Oliver Jöbstl · Jürgen Lipp · Manfred Strohrmann

WORKBOOK – Digitale Transformation des QM

Data-Science-Innovationen erfolgreich umsetzen

Jöbstl/Lipp/Strohrmann • Workbook – Digitale Transformation des Qualitätsmanagements

Ihr Plus – digitale Zusatzinhalte!

Auf unserem Download-Portal finden Sie zu diesem Titel kostenloses Zusatzmaterial. Geben Sie dazu einfach diesen Code ein:

plus-6dfps-ja9ud

plus.hanser-fachbuch.de

Oliver Jöbstl / Jürgen Lipp / Manfred Strohrmann

Workbook - Digitale Transformation des Qualitätsmanagements

Data-Science-Innovationen erfolgreich umsetzen

Print-ISBN 978-3-446-47762-9 E-Book-ISBN 978-3-446-48043-8

Grund sind die im vorliegenden Werk enthaltenen Informationen für Autor:innen, Herausgeber:innen und Verlag mit keiner Verpflichtung oder Garantie irgendeiner Art verbunden. Autor:innen, Herausgeber:innen und Verlag übernehmen infolgedessen keine Verantwortung und werden keine daraus folgende oder sonstige Haftung übernehmen, die auf irgendeine Weise aus der Benutzung dieser Informationen – oder Teilen davon – entsteht. Ebenso wenig übernehmen Autor:innen, Herausgeber:innen und Verlag die Gewähr dafür, dass die beschriebenen Verfahren usw. frei von Schutzrechten Dritter sind. Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt also auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten

wären und daher von jedermann benützt werden dürften. Die endgültige Entscheidung über die Eignung der Informationen für die vorgesehene Verwendung in einer bestimmten Anwendung liegt in der alleinigen Verantwortung des Nutzers. Bibliografische Information der Deutschen Nationalbibliothek:

Alle in diesem Werk enthaltenen Informationen, Verfahren und Darstellungen wurden zum Zeitpunkt der Veröffentlichung nach bestem Wissen zusammengestellt. Dennoch sind Fehler nicht ganz auszuschließen. Aus diesem

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte

bibliografische Daten sind im Internet unter http://dnb.d-nb.de abrufbar.

Dieses Werk ist urheberrechtlich geschützt.

Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung des Werkes, oder Teilen daraus, vorbehalten. Kein Teil des Werkes darf ohne schriftliche Einwilligung des Verlages in irgendeiner Form (Fotokopie,

Mikrofilm oder einem anderen Verfahren), auch nicht für Zwecke der Unterrichtsgestaltung – mit Ausnahme der in den §§ 53, 54 UrhG genannten Sonderfälle –, reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden.

Wir behalten uns auch eine Nutzung des Werks für Zwecke des Text- und Data Mining nach § 44b UrhG ausdrücklich vor.

Aus Gründen der besseren Lesbarkeit wird auf die gleichzeitige Verwendung der Sprachformen männlich, weiblich und divers (m/w/d) verzichtet. Sämtliche Personenbezeichnungen gelten gleichermaßen für alle Geschlechter.

© 2024 Carl Hanser Verlag München www.hanser-fachbuch.de

Lektorat: Lisa Hoffmann-Bäuml
Herstellung: Carolin Benedix
Satz: Eberl & Koesel Studio, Kempten
Covergestaltung: Max Kostopoulos
Titelmotiv: © gettyimages.de/berya113
Druck und Bindung: Hubert & Co. GmbH und Co. KG BuchPartner,
Göttingen

Printed in Germany

Inhalt

l	War	rum dieses Workbook?	X
2	Einf	ührung in Data Science	4
	2.1	Arten von Use Cases	5
	2.2	Machine Learning und künstliche Intelligenz	7
	2.3	Typische Anwendungsfälle von Machine Learning	9
3	Vor	gehensmodell	14
1	Die	richtigen Use Cases finden und	
	vers	stehen	18
	4.1	Prozess identifizieren und	
		abgrenzen	20
	4.2	01001010101101101010101010	
		verstehen	22
	4.3	Prozessorientierte Use-Case-Ideen	
		ableiten	24

	4.4	Produkt- und serviceorientierte	
		Use Cases finden	26
	4.5	Use-Case-Ideen priorisieren	28
	4.6	Use Cases aus Kundensicht detail-	
		lierter beschreiben	30
	4.7	Business Case beschreiben	32
	4.8	Use Cases final bewerten und	
		auswählen	34
5	Busi	iness-Ziele ableiten und Projekt	
	plar	nen	36
	5.1	Agile Projektorganisation	
		1-0-10 11 0) 0111101 01111011	
		aufsetzen	38
	5.2		38
		aufsetzen	38 40
		aufsetzen	
	5.2	aufsetzen	40
	5.2 5.3	aufsetzen	40
	5.2 5.3	aufsetzen	40
	5.25.35.4	aufsetzen	40 42 44

6	6 Daten erheben und verstehen			8	Lösungen ausarbeiten und bewerten			
	6.1	Relevante Features finden	50		8.1	Visualisierungslösungen designen	82	
	6.2	Datenerfassung planen	52		8.2	Dashboard-Lösungen ausarbeiten	84	
	6.3 6.4	Messsystemfähigkeit sicherstellen Datenbedarf abschätzen	54 56		8.3	Test- und Tuning-Strategie festlegen	86	
	6.5	IT-Infrastruktur für die Daten- speicherung entwickeln und	30		8.4	Regressionsmodelle trainieren, tunen und testen	88	
	6.6	realisieren	58 60		8.5	Klassifizierungsmodelle trainieren, tunen und testen	90	
	6.7	Datensätze durch Versuche erzeugen	62		8.6	Neuronale Netze trainieren, tunen und testen	92	
	6.8	Eindimensionale Daten verstehen	64		8.7	Cluster-Verfahren trainieren und tunen	94	
	6.9	Mehrdimensionale Daten verstehen	66		8.8	Reinforcement-Verfahren trainieren, tunen und bewerten	96	
7	Date	en präparieren	68		8.9	Large Language Models feintunen	98	
	7.1	Daten bereinigen	70		8.10	Zeitreihen zerlegen und		
	7.2	Relevante Features auswählen und konstruieren	72		8.11	visualisieren	100	
	7.3	Features codieren	74			identifizieren	102	
	7.4	Daten komprimieren (Dimension reduzieren)	76		8.12	Bestes Modell auswählen	104	
	7.5	Zeitreihen vorverarbeiten	78					

9 Lösung validieren			11 Lösung warten und aktualisieren 128				
	9.1	Interpretierbarkeit von Machine- Learning-Modellen sicherstellen 108		ngsverhalten des Modells eiben130			
	9.2 9.3	Lösung auf Plausibilität prüfen 110 Ergebnis aus der Business-		-Überwachung für Modell- arbeiten			
		Perspektive bewerten		-Überwachung für Daten- arbeiten			
	3.4	FIOZESS TEVIEWEII 114		isierungsstrategie festlegen 136			
10 Lösung einführen und industrialia sieren				ng und Wartung von dellen automatisieren			
	10.1	Nicht-funktionale Anforderungen und Architekturtreiber identifizieren		s)			
	10.2	Entscheidung treffen bezüglich On-Premises oder Cloud-Service- modellen	13 Index				
	10.3	IT-Infrastruktur für die Produktiv- setzung erarbeiten 122					
	10.4	IT-Architekturvarianten bewerten und entscheiden 124					
	10.5	Data-Science-Lösung einführen und Vertrauen aufbauen 126					

Warum dieses Workbook?

Unternehmen können sich immer weniger auf den vergangenen Erfolgen ausruhen. Die Mitbewerber, die Technologien und der Markt müssen ständig beobachtet werden, um den Innovationsbedarf und die damit verbundenen Chancen rechtzeitig zu erkennen und zu nutzen. Innovationen systematisch umzusetzen, ist mehr denn je ein essenzieller Erfolgsfaktor, und ein wesentliches Innovationspotenzial liegt in der Digitalisierung und den damit generierten Daten, die viel zu oft in Unternehmen ungenutzt bleiben.

In dem Buch "Die digitale Transformation des Qualitätsmanagements" zeigen die Autoren Möglichkeiten auf, die Digitalisierung dazu zu nutzen, das Qualitätsmanagement auf ein deutlich höheres Niveau zu heben, beispielsweise durch digitale QM-Systeme oder durch die Verbesserung der Produkt- und Prozessqualität mithilfe von Daten und digitalen Technologien. In dem Buch wird auch ein Vorgehensmodell zur systematischen Identifikation und Umsetzung von Use-Case-Ideen zur Prozessverbesserung vorgestellt. Aufgrund der häufig gestellten

Fragen zu dem Thema und der hohen Praxisrelevanz haben sich die Autoren entschlossen, diese Vorgehenslogik im Detail zu erläutern und in Form des vorliegenden Workbooks umsetzungsorientiert zur Verfügung zu stellen.

Dieser Praxisleitfaden fokussiert sich nicht ausschließlich auf das Thema Qualitätsmanagement, sondern bezieht sich auf alle Arten von datengetriebenen Innovationen mit Fokus auf das industrielle Umfeld, wobei das Spektrum von einfachen Visualisierungslösungen bis hin zu Prognosemodellen mithilfe von Machine Learning und künstlicher Intelligenz reicht. Diese Innovationen im Bereich Data Science können sich einerseits darauf beziehen, neue digitale Lösungen und Services mit Mehrwert für Kunden zu entwickeln, und andererseits darauf, die bestehenden Prozesse systematisch und kontinuierlich hinsichtlich Effektivi-

Bild 1.1 Die Wirkung von Innovationen im Bereich Data Science

tät, Effizienz und Flexibilität zu verbessern. Darüber hinaus können neue Business-Modelle generiert werden, die eine völlig neue Art der Leistungserbringung und -verrechnung mit sich bringen (Bild 1.1).

Die Möglichkeiten hierzu sind in den letzten Jahren enorm gestiegen – nicht nur, weil immer mehr Daten zur Verfügung stehen, sondern weil aktuell auch die Möglichkeiten zur Verarbeitung von großen Datenmengen vorhanden sind und entsprechende intelligente Algorithmen in rasender Geschwindigkeit weiterentwickelt wurden, wie am jüngsten Hype um ChatGPT zu sehen ist.

Die Vorgehensweise vom Finden der erfolgversprechendsten Use Cases hin zur gewinnbringenden und nachhaltigen Umsetzung muss jedoch von Unternehmen beherrscht werden. Dieser Prozess ist unternehmensspezifisch durch die Definition von entsprechenden Verantwortlichkeiten und Rollen zu organisieren. Es handelt sich hierbei um einen hochgradig interdisziplinären Prozess, weil die unterschiedlichsten Kompetenzen, beispielsweise Fachexperte, IT-Spezialist, Data Analyst und Software Designer eine gute Gesprächs- und Arbeitsbasis finden und ein einheitliches Bild für die Vorgehensweise erarbeiten müssen. Dies geschieht in einer sehr komplexen Ausgangssituation, wo der Erfolg der Innovation keineswegs garantiert werden kann.

Erfolgsentscheidend ist eine Vorgehenslogik, die Orientierung und Klarheit schafft, für effektive Teamarbeit sorgt und je nach Aufgabenstellung geeignete Techniken vorschlägt, die in zielführender Art und Weise zu verwenden sind. Genau diese Vorgehenslogik wird in diesem Workbook vorgestellt.

Einführung in Data Science