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Welding Quality Target Detection Based
on YOLOv9 Lightweight Model

Mingzhu Fu1,2, Hongjun Wang2,3(B), Wenxian Yang4, Fan Jiang2,3, Zeyu Ma1,2,
and Yanyan Cui1,2

1 School of Mechanical Engineering, Beijing University of Information Science and
Technology, Beijing 102206, China

605602794@qq.com
2 Beijing International Science Cooperation Base of High-End Equipment Intelligent Perception

and Control, Beijing 100192, China
wanghongjun@bistu.edu.cn

3 School of Information Management, Beijing University of Information Science and
Technology, Beijing 102206, China

4 Centre for Efficiency and Performance Engineering, University of Huddersfield,
Hudders-Field HD1 3DH, UK

Abstract. To tackle the challenges of low accuracy, inefficiency, and data pro-
cessing complexities inherent in traditional welding quality detectionmethods, we
employ the Yolov9 lightweight model to precisely identify and detect key defects,
such as cracks and holes. We perform detailed annotation work on the dataset to
ensure data quality, and during detection, utilize Anchor boxes and a range of data
augmentation techniques to improve the accuracy and robustness of the model.
Through strict training and analysis of the data set, the parameters and structure of
themodel are constantly adjusted, after a large number of tests and verification, the
average accuracy of the model training results can reach 98.7%, and the evaluation
indicators such asAccuracy, Recall andmainAverage Precision also performwell,
and the optimized model has the characteristics of fast, accurate and lightweight.
The experimental results show that the model shows high accuracy and stability
in detecting welding defects, and can effectively identify various defect types in
the weld, and accurately determine their position and size. This result not only
proves the effectiveness of the Yolov9 model in welding nondestructive testing,
but also provides a reliable basis for the subsequent practical application.

Keywords: Deep Learning · YOLOv9 · Object Detection · Welding Defect

1 Introduction

In recent years, deep learning has made remarkable achievements in the fields of image
recognition, speech recognition, natural language processing and so on, fully demon-
strating its great application value and potential [1]. Especially in the field of target
detection, deep learning model has become the core of research and application. As
one of the key research directions of computer vision, target detection algorithm based

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
T. Liu et al. (Eds.): TEPEN 2024, MMS 169, pp. 1–12, 2024.
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on deep learning dominates for its efficient and accurate detection performance [2]. By
learning and analyzing the feature expression in a large amount of data, the deep learning
model can automatically extract and abstract the key features from the image, so as to
realize the accurate identification and positioning of the target [3]. Given the unique
advantages of the target detection technology, this study decided to apply it to the field
of welding defect detection.

With the continuous development of industrial technology, welding, as an important
means to connect the metal structure, the accuracy and efficiency of its quality detection
is of great significance for ensuring the product quality and production safety. Traditional
welding quality testing methods have problems such as low accuracy, low efficiency and
difficult data processing, which is difficult to meet the demand of modern industrial
production [4]. In contrast, the welding quality detection method based on deep learning
model has better adaptability and robustness, and can effectively copewith the challenges
such as diverse welding shapes and complex light conditions. At present, many studies
have tried to use deep learning model for welding quality detection. Say et al. proposed
an automatic method to identify multiple types of welding defects by processing X-ray
images, which is realized through intelligent fusion of data enhancement technology and
convolutional neural network [5]. Guo et al. proposed a welding defect classification
method based on lightweight convolutional neural network, which reduces structural
parameters under the premise of ensuring classification accuracy, and visualizes the
feature data of each convolutional layer, which improves the interpretability of themodel
[6]. Lei et al. used experimental data and simulated data to train Bayesian regularization
neural network (BRNN) and CNN to predict weld quality classification in ultrasonic
welding, and showed that BRNN and CNN have similar classification accuracy, but
compared with BRNN, CNN has advantages in training efficiency. These studies use
convolutional neural network to identify and classify weld defects, and have achieved
good results [7].

In the classic target detection YOLO series model [8], the researchers are committed
to optimize the network structure to improve the detection of small target defect sig-
nal, including Xu et al. Study small defects in pipe surrounding weld detection, using
convolution block attention module (CBAM) to optimize the YOLOv5 network model
structure, so as to improve the detection network is to extract small target defect signal
preference [9]. However, Shen et al. optimized the model by improving the C3 module
in YOLOv5 [10], while Zhen et al. adopted the ELAN structure based on gradient path
design, combined with deep separable convolution and Ghostv2 module to lightweight
theYOLOv5model [11]. In the application ofYOLOv7, Li et al. proposed to improve the
YOLOv7-tiny shaft sleeve surface defect detection algorithm to improve the detection
accuracy and efficiency of the shaft sleeve surface defects [12]. Xu et al. proposed an
improved YOLOv7 model to reduce the leakage rate of pipe weld surface defects [13].
In the application of YOLOv8, Su et al. proposed an improvement of YOLOv8 intel-
ligent detection method to improve the efficiency and accuracy of automatic detection
of digital ray imaging of aviation aluminum alloy welding defects [14]. However, these
methods usually require a large number of annotation data training, and model com-
plexity and computation is larger, based on this, this study using YoloV9 lightweight
model jointly developed by Taiwan, China Academia sinica and Taipei university of
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science and technology for welding quality detection [15], YOLOv9 model proposed
programmable gradient information (PGI) and general high efficiency layer aggregation
network (GELAN) architecture. PGI ensures that the model maintains the key features
of deep features during training, avoiding the problem of semantic loss, while GELAN
achieves higher parameter usage through traditional convolution,making themodelmore
lightweight, fast and accurate. In this study, YOLOv9 model is used for welding defect
detection, which aims to ensure the accuracy of defect detection, thus improving the
detection efficiency.

2 Experimental Principle

2.1 YOLOv9 Design Principle

YOLOv9 As a new generation of real-time target detection system, its design principle
is simple and powerful. The algorithm transforms the target detection task into a single
forward propagation process, which enables the whole target detection process to be
completed in a forward propagation, and has obvious advantages in speed over the tra-
ditional target detection algorithm. Secondly, the input image is usually a convolutional
neural network, which is transformed into a feature graph and performs target detection
on the feature graph at different scales. Key design features include the use of Anchor
boxes to assist target positioning, Anchor boxes is a pre-defined set of bounding boxes
that capture targets of different sizes and proportions, and YOLOv9 simultaneously pre-
dicts the offset and size of these boxes when predicting target frames, thus enablingmore
accurate target positioning. In addition, YOLOv9 adopts a series of data enhancement
techniques and training strategies to improve the robustness and generalization ability
of the model, such as random scaling, cropping, color transformation, etc. Through the
combination of these design principles, YOLOv9 can achieve accurate and fast target
detection while maintaining high efficiency, becoming one of the important algorithms
in the field of target detection. The formulas involved in the core module are as follows:

1) Convolution operations: Convolution operations are used to extract features from the
input feature graph.

Y = W ∗ X + b (1)

where X is the input feature graph, W is the convolution kernel, b is the offset
top, and ∗ is the output feature graph, representing the convolution operation.

2) Batch normalization: Batch normalization is used to speed up the training process
and improve the generalization ability of the model.

x
∧

i = xi − μ√
σ 2 + ε

(2)

yi = γx
∧

i + β (3)

where xi represents the i th element in the input data, μ is the mean of the input
data, σ is the standard deviation of the input data, γ and β are learnable scaling and
offset parameters, and ε is a small constant for numerical stability.
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3) Activation function: The activation function is used to introduce nonlinear character-
istics to increase the expression power of the model.

f (x) = max(0, x) (4)

The ReLU (Rectified Linear Unit) function sets the negative input value to zero
and keeps the positive value constant.

f (x) = 1

1 + e−x
(5)

The Sigmoid function is an S-shaped function that maps the real number to the
(0,1) interval.

f (x) = ex−e−x

ex + e−x
(6)

The Tanh function is also an S-shaped function, similar to the Sigmoid function,
but its output range is (-1,1).

4) Target detection loss function: The commonly used loss functions in target detec-
tion tasks include classification loss, localization loss, and confidence loss. Their
mathematical expressions are as follows:

Lcls = − 1

Nobj

∑S2

i=0

∑B

j=0
1objij log

(
p
∧c
i

)
(7)

where Nobj is the number of targets in each image, S is the size of each feature

graph, B is the number of bounding boxes in each cell, 1objij is an indicator variable

indicating whether the i th cell contains targets, and p
∧c
i is the predicted probability of

the model for the target category.

Lloc = λloc

Nobj

∑S2

i=0

∑B

j=0
1objij

[∑

k∈{x,y,w,h}smoothlocij (k)

]

(8)

where λloc is the weight of the localization loss, and smoothlocij (k) is the smooth
L1 loss function used to calculate the loss of the bounding box coordinate k.

Lconf = − 1

Nobj

∑S2

i=0

∑B

j=0
1objij log(p̂obji ) + λnoobj

∑S2

i=0

∑B

j=0
1noobjij log(1 − p̂obji )

(9)

where p̂obji is the confidence of the model about the existence of the target, and
λnoobj is the weight of the loss of the target.

2.2 Model Architecture

YOLOv9 The model architecture diagram is shown in Fig. 1, drawn according to
YOLOv9.yaml, and the detailed structure diagram of each module is shown in Fig. 2
[16].
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Fig. 1. Model architecture diagram.

Figure 1 shows the overall architecture of YOLOv9, which includes three major
parts: feature extraction network, neck network and head network. The feature extrac-
tion network is responsible for extracting the features from the input images, and it is
usually implemented by using the deep convolutional neural network (DCNN). The neck
network is responsible for the further fusion and enhancement of the features extracted
by the feature extraction network to improve the robustness and accuracy of the fea-
ture expression. The head network is responsible for target detection according to the
fused features, including tasks such as target classification, positioning and confidence
prediction.

Figure 2 illustrates the specific structure of the individual modules in the YOLOv9.
Specifically, the feature extraction network CSPDarknet53 consists of multiple resid-
ual modules, each containing multiple convolution layer, batch normalization layer and
activation function, to extract the features of the input image. The neck network con-
tains multiple SPP, modules and PANet structures, which are used to fuse and enhance
the features extracted by the feature extraction network. The head network consists of
multiple convolution layers, full connection layers and activation functions, which are
used to achieve target classification, positioning and confidence prediction tasks.
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Fig. 2. Module structure diagram.

3 Experiment Procedure and Results

3.1 Experimentation

Selection of the Dataset. The data was collected by engineers engaged in the welding
industry, ensuring the authenticity and representativeness of the data. The dataset covers
three core welding surface types, including cracks, holes and normal types, reflecting
the common defects in the welding process. To ensure the quality and versatility of
the dataset, we performed an exhaustive screening and precise annotation work. In
addition, a variety of expansion processing technologies, including data rotation, blur
processing, brightness adjustment and protection adjustment, are adopted to simulate
various situations that may occur in the actual scene. After careful arrangement and
analysis, we finally obtained a set of high quality and universal welding surface data set,
containing a total of 6854 pictures, including 1126 cracks, 5626 holes and 66 normal
pictures. Figure 3 is a representative case of the defects and the normal conditions.
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Fig. 3. Dataset types represent.

Training Process Setting. During the experiment, the YOLOv9 model was used to
make full use of the aforementioned programmable gradient information (PGI) and gen-
eral efficient layer aggregation network (GELAN) architecture. Following the standard
training process, the data set was divided into the training set, validation set and test
set. The training set was used to train the model, the validation set was used to adjust
the hyperparameters and monitor the model performance, while the test set was used to
evaluate the model performance on unseen data. Secondly, we pre-processed the dataset,
including the steps of normalization and data enhancement, to improve the generalization
ability of the model. During the training process, the stochastic gradient descent (SGD)
optimizer is used to train the model, and the appropriate hyperparameters such as learn-
ing rate and momentum are set. To prevent overfitting, we used an early-stop strategy at
the end of training, which terminated training early when the validation set performance
no longer improved. This strategy helps to improve the generalization performance of
the model and ensure that it performs well on unknown data.

3.2 Model Evaluation

It is very important to evaluate the model after the training. Evaluation the model can
help verify the generalization ability of the model, guide the further optimization of the
model training strategy, hyperparameter adjustment and network architecture design, and
improve the performance and robustness of the model. The mathematical expressions
for the common evaluation indexes are shown below:

1) mAP: Average accuracy is a commonly used evaluation index in the target detection
task, which comprehensively takes into account the precision and recall rate of the
detection results. The process of calculating the average accuracy includes calculating
the AP (Average Precision) for each category at different confidence thresholds, and
then taking the AP across all categories.

mAP = 1

N

∑N

i=1
APi (10)

where N is the number of categories, APi is the average accuracy of category i.
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2) Recall: recall refers to the ratio of the number of positive samples detected by the
model to the total number of positive samples. In the target detection task, the
proportion of targets detected by the model to all true targets.

Recall = TP

TP + FN
(11)

where TP is the true example (number of targets correctly detected by the model)
and FP is the false negative example (number of targets that the model failed to
detect).

3.3 Experimental Results

Table 1 shows the performance indicators of the model in various categories, including
accuracy (P), recall (R), mAP 50, and mAP 5095. These indicators collectively reflect
the performance of the model in detecting different types of welding surface defects. As
can be seen from the table, the model has the best performance in the Crack category,
with P and R close to 1, and mAP 50 and mAP 5095 are relatively high, reaching
0.987 and 0.834 respectively, showing the high sensitivity of the model to this type of
welding surface defects. This may be because the crack defects are more obvious in the
image, and the model can identify and locate more accurately. In the Porosity category,
the performance of the model decreased slightly, but still maintained high P and R,
and mAP 50 and mAP 5095 also performed well. For the Normal category, the model
performance was relatively low, with P and R slightly lower than the other categories.

Table 1. Model performance indicators.

Class Images Instances P R mAP50 mAP 5095

All 372 1414 0.851 0.824 0.825 0.586

Crack 372 236 0.983 0.972 0.987 0.834

Porosity 372 1165 0.823 0.815 0.842 0.563

Normal 372 13 0.748 0.686 0.648 0.359

In Fig. 4, we display performance curves for the model on the welded surface
dataset, including Precision-Recall and mAP-Recall. These curves visually illustrate the
model’s performance at various thresholds. Notably, the Precision-Recall curve indi-
cates the model’s strong performance in detecting crack and hole categories, with high
recall and accuracy, verified by its position near the upper right corner. Additionally, the
mAP-Recall curve demonstrates the model’s ability to maintain high average accuracy,
particularly evident in crack detection, showcasing its sensitivity to this defect type.

In Fig. 5, the ROC and PR curves provide a comprehensive assessment of themodel’s
performance at varying thresholds. The ROC curve evaluates classification performance,
with the model’s curve positioned close to the upper left corner for crack and hole
detection, indicating high True Positive Rate and low False Positive Rate, thus accu-
rately distinguishing defects. Similarly, the PR curve, depicting Precision against Recall,
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Fig. 4. Model performance curve.

showcases the model’s high recall and precision, particularly evident in crack and hole
detection, further validating its performance in identifying these defects.

In Fig. 6, we present index curves for themodel’s performance on thewelding surface
dataset, encompassing Accuracy, Recall, F1 Score, and AUC-ROC. These curves offer a
comprehensive evaluation of the model’s performance across varying training iterations
or thresholds. With increasing iterations, the model’s accuracy steadily improves and
stabilizes, indicating effective feature learning. Similarly, the recall curve illustrates the
model’s increasing ability to detect defect regions, achieving high recall. The F1 score,
a harmonic mean of accuracy and recall, demonstrates balanced performance, gradu-
ally improving and stabilizing with iterations. The AUC-ROC curve shows the model’s
overall performance across thresholds, steadily increasing and stabilizing, indicating
consistent performance across various thresholds.

In Fig. 7, we showcase the YOLOv9 model’s actual detection performance in weld
quality assessment. These images vividly illustrate the model’s capability to detect and
locate weld defects, even in small or irregular shapes, thanks to the powerful feature
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Fig. 5. Model performance evaluation curve.

Fig. 6. Indicator curve.

extraction and accurate boundary box regression of the YOLOv9 algorithm. Addi-
tionally, despite complex industrial environments such as oil pollution and rust, the
model accurately identifies defects and filters out background interference, showcasing
its adaptability and robustness trained across diverse scenarios.
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Fig. 7. Detection effect display

4 Conclusion

This study employs theYOLOv9 algorithm-based detectionmodel to effectively identify
and position weld defects, demonstrating high accuracy, recall, and F1 scores, particu-
larly for crack and hole categories, with AUC-ROC values indicating stable performance
across various thresholds. The optimized YOLOv9 model exhibits characteristics of
speed, accuracy, and lightweight, making it adaptable to real-time detection needs in
production environments. Despite its promising performance, challenges remain, such
as the need to address missed detections for special defect types by enriching the dataset.
Future research will focus on further optimizing the model structure and parameters,
integrating with hardware accelerators to enhance reasoning speed, exploring cloud
computing and big data technologies for remote monitoring and management of weld
quality, and enhancing model interpretability to improve user trust.
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(Grant No. Z201100008320004) and the National Natural Science Foundation of China (Grant
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Abstract. In bearing fault diagnosis, the residual network has achieved certain
results. However, in strong noise environment, the fault diagnosis accuracy of tra-
ditional residual network is not high. Therefore, this article proposes an improved
residual network with multi-channel (MCRN). In MCRN, each layer establishes
a directly connection with input data, and forming a multi-channel feature extrac-
tionmode. Then, we design themulti-channel integration algorithm to extract fault
features of signals. Thereby MCRN can obtain more complete fault information
from input data. Experiments are conducted on the IMS datasets, and the effec-
tiveness ofMCRN is demonstrated. Compared with traditional methods, when the
signal-to-noise ratio reaches −4 db, the accuracy of MCRN keeps over 95%.

Keywords: Residual Network · Multi-channel · Integration Aggregation ·
Bearing Fault Diagnosis

1 Introduction

Rolling bearings, as the key components in rotating machinery, are widely used in
fields such as aerospace, electricity industry, metallurgy, and machinery. According to
statistics, about 30% of mechanical failures are related to bearing damage [1]. If the
bearing fault is not found timely, it will evolve into serious mechanical failure, even
cause equipment damage, production stoppage and personnel casualties. Therefore, the
bearing fault diagnosis has important theoretical and practical significance, which can
ensure the safe operation of mechanical equipment [2, 3].

Residual neural network (ResNet) is one of the most important models in deep learn-
ing. It is proposed by four scholars from Microsoft Research, who won the competition
in the ImageNet Large Scale Visual Recognition Challenge in 2015 [4]. ResNet can
automatically extract useful information from massive data and pictures. So, ResNet
has attracted increasing attention from academia and industrial communities [5]. They
use residual networks to extract fault features from monitoring signals of mechanical
equipment, and judge the operating status of bearings, and determine bearings’ failures
[6–8]. Hu et al. [9] advantaged prior knowledge to improve residual shrinkage prototype

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
T. Liu et al. (Eds.): TEPEN 2024, MMS 169, pp. 13–22, 2024.
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network and solve the fault diagnosis challenge under limited labeled samples. He et al.
[10] proposed an inverted residual convolutional network for flywheel bearing diagnosis,
whichwas basedonparameter optimizationwith variationalmodedecomposition. Zhang
et al. [11] combined a threshold adaptive activation function into Residual Network for
bearing fault diagnosis. Yan et al. [12] adopted multi-attention mechanism to improve
residual network for mechanical fault diagnosis. Zhang et al. [13] used channel-spatial
attention mechanism to improve the kernel election in deep residual network, which
can fuse the signals’ feature for mechanical fault diagnosis. Zhao et al. [14] constructed
different structures of residual shrinkage networks and researched their affections for
bearing fault diagnosis. Xu et al. [15] constructed spiking residual shrinkage network
for bearing fault diagnosis and effectively improves the accuracy. Yu et al. [16] adopted
ResNet-152 with multi-scale stacked receptive field in bearing fault reconstruction diag-
nosis and achieved good results. Wen et al. [17] used ResNet-50 to construct a transfer
convolution neural network for fault diagnosis. From this, ResNet can mine the fault
information in signals and directly establish a mapping between monitoring data and
bearing status. Therefore, ResNet can achieve end-to-end fault diagnosis, eliminating
the dependence of fault diagnosis methods on manual feature design and diagnostic
experience.

However, in strong noise environments, the fault characteristics in signals are mixed
with various noises, the various fault feature values of bearings are extremely similar.
The bearing fault characteristics in the signal are inherently weak, and fault character-
istics are easily masked by noise. To address this issue, we design multiple channels
to improve the traditional residual networks (MCRN). In MCRN, it establishes direct
connections between each hidden layer and input data, so it establishes a multi-channel
learning mechanism in every hidden layer with the input signals. Each hidden layer
utilizes multi-channel mechanism to reconstruct information from traditional process
features and raw signals. So MCRN may more fully capture bearing fault features from
original signals. Then experiments were conducted under different noise intensities, and
the results showed that MCRN can more completely extract bearing fault information,
thereby MCRN can improve the accuracy of bearing fault diagnosis in strong noise
environments.

The structure of remaining parts can be depicted in the following structure. Section 2
introduced the theoretical basis of residual network. Section 3 provided the residual net-
work with multiple channels. Section 4 elaborated the proposed fault diagnosis method.
Section 5 showed the details of the experiments and results. Then a conclusion followed
in the last section.

2 Theoretical Basis of Residual Network

ResNet, as a kind of deep convolutional neural network, it consists of multiple residual
blocks in series. In ResNet, each convolutional layer does not directly map the input to
the output, but through “shortcut connections”, it spans several layers to add the input to
the output. The core of residual neural networks is residual building blocks. The structure
of the basic residual block is shown in Fig. 1, which is divided into two parts: direct
mapping and residual part.
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ReLU

x

ReLU

F(x)

F(x) + x

Fig. 1. Traditional Residual block structures.

The input of the residual block is x, the output is H (x), the forward neural network
layer is F (x), and F (x) = H (x) - x. For example, when a forward neural network layer
contains two weight layers, F (x) and x are added element by element. As shown in the
Eq. (1): F (x, {Wi}) is residual mapping to be learned; F (·) is residual function; W1 and
W2 are weight parameters; σ is ReLU activation function.

{
y = F(x, {Wi}) + x
F = W2σ(W1x)#

(1)

When the two mappings’ dimensions are different, firstly a linear mapping on x is
performed to match the dimensions, then add them together. In the Eq. (2): Ws are the
mapping weights of input x.

{
y = F(x, {Wi}) + Wsx

F = W2σ(W1x)
(2)

When using the traditional residual block in bearing fault diagnosis, ResNet can
establish the relationship between faults and vibration in a bottom-up feature extraction.
And ResNet uses some activation functions and dropouts’ techniques to improve the
model’s anti-interference ability. However, traditional residual block only adopts single
kernel and additional operation to compute the feature value, when two-pixel values
are added together, there is a situation of mutual cancellation, it may lead to useful
information loss. Especially the simple bottom-up feature extraction, when the front
layer fails to fully capture fault features, the back layer cannot contact the original signal
and previous feature layers, which cannot compensate for the lost useful information,
resulting in incomplete feature extraction and affect the accuracy of fault diagnosis.

3 Improved Residual Neural Network with Multi-channel

Due to the incomplete feature extraction of signals by traditional residual networks,
we propose a multi-channel residual network model. The model consists of two parts:
multi channels connection and channels integration. As shown in Fig. 2, the entire
network consists of three channels, each channel contains multiple intermediate layers,
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connection layers, and transition layers. Between various connection layers, we use
integration operation formulti-channel cascading, and generatemultiple transition layers
during the integration process. The intermediate results of each transition layer are
convolved and merged by the intermediate layer, and then the features are collected to
the next connecting layer. The multi channels directly establishes links at various layers
of the network, it allows input data to connect with each hidden layer, and the hidden
layers are also interconnected. Then, we design an integration operation to control the
computational complexity and parameter size, and it cascades each stacked feature with
the original signals in each hidden layer.

W0

H(.) H(.)

W1+bW0+b

H(.)

W2+b

H(.)

W3+b

H0

y1

W1 W2 C3 C4

H0

y2

H0

y3

H0

yi yj

H0

Fig. 2. Structure of multi-channel residual neural.

Firstly, the input layer is convolved with the convolution kernel to obtain a feature
layer. The operation process is shown in Eq. (3).

ylj =
∑

i
wl
i,j · xl−1

i + blj (3)

Among them: ylj represents the output of the l-th layer, it concats the j-th layers and

the i-th layer;wl
i,j represented as the weight of the convolutional kernel; x

l−1
i represented

as the i th feature to be operated on in the (l-1)-th layer; blj is the bias value.
As a linear transformation, convolution operations cannot handle non-linearmapping

relationships. In order to improve the non-linear processing ability of the model, the
Leaky ReLU activation function is introduced to perform non-linear mapping on the
convolutional output, enhancing themodel’s non-linear expression ability. Among them,
the ReLU function sets values less than or equal to 0 to 0.1, which may cause gradient
vanishing problems. The Leaky ReLU function optimizes the ReLU function by linearly
interpolating the negative output, avoiding the problem of gradient vanishing that may
cause the death of the convolution kernel. The ReLU function and Leaky ReLU function
are shown in Eq. (4) and Eq. (5), respectively. Among them, alj represents the activation

value output by the convolutional layer of ylj . a is a lead parameter less than 1, usually
taken as 0.01.

alj = max
(
0, ylj

)
(4)
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f (x) =
{
x, x > 0
ax, x ≤ 0

(5)

Then each layer obtains additional inputs from all preceding layers, and passes on
its own feature-maps to all subsequent layers. As shown in Eq. (3), the convolution layer
l receives the feature-maps of all the layers, x0xl-1, as input:

xl = Hl,k [Convolution(x0, . . . , xl−1)] (6)

where Hl,k (·) is the nonlinear transformation operation of layer l in MCRN. It can be
a composite function such as BN, ReLU, and Conv. The term k refers to the number
of feature maps, which produces by each function Hl. If each function Hl produces k
feature-maps as output, it follows that the l-th layer has k × (l − 1) + k0 input feature-
maps, where k0 is the number of multi-channels. To prevent the network growing too
wide, we limit k to a small integration and it can improve the parameters efficiency.

Themulti-channel canmake use of features fromvarious angles, reduce the impact of
noise on features, increase the output diversity. In addition, short-circuit connections are
established between each layer to make the deep convolution and shallow convolution
more closely connected. The output loss value can effectively constrain the optimization
direction of parameters and accelerate the convergence speed of the network. Ultimately,
multi-channel extracts the fault feature informationmore completely and comprehensive.

The overall flow chart is illustrated in Fig. 3. The yellow part is the data processing
stage, which includes data acquisition, overlapping sampling, and STFT. The blue part
is the fault diagnosis stage, which includes training of MCRNmodel and early diagnosis
of bearing fault under strong noise environments.

Because MCRN is based on residual networks, it mainly extracts features and rec-
ognizes patterns from image information. As the two-dimensional spectrograms can
simplify the complexity of the signal, making feature extraction easier. To this end,
we use Fast Fourier Transform (FFT) to transform the original one-dimensional vibra-
tion signal into two-dimensional image data, which load into MCRN as the input data
for bearing fault feature extraction and fault type recognition. Because the number of
vibration signals collected in the experiments is limit, we use resampling to process the
original vibration signals. The slide window size is 2048 and a slide step size is 100.
Starting from the starting position, build a data sample using 2048 sampling points at a
time by sliding the window.

After data preprocessing, the time-frequency graphs are input into the MCRN. The
MCRN consists of an initial layer, four channels, three transition layers, and one classi-
fication layer. As shown in Table 1, the structure in multi-channel is BN + ReLU + 1 ×
1Conv+BN+ReLU+ 3× 3 Conv. The initial layer is made up of a 7x7 conv and a 3x3
max pool. The convolution kernel has relatively small size and number. Therefore, the
training parameters of the whole network will be relatively reduced. The transition layer
of channel connection is composed of 1 × 1 convolution and 2 × 2 aggrege pooling. In
the transition layer, the average pool sampling function is used to change the feature size
and reduce the feature dimension, so as to reduce the model parameters. Finally, feature
mapping inputs to the full connection layer through global pooling, which outputs the
final fault diagnosis result.
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Fig. 3. Flow chart of bearing fault diagnosis using MCRN.

Table 1. Model parameters.

Layers Output Size Parameters

Initial layer 17 × 9 7 × 7 conv
3 × 3 max pool

Multi-channel Block (1) 17 × 9 1 × 1 conv
3 × 3 conv

× 4

Transition Layer (1) 8 × 4 1 × 1 conv
2 × 2 average pool

Multi-channel Block (2) 8 × 4 1 × 1 conv
3 × 3 conv

× 4

Transition Layer (2) 4 × 2 1 × 1 conv
2 × 2 average pool

Multi-channel Block (3) 4 × 2 1 × 1 conv
3 × 3 conv

× 4

Transition Layer (3) 2 × 1 1 × 1 conv
2 × 2 average pool

Multi-channel Block (4) 2 × 1 1 × 1 conv
3 × 3 conv

× 4

Classification Layer 1 × 1 1 × 1 global average pool
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4 Experiment

4.1 Bearing Fault Detection of IMS Datasets

IMS Datasets is a full life cycle bearing experiment that provides rich data for bearing
fault diagnosis. Figure 4 shows the IMSbearing test bench at theUniversity ofCincinnati.
The AC motor keeps a constant rotation speed of 2000 RPM and links to the shaft
with friction bands. The shaft has four ZA-2115 double-row roller bearings. A spring
mechanism applies 6,000 libraries of radial load to the bearings. All the bearings are
force-lubricated. The sampling frequency of the sensor is set to 20 kHz. The IMSdatasets
contain three sub datasets, each of which records the whole process of bearing from
normal operation to damage. This section uses the datasets of Bearing 1, Bearing 2,
Bearing 3, and Bearing 4. The corresponding types are outer ring fault, normal, outer
ring fault, and rolling element fault.

Fig. 4. IMS Bearing Test Bench.

The IMS experimental data set is shown in Fig. 5. For example, the states of Bearing-
1 are relatively stable before 5410 min. But between 5410 and 5520 min, there is a small
variation in the RMS, which suggests that the bearing has an early failure. Between 7020
and 9000 min, there is a fluctuation in the RMS, which suggests that the fault level is at
the middle stage. The RMS increases after 9000 min, and reaches the maximum value
at 9790 min, which means that the bearing has reached life limit. In the IMS Bearing
datasets, bearing1 has no fault, and the vibration signal of 0110 min is taken as the
normal data point. Bearing2 and Bearing3 have different degrees of outer ring failure
in IMS experiment. Between 5410 and 5520 min, the vibration signal represents the
early outer ring fault in Bearing 1. The early outer ring fault in Bearing3 is indicated by
the vibration signal from 58900 to 59690 min. The vibration signal of 16501760min in
Bearing4 is taken as the data point of early rolling body failure. There are 4,305 samples
in each category.

The IMS experimental data set is shown in Table 2. In all 17,220 samples divided
into a training set and a test set in a 7:3 ratio. In order to simulate the environmental
noise of different degrees in actual engineering production, we add the Gaussian white
noise of 0 dB, −1 dB, −2 dB, −3 dB and 4 dB into the vibration signal to build the test
set respectively.


