteristics of medium to low maturity shale oil were divided into two stages: low-
temperature oxidation and high-temperature oxidation.

From the relationship curve (Fig. 6) between TG/DTG/DSC and temperature under
an air atmosphere, it can be observed that the low-temperature oxidation stage occurs
from 30 °C to 383 °C, with a mass loss of 5.1%, which is 3.3% higher than the thermal
volatilization stage. The high-temperature oxidation stage occurs from 383 °C to 600 °C,
with a mass loss of 24.7%, which is 8.9% higher than the thermal decomposition loss.
This indicates that medium to lowmaturity shale oil experiences greatermass loss during
the oxidation process.

The mass loss in the low-temperature oxidation stage can be attributed to the struc-
tural transformation of free hydrocarbons. Some adsorbed hydrocarbons or medium to
high carbon number hydrocarbons cannot completely volatilize before reaching 300 °C.
However, due to the strong reducing properties of oxygen, these hydrocarbons are con-
sumed, leading to a greater mass loss in the low-temperature oxidation stage compared
to the thermal volatilization stage. In the high-temperature oxidation stage, apart from
the oxidation reaction of kerogen, there is also a reaction with the dead carbon and inor-
ganic carbon in the rock, resulting in a much larger mass loss in the high-temperature
oxidation stage than in the thermal decomposition stage.
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In addition, both the low-temperature oxidation stage and the high-temperature oxi-
dation stage exhibit exothermic characteristics. By integrating the relationship curve
between DSC and time (Fig. 7), the oxidation heat release of medium to low maturity
shale oil was determined to be 10300.13 J/g. Therefore, during the oxidation process
of the sample, the complete oxidation of organic matter in each gram of the sample
releases 10300.13 J of heat. The specific heat release per unit mass in this sample (TOC
of 21.75%) is 8.14 times higher than the heat absorption during thermal volatilization.

Low Temperature Oxidation

Mass loss 5.1%

High Temperature

Oxidation

Mass

loss 

24.7%

Fig. 6. The relationship between TG/DTG/DSC and temperature in Air atmosphere.
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10330.13J/g

Fig. 7. The relationship between DSC and time in Air atmosphere.
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4.4 Kinetic Calculation Result

A relationship curve between Log(dHt/dt/H) and 1/T was plotted, and the curve was
segmented using Origin software (Figs. 8, 9). The segmented fitting of the thermal
decomposition kinetics of medium to lowmaturity shale oil corresponds to fractions F1,
F2, and F3, with values of 0.35, 0.34, and 0.31 respectively. Similarly, the segmented fit-
ting of the oxidation kinetics corresponds to fractions F1, F2, and F3, with values of 0.41,
0.31, and 0.28 respectively. The calculated parameters for the thermal decomposition
and oxidation kinetics of medium to low maturity shale oil using the kinetic method are
shown in Table 2. The activation energy (E) for thermal decomposition is 107.09 kJ/mol,
and the pre-exponential factor (A) is 2.71E+14 s−1. For oxidation, the activation energy
(E) is 93.02 kJ/mol, and the preexponential factor (A) is 6.73E+09 s−1.

From the calculation results, it can be observed that the activation energy for oxi-
dation is lower than that for thermal decomposition in medium to low maturity shale
oil. Furthermore, the heat release during oxidation is 8.14 times higher than the heat
absorption during thermal decomposition. This indicates that the heat release per unit
mass of shale oil oxidized in air is sufficient to meet the energy required for the thermal
decomposition of 8.14 units of shale oil per unit mass. These research findings provide
a fundamental basis for the in-situ modification of medium to low maturity shale oil by
air injection.

y1=11.18-8650.78x
R2=0.808

y2=1.79-1362.83x
R2=0.991

y3=14.93-6805.11x
R2=0.991

Fig. 8. The pyrolysis kinetics curves were
fitted in sections.

y1=10.2-7470.18x
R2=0.943

y2=2.64-1850.78x
R2=0.969

y3=6.6-4430.64x
R2=0.995

Fig. 9. The curve of oxidation kinetics was
fitted in segments.

Table 2. Dynamic settlement results of medium and low maturity shale oil.

Gas type Activation energy (kJ/mol) Preexponential factor/s−1

E1 E2 E3 Ewm A1 A2 A3 Awm

N2 165.64 26.09 130.30 107.09 1.49E+11 62.65 8.96E+14 2.71E+14

Air 143.03 35.44 82.92 93.02 1.63E+10 448.8 3.96 E+6 6.73E+09
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5 Conclusion

TG/DTA/DSC technology were used to study the pyrolysis and oxidation characteristics
of the medium-low maturity shale oil reservoir Chang 7 in the southern margin of Ordos
Basin, and the conclusions are as follows:

The pyrolysis of the sample can be divided into two stages: thermal volatilization
and thermal cracking. The temperature of the thermal volatilization stage ranges from
30 °C to 300 °C, and the TG loss is 1.8%. The temperature range of the pyrolysis stage
is 300 °C~600 °C, and the thermogravimetric loss is 15.8%.

The sample oxidation can be divided into two stages: low temperature oxidation
and high temperature oxidation. In the low temperature oxidation stage, the temperature
range is 30 °C~383 °C, and the thermogravimetric loss is 5.1%. The temperature range
of high temperature oxidation stage is 383 °C~600 °C, and the thermogravimetric loss
is 24.7%.

The oxidation of the sample releases 8.14 times more heat than it absorbs during
pyrolysis. The heat released by oxidation was 100300.13 J/g, and the heat absorbed by
pyrolysis was 1265.19 J/g.

The oxidation and pyrolysis activation energies of the sample are 93.02 kJ/mol and
107.09 kJ/mol, and the pre-factor is 6.73E+09 s−1 and 2.71E+14 s−1, respectively. It
shows that the sample can oxidize at a lower activation energy, which is beneficial to the
air injection technology of medium and low maturity shale oil.
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nology Research Project (2023KJGG17), Natural Science Foundation of Sichuan Province
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Abstract. In numerical simulation studies ofmethaneoxidation, significant errors
in simulation results can arise due to the uncertainty of reaction kinetics param-
eters. Therefore, this study aims to investigate the exothermic behavior of nat-
ural gas (primarily methane) oxidation in reservoir environments when injected
with hot air (mainly oxygen). The study incorporates experimental data from
combustion tube experiments to adjust the kinetic parameters, such as the pre-
exponential factor, used in the numerical simulation. By combining experimental
and numerical approaches, it is discovered that the significant errors in numerical
simulation are primarily caused by the orders of magnitude difference in the pre-
exponential factor between the actual experiments and the numerical simulation.
Both excessively high and low pre-exponential factors can result in significant
errors in chemical reaction rates. After experimental adjustments, the determined
pre-exponential factor is 1.09E8, resulting in a 2.7% error in the methane oxida-
tion kinetic model. Furthermore, the study confirms through dual verification of
experimental and numerical simulation that the methane oxidation temperature
can reach up to 450 °C. This research not only improves the accuracy of methane
oxidation kinetics simulation but also helps deepen the understanding of methane
oxidation behavior and mechanisms. It holds significant theoretical and practical
implications for optimizing in-situ hydrogen production from natural gas.

Keywords: Methane Oxidation · Kinetic Parameters · Combustion Tubes ·
Numerical Simulation · Parameter Correction

1 Introduction

The overall strategic goal of China’s energy system transformation is to establish a diver-
sified, clean, and low-carbon energy supply system [1]. In this transformation process,
hydrogen energy will play an important role, with its characteristics of being a “clean
and efficient secondary energy source, flexible and intelligent energy carrier, and green
and low-carbon industrial raw material.” Currently, over 50% of global hydrogen pro-
duction comes from natural gas, with even more than 90% in foreign countries [2, 3].
The methods for on-site hydrogen production from natural gas primarily involve the
injection of hot air to oxidize hydrocarbons, water-thermal cracking, or reforming into
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hydrogen. The exothermic oxidation of natural gas (mainly methane) provides a signifi-
cant amount of heat for water-thermal cracking in on-site hydrogen production, serving
as the foundation and key for efficient hydrogen generation.

Regarding the research on petroleum oxidation and reaction kinetics, many scholars
have established kinetic models and conducted extensive studies. Some of these models
divide crude oil into pseudo-components formodeling purposes, but in certain situations,
the physical properties of these pseudo-components are not explicitly defined [4–12].
Furthermore, some models are only applicable on specific simulators, making it chal-
lenging to generalize their use. The calculation of reaction kinetics parameters is usually
carried out in a small reaction space, and reservoir numerical simulation is widely used
in reservoir scale development. The main challenges in transitioning from experimen-
tal reaction dynamics parameters to field scale simulation include the determination of
crude oil combustion reaction models and corresponding dynamics parameters, as well
as the numerical error of minimizing grid size effects when using large grid blocks in
field scale simulation [13, 14]. Zhao Shuai and Barzin et al. [15, 16] also believe that the
frequency factors obtained in temperature experiment tests are often inaccurate and need
to be substantially adjusted in historical fitting. In recent years, the iso-transformation
method has been applied to the analysis of crude oil dynamic parameters [17]. This
method can obtain the apparent activation energy without introducing a specific reaction
model. After the reaction model is established, typical thermal reservoir simulation can
be used to match dynamic parameters and combustion tube experiments [18]. Modeling
ISC processes at the field scale presents additional challenges due to the narrow combus-
tion reaction front, which requires centimeter-scale mesh blocks to accurately capture
the dynamics. Because the mass and energy conservation equations of commercial heat
storage simulators are solved by the Arrhenius kinetic reaction term, the spatiotemporal
resolution of the reaction front is poor, so there are seriousmesh size effects or numerical
errors. Different empirical methods have been used in the past to mitigate this problem,
such as adjusting parameters and reservoir temperature values in dynamic calculations
[19, 20]. In addition to this, a comprehensive case study of heavy oil in-situ combus-
tion simulation ranging from laboratory experiments to field scale process modeling
is conducted. Including dynamic mod-el and combustion tube laboratory experiment,
the dynamic reaction model is established, and the experiment is matched historically.
Finally, the improved reaction model is used for field simulation. The modified reac-
tion kinetic parameters have been proved to be effective in field scale simulation [21].
This work can provide practical guidance for the predictive numerical simulation and
corresponding design of chemical reaction processes. Babushok has tested the kinetic
parameters of methane oxidation reaction, and its activation energy is 51.1 kJ/mol and
the pre-reference factor is 6.99E6 [22].

However, further gas reservoir scale simulation needs to be modified by fitting.
Based on the above research methods, methane oxidation kinetics was modified through
combustion tube experiment and numerical simulation to improve the applicability and
accuracy of gas reservoir scale simulation.
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2 Experimental Material and Methods

In order to incorporate themethane oxidation kinetics parameters tested in the laboratory
into the numerical simulation, the transition from the laboratory parameters to the field
scale was carried out. Therefore, combustion tube experiment was used to carry out
methane oxidation reaction. The experimental equipment includes combustion tube CT
device (Hai’an Petroleum Research Co., LTD) Fig. 1, Gas flowmeter, oxygen cylinder
and CH4 cylinder (concentration 99.99%), CT device contains temperature, pressure
control system and electric preheater. The core is prepared into 40–80 mesh cuttings for
filling, and the porosity after filling is about 35%. At the beginning of the experiment, the
prepared rock cuttings were first filled into the combustion tube, 8 ml water was injected
after vacuuming, and then methane gas was injected. The injection was stopped when
the injection pressure was 9 MPa, and the confining pressure was always adjusted to be
greater than about 2 MPa in the tube, and the ambient temperature was set to 100 °C.
After aging for 6 h, oxygen was injected at the rate of 250 ml/min, and the injection
amount was 4320 mL (calculated according to the carbon to oxygen ratio 1:1.5). The
temperature change of CT tube was recorded at an interval of 1 min.)

Fig. 1. Schematic diagram of combustion tube device

3 Numerical Simulation and Parameter Correction Methods

CMG-Starsmodule is used for numerical simulation analysis, and the process of physical
experiment can be reproduced by setting simulation conditions. The experimental results,
that is, the temperature change caused by methane oxidation reaction, were historically
fitted. The coremodel is divided into radial mesheswith a radius of 3.8 cm and a diameter
of 10 cm, and the total number of meshes is 1620, as shown in Fig. 2. Thermodynamic
parameters of the rock are shown in Table 1 [19]. The fluid model mainly considers


