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Digital Twins: Revolutionizing Automotive
Supply Chains

Maria Triantafyllou1(B) , Ammar Al-Bazi2 , and Mahmood Abdulsattar Ahmad2

1 Warwick Manufacturing Group, University of Warwick, Coventry CV4 7AL, UK
maria.triantafyllou@warwick.ac.uk

2 Aston Business School, Aston University, Birmingham B4 7ET, UK

Abstract. This paper explores the transformative potential ofDigital Twins (DTs)
in the automotive sector, particularly in the context of the 4th industrial revolution.
It delves into the evolution of DTs from their origins to their current applications
to highlight the rapid technological advancement and the increasing influence
DTs have on various industries and contexts. It discusses how DTs, powered by
advanced technologies like IoT, Big Data analytics, and simulation techniques,
are being adopted by automotive manufacturers to enhance the lifecycle manage-
ment of vehicles and optimize supply chain processes. It examines the role of DTs
in various stages of a vehicle’s lifecycle, from its conceptualization and design
to predictive maintenance and disposal to highlight the importance for interop-
erability and improved integration with other advanced technologies. Moreover,
it identifies key research gaps that need to be addressed for further advancement
in this field. It emphasizes the importance of fostering DT integration with other
disruptive technologies and developing robust data management strategies. It calls
for collaborative efforts in research and industry to bridge the existing gaps and
fully unlock the potential of DTs in the automotive sector.

Keywords: Digital twins · automotive supply chains · Internet of Things · AI

1 Introduction

Over the course of the past decade, Digital Twin (DT) applications have seen a tremen-
dous growth across a plethora of industries including the manufacturing, construction,
healthcare, and automotive sectors. The remarkable acceleration in the adoption of DT
has been fostered by the rapid advent of the 4th industrial revolution, especially since the
onset of Covid-19 pandemic, that has propelled manufacturing operations and supply
chains into an era of becoming ‘smarter than ever’. According to a report by McKinsey
[1], a DT is ‘a virtual replica of a physical object, person, or process that can be used to
simulate its behavior to better understand how it works in real life. DTs are linked to real
data sources from the environment, which means that the twin updates in real-time to
reflect the original version’. That provides DTs with the capability to represent complex,
real-world systems with high accuracy helping designers to understand what is happen-
ing in real-time and optimize their physical counterpart, contrary to static simulations

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
Y. Benadada et al. (Eds.): GOL 2024, LNNS 1104, pp. 3–13, 2024.
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that typically do not interact with the real world in real-time but rely on historical data
and assumptions and are used to test a wide number of possible scenarios in a rather
time-consuming and expensive way.

IBM [2] classified DTs under 4 categories of twins according to their level of product
magnification: (i) individual components or parts of a larger system (e.g. car engine or
tires), (ii) a complete product or asset (e.g. an entire car or a manufacturing machine),
(iii) a collection of assets that work together as a unit or system (e.g. an assembly line
in a plant), and (iv) an entire process which may involve multiple systems or units (e.g.
supply chain). Their development necessitates the integration of various resources (e.g.
IoT devices, sensors, actuators, network devices, hardware components, and software
systems). Despite this, the benefits they offer in terms of increased operational efficiency,
improved product development, increased sales, reduced costs, faster turnaround times,
and enhanced customer satisfaction make them a valuable investment for many differ-
ent players. For example, the engineering sector uses DTs to enable real-time process
insights and controls; the construction and the oil and gas sectors use them to opti-
mize building processes and improve monitoring; the manufacturing industry to model
real-time operations and leverage decision-making; the finance sector to mitigate finan-
cial fraud; the healthcare sector to personalize care provision; and the energy sector to
optimize the use of assets and planning.

DTs’ operation is underpinned by emerging technologies, such as IoT, 3D visualiza-
tions, simulation tools, and predictive analytics. On this basis, Ivanov [3] defined DTs
as ‘computerized models that represent the network state for any given moment in time
and allow for complete end-to-end supply chain visibility to improve resilience and test
contingency plans’. According to Tao et al. [4], in the automotive sector DTs offer a
wide range of vehicle services including (i) real-time state monitoring, (ii) energy con-
sumption analysis and forecast, (iii) user management and behavior analysis, (iv) user
operation guides, (v) intelligent optimization and updates, (vi) product failure analysis
and prediction, (vii) product maintenance strategy, (viii) product virtual maintenance,
and (ix) product virtual operation. The evolution of DTs in the automotive industry has
transformedmost of these services into a vital component for enhancing automotive sup-
ply chain operations and has led leading market and technology trend researchers, such
as Gartner, Forbes, and McKinsey, to recognize them as a top ten strategic technology
trend since 2017 [5].

1.1 Research Objectives

This paper aims to explore the transformative potential of DTs within the automotive
sector, particularly in the context of the 4th industrial revolution. More particularly, it
will:

• Investigate the origins and evolution of the DT concept from its early inception to its
current applications across various industries.

• Examine the role of enabling technologies and analytics capabilities in enhancing the
value and impact of DTs across diverse industries.

• Examine the applications of the DT technology within the automotive sector.
• Determine the key challenges that affect data integration, security and interoperability

of DTs across supply chains focusing on the automotive sector.
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• Identify current research gaps and propose a set of actions to address them, thereby
paving the way for further advancements in this field.

1.2 Research Methodology

The methodology starts with a broad analysis of the DTs concept within the manufactur-
ing sector. It explores a wide range of industrial DT applications to highlight the rapid
advancement of the technology. Subsequently, it focuses on the automotive industry and
examines the varying applications of DT across different supply chain stages identify-
ing several challenges affecting their performance. To this end, the study will adopt an
interpretivism research philosophy using a deductive research approach, which entails
a comprehensive review of published information concerning the chosen industrial case
studies.

2 Digital Twin Background

2.1 Origins of the Digital Twin Concept

Although the concept of the digital twin (DT) is attributed to books of science fiction
published in previous decades, its use technically dates back to the 1960s when NASA
began to experimentwith virtualmodels in the context of theApollo program [6]. Yet, the
DT idea was first mooted in the literature in 1991 through David Gelernter’s publication,
‘MirrorWorlds’. This marked the inaugural discourse on the potential of revolutionizing
computing and transforming society by replacing reality with a sophisticated, high-tech
and interactive software imitation [7]. Nonetheless, it was not until 2002 that Dr.Michael
Grieves from the University of Michigan introduced this concept to the industry at a
Society of Manufacturing Engineers conference in Troy, Michigan. In this presentation,
he proposed the use of a conceptual model named ‘Doubleganger’ underlying product
lifecycle management (PLM) [8]. Around the same time, Kary Främling introduced
his work ‘Product Agent’ in which he also explored the integration of physical entities
with their virtual equivalents in an Internet of Things (IoT) and PLM context [9]. Based
on these works, John Vicker of NASA eventually coined the term ‘digital twin’ in a
2010 Roadmap Report describing the creation of full-scale digital simulations of space
capsules with the aim to replicate the system, analyze the issues faced, and maximize
their usage potential [10].

2.2 Evolution of the Digital Twin Concept and Applications

Since 2010, the concept of DTs has gained increasing prominence, with General Electric
(GE) playing a pivotal role in popularizing it through their ‘Industrial Internet’ initiative.
As part of it, GE examined the use of virtual doubles of wind turbines and jet engines
animated with real-world data. By mounting numerous sensors on them, they were
able to collect, transmit and store tremendous amounts of data using Industrial Internet
of Things (IIoT) systems, and perform analytics to optimize asset performance and
minimize unscheduled downtime [11]. These applications emphasized the adoption of
DTs within industrial contexts, enabling the monitoring, optimization, and predictive
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analysis of machine and equipment performance [12]. Concurrently, Nasa advanced
its existing DT systems to enhance the performance of their spacecraft and components
through simulated scenarios; monitor and analyze the health and condition of spacecrafts
in planetary environments; run diagnostics to detect anomalies and deviations from
the expected behavior, and take proactive measures making necessary adjustments and
repairs; and finally reduce costs andminimize the environmental impact of its operations
by pinpointing areas where energy consumption could be optimized [13].

In 2019, the automotive sector began usingDTs to simulate andmonitor factoryfloors
remotely, assess vehicle designs, and enable predictivemaintenance, therebydiminishing
the need for physical prototypes and optimizing product development. Soon, DTs gained
momentum across various other industries, such as in urban planning where architects
started using them to envision city blocks with precision before building them [14]; the
energy sector where DTs were used to digitalize energy systems [15]; and the healthcare
sectorwhere several researchers started usingDTs tomodel and simulate the humanbody
to personalize medicine and optimize treatments [16]. These applications were further
enabled by the advancement and integration of disruptive technologies, such as artificial
intelligence (AI), machine learning (ML), 5G, and virtual reality (VR), facilitating better
real-time decision making and predictive capabilities.

It was only in 2021 that Nvidia launched its ‘Omniverse’ engine, a real-time 3D
graphics collaboration platform, that allows businesses to build 3D renderings of their
own [17]. Omniverse is considered as a breakthrough innovation in DT technology, as it
allows individual entities and teams to developUniversal SceneDescription (OpenUSD)-
based 3D workflows that enable improved collaboration among different teams while
accelerating numerous manufacturing processes. Using ray tracing and AI technologies,
it offers enhanced quality and realism of 3D simulations. Currently, many businesses,
such as BMW, Ericsson Energy, and Lockheed Martin are using Omniverse to create
complex and accurate virtual replicas of objects, processes, and environments, such
as factories and planetary systems [18]. Using Omniverse, Siemens introduced ‘Mind-
Sphere’, a cloud-based, open IIoT as a service end-to-end solution, that enables busi-
nesses to connect their physical, web and enterprise-based systems in a central location
[19]. Eventually, ‘MindSphere’, evolved into the ‘Insights Hub’, a cloud-based plat-
form, which collects and analyses sensor data in real-time and makes them accessible
through digital applications enabling manufacturers to optimize products, production
assets, and manufacturing processes along the entire value chain [20]. Soon, Amazon
launched ‘AWS IoT TwinMaker’, a competing service, that allows businesses to create a
scalable and holistic digital representation of facilities and operations by integrating data
from IoT equipment sensors, production lines and live video, while optimizing building
operations, boosting production output, and optimizing equipment performance [21].
Currently, DTs undergo a continued expansion focusing on sustainability, resilience and
interconnected systems playing a crucial role in energy transition, the development of
smart cities, and the optimization of end-to-end supply chains. Such DT systems aim at
identifying bottlenecks and resolving them with minor human intervention; providing
real-time visibility of inventory levels across supply chains facilitating a more accu-
rate and efficient inventory management; mapping transportation routes and optimizing



Digital Twins: Revolutionizing Automotive Supply Chains 7

logistics; planning and forecasting demand; understanding patterns and modelling the
outcomes of modifications, among others [22].

3 Use of Digital Twins Across Automotive Supply Chains

The advent of the 4th industrial revolution marked a significant turning point for the
DT concept within the automotive industry. This period witnessed a substantial transi-
tion from dedicated industrial automation mechanisms towards mechatronic and cyber-
physical systems leveraging the capabilities of advanced computational and commu-
nication technologies [23]. During this time, many automotive manufacturers started
adopting DT technologies harnessing the power of IoT, big data analytics, and simula-
tion techniques, as a strategic approach to enhance lifecycle management of vehicles,
optimize product quality, and effectively harness production and supply chain processes.
For example, in 2019,Bentley Systems partneredwith Siemens to launch the ‘PlantSight’
project which aimed to create a complete, up-to-date, as-operated DT of an entire plant
by consolidating diverse data types from multiple physical and engineering sources into
a unified source of truth facilitating ongoing change management, collaboration, cost
reduction and operational efficiency [24].

The DT technology can significantly support automotive supply chains by moni-
toring the status of a vehicle across different product life cycle stages, such as its con-
ceptualization and design; material and components’ procurement; building and adding
manufacturing capacity; product testing; employee training; storage; sales; predictive
maintenance; after-sales services; and recycling. At each phase, there is an enormous
amount of data generated. The goal is to leverage these data for the swift and cost-
effective production of high-quality vehicles. DTs enable real-time monitoring of every
component within the supply chain ensuring adherence to constraints while facilitating
up-to-date end-to-end visibility for both suppliers and manufacturers. In addition, DTs
unlock new possibilities in system automation and optimization through the integration
of AI andML solutions. Eventually, DTs can help automotive businesses to avoid inven-
tory shortages or scraping through transparent stock level insights. Finally, DTs have the
potential to optimize logistics through real-time shipment data leading to cost reductions
and reduced environmental impacts.

3.1 Vehicle’s Conceptualization and Design Phase

Vehicle design is an extremely complex, creative, and iterative process which requires
numerous simulations, prototypes and test runs before transitioning to production.
Design is required to define the physical appearance of both the interior and exterior
features of a vehicle. DTs can be extremely useful in the design phase of a car, as
they can be used to simulate the entire vehicle, including its mechanics, electronics, and
physical behavior [25]. In addition, DTs can helpmanufacturers to copewith the increas-
ing technological complexity of cars, the growing number of technical and regulatory
requirements, and the constant design improvements [23]. Using the latest developments
in computing, digital simulation, cloud technology, AI, and ML, designers can gain a
realistic representation of a vehicle’s shape, appearance, and performance by striking a
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balance between function, aesthetics, and physical constraints. For example, in Renault
Group the designers are using DTs to achieve the best vehicle finish by testing differ-
ent colors, textures, positions, and materials using its virtual model [26]. In addition,
using real-time data from previous models, designers can get valuable insights into the
performance of vehicle features, facilitating easier and faster design improvements [27].

Furthermore, the designers can review several vehicle design alternatives and make
informed decisions by sharing the vehicle’s virtual model with engineers [28]. Car man-
ufacturer Maserati, for instance, has used DTs to optimize car body aerodynamics using
virtual wind tunnel tests, a method that is typically complex and costly when conducted
physically [29].Mercedes-Benz has collaboratedwithNvidia to leverageNvidia’s exper-
tise in high performance computing graphics and bring AI andmetaverse technologies to
the design of a shared virtual model allowing designers and engineers to work together
seamlessly [30]. The use of DTs has enabled Mercedes-Benz to explore different design
options, test modifications and assess their impact; predict car performance accurately;
identify potential issues and take appropriate actions to address them; and improve
the car’s safety and reliability; while minimizing reliance on physical prototypes [31].
Designers can also collaborate with operational teams and analysts to provide enhanced
customization and personalized options to customers [32]. Using DTs to capture cus-
tomer preferences allows designers to seamlessly integrate them into product design and
development, streamlining the creation of customized products [33].

3.2 Materials Procurement and Suppliers Selection Phase

DTs can be a useful tool on resource management and production planning operations
within the automotive supply chain. They can provide more accurate demand forecasts
by analyzing real-time market trends, customer preferences and historical sales data.
This, in turn, facilitates the procurement of materials in the right quantity at the right
time. DTs can also be used to create virtual replicas of materials to assess their proper-
ties under various scenarios and conditions, aiding the selection of the highest quality
materials. Xiang, Zhang, Zuo and Tao [34] used DTs to simulate the physical, cost,
and environmental performance of different materials used in laptop shells to identify
the most environmentally friendly option. Furthermore, DTs can enable the simulation
of network movements of materials sourced from different locations allowing the pre-
diction of material demand, consumption, and delivery times from different suppliers.
Additionally, DTs can be used to simulate a factory floor and monitor production oper-
ations to identify potential bottlenecks, delays, and defects. Finally, DTs can be used
to predict potential vehicle breakdowns, enabling adjustments to stock levels to support
predictive maintenance effectively [35].

DTs are also instrumental in the strategic supplier selection process within the auto-
motive sector. They can be used to capture and analyze the behavioral and operational
data of different car parts and assess the impact of materials with different durability
supplied by different vendors [32]. Considering potential changes on timelines, costs,
and product quality, automotive businesses can make well informed supplier selection
decisions [36]. For example, Tesla creates the virtual model of every one of its cars,
analyzing data gathered from onboard sensors using AI algorithms to determine where
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faults and breakdowns are most likely to occur. This serves a dual purpose; aiding in pre-
ventivemaintenancemeasures and assessing the quality of the parts provided by different
suppliers [37]. Moreover, DTs can be used to simulate the impact of various contract
terms on procurement costs and supply chain performance, facilitating negotiations for
more favorable agreements with suppliers [25].

3.3 Vehicle Manufacturing Phase

Within a plant, a DT can be the virtual replica of the physical manufacturing facility,
offering the capability to simulate and optimize the production processes [38]. DTs
can model the assembly process and pre-emptively identify potential issues, resulting
in cost, time, and resource savings by reducing the need for physical prototyping and
testing [39]. In addition, DTs applied to machinery and manufacturing equipment con-
tribute to determining plant maintenance requirements while boosting the efficiency
of production lines. By predicting potential failures, the DT minimizes downtime by
enabling preventive measures and facilitating maintenance. The use of DTs in factories
is estimated to yield up to 30% improvement in product quality, 20% reduction in lead
times, and a 40% increase in resource efficiency [40]. For example, BMW has created a
3D DT of its Regensburg factory in Germany. The virtual replica precisely mirrors the
physical factory, providing real-time monitoring of every aspect, from the factory floor
to the machinery. This enhances operational efficiency and promotes seamless collab-
oration between different factories. BMW has since digitized many of its factories and
has introduced the iFactory tool that promotes inter-factory collaboration [41].

In addition, DTs used for layout planning can assess the impacts of installing new
machines to increase manufacturing capacity [42]. DTs enable manufacturers to respond
quickly to changes in demand, market trends, and customer preferences, enabling the
customization of vehicles to suit individual customers’ needs. Manufacturers can also
develop their own DT systems by using existing open, scalable cloud-based platforms,
such as the iTwin platform developed by Bentley Systems. This is designed to create,
visualize, and analyze the DTs of various infrastructures, and test various activities
conducted both in automotive and other production facilities [43].

Moreover, the use of in-line DTs allows operators to train on a virtual machine
until they acquire the necessary skills and confidence to operate the actual equipment.
This accelerates the learning process and reduces the potential for machine damage
and human injury. Examples include Siemens’ DT of their electric motor production
process, which enables employees to acquire hands-on experience in assembly and trou-
bleshooting processes without affecting actual operations [44]. Also, General Motors
has collaborated with GE in using DT to replicate factory floors and test new equipment,
providing employees with a risk-free virtual hands-on-experience [45].

3.4 Predictive Vehicle Maintenance Phase

Following the sale of a vehicle and while it is in operation, manufacturers can employ
DTs to monitor the real-time condition and performance of vehicle components using
data collected from sensors. This way, vehicle owners can repair, replace, or upgrade
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the components before failing. Consequently, DTs contribute to improving vehicle qual-
ity and reliability, while reducing repair costs, and optimizing maintenance schedules
based on actual vehicle requirements. Volvo, for example, is using DTs of their vehicles
to gather real-time performance, sensor and inspection data, their service history, and
warranty data, and assess changes in their configuration and parts replacement. This
allows Volvo to monitor the performance of various components, detect potential issues
and take preventive action before they become critical [46].

3.5 Vehicle Disposal Phase

DTs also enable car producers and users to make more informed decisions about the fate
of the cars and their components at the end of their lives. DTs can be used to simulate
the wear and tear of different car parts and components allowing producers and users
to predict their lifespan, assess their residual value, and plan for their replacement and
recycling. For example, Ford has developed seven DTs for each model they manufac-
ture, each corresponding to a different supply chain phase, including disposal. DTs can
eventually help users to optimize the recycling process by simulating the separation,
processing and reuse of different parts and materials, leading to more efficient disposal
procedures and cost savings [29]. In their study, Wang and Wang [47] introduced a DT
system for the recovery of electrical and electronic waste to support remanufacturing
operations in accordance with international standards.

4 Conclusions and Recommendations

While the use of DTs undoubtedly allows for significant advancements in numerous
areas across automotive supply chains, their implementation requires significant invest-
ment in both physical resources and expertise. The continuous increase of data sources,
the generation and transmission of vast amounts of data at each phase of a vehicle’s
lifecycle, and the plethora of design options demand specialized technical knowledge
and necessitate the implementation of robust data engineering capabilities that include
cloud computing and IoT systems, human-computer visualization interfaces and power-
ful computing analytics to ensure the quality and usability of the gathered data. Despite
the seemingly high investment costs, the establishment of high-performing computing
infrastructure and advanced analytics can help users to optimize the real-time collection
and transformation of data into a suitable format for analysis and eventually identify
required process changes in a more cost-efficient, safe, and timely manner than tradi-
tional static simulations. Coupled to the increasing availability of tools and infrastructure
and the improving system interoperability,DTs currently become increasingly accessible
to businesses of any size and industry.

Yet, the lack of a unified and universally applicable ontology and taxonomy frame-
work for DTs currently impedes software harmonization, data interoperability, collabo-
ration and best practice sharing among diverse industries, applications, and processes.
A starting point to overcome this is the current development of a DT Definition Lan-
guage by Microsoft based on industry standards aiming to minimize reinvention and
simplify solutions. The development of a unified taxonomy will reduce resources, time,
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and investment needed for conceptual modeling and system development by enabling
resource sharing and learning from past experiences. It will not only enhance under-
standing within automotive companies but also accelerate the adoption of DTs, driving
business value across the supply chain. Additionally, the development of standardized
metrics and measures will help businesses to evaluate and improve the performance and
interoperability of the DTs used.

While DTs enable the convergence of the physical and virtual versions of vehicle
prototypes, factory floors, and vehicles on the road, most of the data generated at each
supply chain stage tends to remain segregated and minimally integrated with the subse-
quent stages of the vehicle lifecycle. This not only leads to inefficiencies in the production
process but also tomissed opportunities for vehicle and process optimization. Tomanage
the end-to-end process in a more effective way, it is essential to develop robust DT data
management frameworks including improved tools, methodologies and systems for data
collection, storage, visualization, analysis, and exchange. The aim is to make the data
collected by IoT sensors, stored in log files, and analyzed using AI-powered analytics
readily accessible by different supply chain stakeholders in order to support end-to-end
optimization and informed decision-making.

However, the exchange of DT-generated sensitive information by many stakeholders
may entail significant security and privacy concerns. Businesses can protect DT data by
integrating cloud encryption, blockchain verification, and cloud retrieval to allow for
their permanent, transparent, and immutable recording and distribution across value
chains. Yet, it is crucial to acknowledge the dependence of DTs on various technologies,
like cloud computing, blockchain, AI, and VR, whichmay have their own limitations. To
mitigate this, automotive businesses should work with research institutions to enable the
seamless integration of the different technologies and develop solutions supporting low
latency, high reliability, and energy-efficient data processing. Despite the challenges,
the potential benefits of DTs can surpass the existing limitations with the right blend
of careful planning, prudent investment decisions, and strategic implementation, further
solidifying the increasing prominence of DTs.
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Abstract. The escalating global increase in greenhouse gas emissions demands
immediate solutions to curb this environmental threat. Electric vehicles have
emerged as a practical remedy, albeit with specific constraints aimed at promot-
ing their widespread adoption. Introducing wireless charging for electric vehicles
addresses the time constraints associated with their adoption, offering a contact-
less recharging technology between the power source and the vehicle. However,
practical limitations may preclude the installation of induction charging technol-
ogy in certain areas. To address this challenge, we examine two modes of electric
vehicle charging: dynamic and static. We present a mathematical model designed
to optimize the planning of charging infrastructure for both modes. This opti-
mization encompasses the strategic placement of wireless charging systems for
dynamic scenarios and stations for static modes to facilitate the mobility of a
diverse fleet of vehicles with varying battery capacities within the network. Our
objectives in this study revolve around minimizing the count of power transmit-
ters, which directly impacts infrastructure costs, and maximizing the lifespan of
electric vehicle batteries, given their pivotal role in vehicle performance.

Keywords: Optimization · mathematical modelling · electric vehicle · static and
dynamic charging · heterogeneous fleet · battery life

1 Introduction

Human-generated greenhouse gas emissions (GHGs) have perturbed the Earth’s climate
equilibrium, giving rise to global warming, a matter of grave concern to the international
community. As a response to the pressing necessity to address the growing average emis-
sions, several nations have initiated actions within the transportation sector, a principal
contributor to these emissions. The electrification of vehicles stands out as an effec-
tive solution to this problem, though it necessitates the optimisation of the technology
underpinning electric vehicle (E.V.) network infrastructure.
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Wireless charging technology (W.C) is a method of recharging electric vehicles by
efficiently converting significant amounts of energy within a short proximity, typically
within tens of centimeters. It is worth noting that this approach poses no risk to human
health.Within the realm of wireless charging, two distinct modes exist. The initial mode,
referred to as static wireless charging (SWC), enables vehicles to recharge their batteries
even while they are powered off. The time it takes to charge the vehicle using SWC is
comparable to that of conventional charging cables, but it offers added convenience and
enhanced safety. In practical terms, this means electric cars can be conveniently parked
in designated areas like parking lots or garages equipped with static wireless charging
systems (SWCS). The second mode is known as dynamic wireless charging (DWC), a
system capable of recharging a vehicle in motion through the installation of a charging
transmitter beneath the road surface. This technology often leads to discussions about
the concept of electric roads. DWC has the potential to reduce the battery’s capacity,
subsequently lowering both its weight and cost. This particular charging approach elim-
inates the need for stationary charging, as the vehicle can be recharged while in motion.
A DWC system (DWCS) comprises two key components: the electric vehicle (E.V.) and
the power transmitter. Inverters play a critical role by converting direct current (D.C.)
into high-frequency alternating current or voltage. Beneath the road’s surface, under-
ground power lines generate an alternating magnetic field, which is then received by
a pickup coil mounted on the vehicle’s floor [11]. The acquired power undergoes fur-
ther processing through a rectifier and regulator before being directed to the vehicle’s
battery. In reality, the installation of dynamic charging systems on road networks isn’t
always feasible, whether due to the road’s geometry or the challenges of electrifying the
entire roadway. To address this limitation, the use of charging stations becomes neces-
sary, where vehicles are charged in a static manner. Each of these stations is composed
of a series of Static Wireless Charging Systems (SWCS). This introduces the concept
of a road network with two distinct charging modes: a dynamic mode when a charg-
ing transmitter is incorporated into the road infrastructure, and a static mode employed
in situations where the dynamic mode is not a viable option.

Vehicles using different battery types often exhibit varying characteristics, necessi-
tating the consideration of these battery diversities when establishing network infras-
tructure. Notably, since the battery is a principal component of any vehicle, ensuring
optimal battery life is an objective in work and offer cost-optimized solutions for the
technology employed. To achieve this, we begin by reviewing existing works in the field
and subsequently describe the specific problem addressed in this paper. In order to for-
mulate the problem, we introduce a multi-objective mathematical model. To show the
efficiency of our model we applied an exact method using Cplex optimizer.

2 State of the Art

The transportation industry, particularly in advanced economies, is undergoing a scien-
tific transformation driven by extensive research endeavors focused on electric vehicles.
This includes the studies highlighted within this section. In [3], Bolger introduced the
concept of the first wireless electric vehicle, which has since seen significant techno-
logical progress, detailed in [8, 5]. KAIST’s recent development, the Online Electric
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Vehicle (OLEV) [20], employs a DWC system, with technical specifics available in
[19, 4]. Sejong City, the newly designated South Korean capital, is preparing to imple-
ment a DWC-powered public transportation network to support its current bus routes
[14]. Meanwhile, the European initiative UNPLUGGED has created an inductive fast-
charging station for electric vehicles, exploring the enhancement of EV comfort and
longevity through inductive loads in urban settings [1]. Ensuring the effective placement
of these sites involves addressing location and traffic concerns. However, the installation
of charging stations and DWC infrastructure poses unique challenges. Previous studies
on charging station placement often assumed fixed points where vehicles stop to charge.
But since DWCEVs can charge while moving, the power transmitters must be where the
vehicles operate. Additionally, in DWC systems, the amount of charge needed depends
on how fast the vehicle is going, which is different from traditional charging stations.
Some research has been done on SWC at Auckland University [13]. Fisher et al. looked
into the development of induction charging for EVs and the companies involved in DWC
[9]. Ko and Jang introduced a model to minimize costs for installing power transmitters
and determining battery size [12]. Kraxner et al. created a model to minimize annual
costs and energy use in a mixed fleet of buses with different charging methods [22]. Liu
and Song addressed location and battery size problems for DWC systems, considering
uncertain factors in a two-step process [15]. Mouhrim et al. proposed a way to balance
the cost of bus batteries and DWC systems on multiple routes [17]. Elbaz et al. looked
into balancing infrastructure costs and battery capacity in different network setups [10,
7]. Among the exciting studies, we highlight the work of Sun Xiaotong et al. [21]. They
explored two charging methods, DWC and SWC, to charge electric buses with the same
type of battery while in service. This research focuses on the best use of both static
and dynamic charging modes, considering the interaction between transportation and
the power grid. Bourzik et al. [2, 16] presented the optimal deployment of the induc-
tion charging infrastructure for E.V.s with heterogeneous batteries; they conducted their
study on the highway. To build the infrastructure, they considered that the road is sub-
divided into segments with the same length to find which segment would be occupied
by the DWCS. When it comes to wireless charging for electric vehicles while consid-
ering battery lifetime, there’s limited research available. For example, B. Pantic and
colleagues [18] introduced a practical approach to determine the location of wireless
charging infrastructure on the road. Their multi-objective model connects battery life to
peak power output, recognizing that high peak power may harm the battery’s lifetime.
Similarly, Jeong et al. [9] presented a mathematical model to find the optimal battery
size and power lane assignment for dynamically charged EVs on specific roads, taking
quantitative battery life into account. The research cited in this section primarily focuses
on electric vehicles (E.V.) with uniform batteries. However, it’s important to note that
E.Vs come with varying battery capacities, charge rates, discharge rates, and ranges,
depending on the type of battery they use. This results in a mix of vehicles with different
capabilities, making them heterogeneous. Our contribution to this field is centered on
determining the best way to deploy electric vehicle infrastructure in complex transporta-
tion networks featuring both DWC and SWC charging modes. We take into account
the diverse range of E.Vs with heterogeneous batteries. In our study, we aim to address
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battery degradation and optimize the lifespan of a vehicle’s battery when traveling from
one starting point in the network to a different endpoint along a specific route.

3 Problem Description

We are addressing transportation networks with vehicle fleets equipped with varying
battery capacities. Our goal is to ensure that each vehicle type follows a specific route
from its starting point to its destination while simultaneously optimizing battery life and
minimizing costs related to installing dynamic charging transmitters and static charging
stations. It’s worth noting that the battery serves as the fundamental component of each
vehicle and is also the most expensive one. By considering the infrastructure require-
ments for each vehicle individually, we increase the number of transmitters and charging
stations, thereby increasing infrastructure costs. The network can be represented as a
graph, denoted as G = (SA., SN.), where S.N. represents the set of nodes and S.A.
represents the set of arcs. The network is comprised of two types of arcs: one for the
installation of dynamic charging transmitters (denoted as SA.′ in red) and the other for
static charging stations (SA.′′ in green). Charging a vehicle at a station impacts its state of
charge on other arcs in set SA′, where SA encompasses both SA′ and SA.′′. It’s important
to note that all routes within the network may share the same arcs.

Our main objective is to determine the optimal placement of dynamic charging
segments and static charging stations so that any vehicle can travel from its starting
point to its destination in the network while minimizing infrastructure costs. It’s worth
noting that installing power segments throughout the entire network may not always be
feasible, leading to the use of static charging for certain network sections.

Given the high cost of batteries and the central role of the battery as the primary
component of an electric vehicle, we aim tomaintain each battery’s state of chargewithin
a preferred range, which includes the preferred minimum charge (CMnP), for example,
20%, and the preferred maximum charge (CMxP), for example, 80% of the total battery
capacity. By keeping the charge within these limits, we maximize the battery’s lifespan,
resulting in a higher number of charge cycles.

4 Mathematical Modelling

This research centers on the strategic planning of electric vehicle infrastructure, encom-
passing both static and dynamic charging modes. The primary objective is to reduce
the expenses associated with the infrastructure’s technology, which includes the inverter
and power components, while simultaneously prolonging the battery lifespan as the core
component of every vehicle.

4.1 Data and Model Parameters

• SN:: Set of nodes (vertices)
• SA: Set of arcs such as
• SA = SA′ ∪ SA′′ = {(i, j)/i, jεSN }
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• SP:Set of paths, composed of a subset of vertices S.N., and we denote the origin of
the paths by OεSN

• P: Set of paths
• SVT: The set of vehicle types
• Iβmax: The maximum charge of the vehicle battery β ∈ SVT
• Iβmin: The minimum charge of the vehicle battery β ∈ SVT

• Iβpmax: The maximum preferable charge of the vehicle β ∈ SVT

• Iβpmin: The minimum preferable charge of the vehicle β ∈ SVT

• DRβ(t): The discharging rate of the vehicle β ∈ SVT at each instant t.
• DRSβ : The energy required for internal travel in a charging station by the vehicle β

• CRβ(t): The charging rate of the vehicle β at time t in the DWC system
• CRSβ : The charging rate of the vehicle β in the SWC system
• N(i,j): The number of potential charging sites in the arc (i, j)εSA
• CIm: The capacity of each inverter
• CI : The cost per inverter
• CA: The cost of an active segment without an inverter
• C.S.: the cost of a static charging station
• Vp

ij,kr : Equal 1 if the arc (i, j) is the follower arc of the arc (k, r) in the path p

• Eβ,p
ij,g : If the battery charge is less than I

β
pmin of the vehicle β ∈ SVT at the gth segment

of the arc (i, j) εSA during the trip p, we denote the difference by Eβ,p
ij,g .

• Rβ,p
ij,g : If the battery charge is greater than Iβpmax of the vehicle β ∈ SVT at the gth

segment of the arc (i, j) εA during the trip p, we denote the difference by Rβ,p
ij,g .

4.2 Decision Variables

Ug
ij =

{
1 if the potential charging sites g of the arc (i, j) is active
0 otherwise

Wg
ij =

{
1 if the segment g of the arc (i, j) ∈ A has an inverter
0 otherwise

Y β,p
ij,g =

{
1 if the vehicle β uses the g th potential site
0 otherwise

4.3 Constraints

As previously stated, each vehicle type starts its journey with a battery charge equal to
its maximum preferred capacity. Consequently, at the origin point O of every path within
the set P, the vehicle’s initial load corresponds to the charge it had at the beginning of the
first segment (designated as 0) of the path (o, i) on the trip within the set P. This initial
load equals Iβmax p when the parameter λ is set to 1.

Iβ
(
tpoi,0

)
= λ × Iβpmax ∀β = 0, . . . , |SVT |,∀p ∈ P,∀(o, i) ∈ SA (1)
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The battery charge for each vehicle type at any given time must exceed the minimum
required charge, a condition guaranteed by the following constraint:

Iβmin ≤ Iβ
(
tpij,g

)
∀g = 0, . . . ,Nij − 1, ∀β = 0, . . . , |SVT |, ∀(i, j) ∈ SA (2)

The vehicle batteries are functional in such a way as not to exceed the maximum
charge Iβmax, which is ensured by the following constraints:

Iβ
(
tpij,g

)
≤ Iβmax ∀g = 0, . . . ,Nij − 1, ∀β = 0, . . . , |SVT |, ∀(i, j) ∈ SA (3)

The subsequent constraint pertains to the adjustment of the remaining energy as the
dynamic segment progresses to g + 1. The initial component represents the vehicle’s
battery charge, denoted as β, at the commencement of segment g. The second component
signifies the power consumptionof the vehicle during the journeywithin segment g,while
the final component reflects the power acquired from segment g when it is in operation.
In cases where it is inactive (Y β,p

ij,g = 0), the last component is set to zero.

Iβ
(
tpij,g+1

)
= Iβ

(
tpij,g

)
+

tpij,g+1∫
tpij,g

(−DRβ(t) + CRβ(t) × Y β,p
ij,g )dt

∀ p ∈ P, ∀β = 0, . . . , |SVT |, ∀(i, j) ∈ SA′′, ∀g = 0, . . . ,Nij − 1

, (4)

The subsequent constraint pertains to the energy adjustment for each static segment
g + 1. This adjustment is determined by the difference between the initial component,
representing the vehicle’s battery charge (β) at station g, and the second component,
which accounts for the power consumption between stations g and g + 1 if station g is

not in operation. In cases where station g is active
(
Y β,p
ij,g = 1

)
, the second component

is substituted with the power consumed during internal movement at station g, and the
final term represents the electrical energy recharge at station g.

Iβ
(
tpij,g+1

)
= Iβ

(
tpij,g

)
−

tpij,g+1∫
tpij,g

DRβ(t)dt
(
1 − Y β,p

ij,g

)
− Y β,p

ij,g × DRSβ + Y β
ij,g

×CRSβ ×
(
tpij,g+1 − tpij,g

)
∀ p ∈ P, ∀β = 0, . . . , |SVT |, ∀(i, j) ∈ SA′′, ∀g = 0, . . . ,Nij − 1

(5)

Constraint (6) overrides constraint (5) when processing the origin of arcs. The battery
load equals the first term of the addition if the arc is dynamic

(
(i, j) ∈ SA′) and the arc

(i, j) precedes the arc (j, k) in the path p
(
Vp
ij,jk = 1

)
, or it will be equal to the second
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term of the addition if the arc (i, j) which precedes (j, k) is static
(
(i, j) ∈ SA

′′)
.

(6)

Site g is considered inactive when no vehicle type utilizes it, a condition guaranteed
by the constraints (7).

Ug
ij ≤

∑
β∈SVT

∑
p∈P

Y β,p
ij,g ∀(i, j) ∈ SA′,∀g = 0, . . . ,Nij − 1, ∀β = 0, . . . , |SVT | ( 7)

A potential site, denoted as g, is considered active if it is utilized by at least one of
the vehicles, and this condition is ensured by the constraints (8).

Y β,p
ij,g ≤ Ug

ij ∀(i, j) ∈ SA′,∀g = 0, . . . ,Nij − 1, ∀β = 0, . . . , |SVT |,∀ p ∈ P ( 8)

Constraints (9) and (10) serve to secure the placement of a single inverter at the outset
of every active series of dynamic recharge segments while ensuring that no inverter
surpasses its active series capacity, denoted as CIm.

Wij,g = Ug
ij −

⎡
⎣
Nij−1∑
k=1

wg−k
ij ×

k∏
j=1

Ug−j
ij

⎤
⎦∀g = Nmax + 1, ..,Nij, ∀(i, j) ∈ SA′ (9)

VP
ij,jk

⎛
⎝

Nij∑
g=z

Ug
ij +

Nmax−(Nij−z)∑
t=0

Ut
jk

⎞
⎠ ≤ CIm

∀p ∈ P ∀(i, j) ∈ SA ∀(j, k) ∈ A ∀ z ∈ {
Nij − CIm, . . . , Nij

}
(10)

The constraints (11) establish the quantity of energy that surpasses the minimum
preferred battery charge for each vehicle type throughout the journey. It is equal to

the difference between the minimum preferable battery charge
(
Iβpmin

)
and the battery

charge
(
Iβ

(
tpab,g

))
, if the vehicle does not exceed its minimum preferable charge, the

difference
(
Iβpmin − Iβ

(
tpij,g

))
, in this case, is negative, and the quantity Eβ,p

ij,g will be

equal 0.

Eβ,p
ij,g = max

(
0, Iβpmin − Iβ

(
tpij,g

))
,∀(i, j) ∈ SA,∀g = 0, . . . ,Nij − 1,

∀β = 0, . . . , |SVT |,∀ p ∈ P
(11)

Constraints (12) compute the energy surplus beyond the maximum preferred battery
capacity for each vehicle type.

Rβ,p
ij,g = max

(
0, Iβ

(
tpij,g

)
− Iβpmax

)
∀(i, j) ∈ SA,∀g = 0, . . . ,Nij − 1,

∀β = 0, . . . , |SVT |,∀ p ∈ P
(12)
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4.4 Objective Function

Our modeling aims to maximize battery lifetime on the one hand and minimize infras-
tructure costs on the other, including inverters and induction cables for dynamic charging
cases and charging stations for static charging. For this, we have two objective functions.
The first goal is to minimize infrastructure costs. The first term defines the total cost of
static stations, the second term represents the installation of induction cables on the road,
and the last term represents the cost of inverters.

Min

⎛
⎝CS ×

∑
(i,j)∈SA′′

Nij∑
g=0

(
Ug
ij

)
+ CA ×

∑
(i,j)∈SA′

Nij∑
g=0

(
Ug
ij

)
+ CI ×

∑
(a,b)∈SA

Nab∑
g=0

(
Wg

ab

)⎞⎠

The second goal is to maximize battery lifetime by keeping the maximum possible
charge variation between the minimum and maximum preferable values.

Min

⎛
⎝ ∑

β∈SVT

∑
p∈P

∑
(i,j)∈SA

Nij∑
g=0

(
Eβ,p
ij,g + Rβ,p

ij,g

)⎞
⎠

5 Problem Solving

We focus on the mathematical model (MM) validation in this subsection, from which
we will check the constraints of our model. To validate the MM, we use the.

In this section, our central focus is on the validation of the mathematical model
(MM), during which we will assess the model’s adherence to its constraints.

To carry out this validation, we employ the CPLEX optimizer [6], a solver with
the capability to effectively solve linear (or quadratic) single-objective models, owing
to its syntax closely aligned with mathematical formulations. For the validation of our
mathematical model using the CPLEX optimizer, we examine a network consisting of
6 nodes and 11 arcs. Each of these arcs is subdivided into discrete potential charging
sites, each segment being 50 m in length.

Fig. 1. The network of the example

In Fig. 1, we present the network under consideration in our example. The red arcs
depict dynamic arcs, while the static arcs are represented in green. You can find detailed
information about each arc’s length in meters and the number of its potential charging
sites (PCS) in Table 1.
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Table 1. The discretization of the network

Arcs (1, 2) (1, 3) (1, 6) (2, 3) (2, 4) (2, 5) (3, 4) (3, 5) (4, 5) (4, 6) (5, 6)

Length 1000 1200 1800 1100 600 1300 1300 500 800 1000 700

PCS No 20 24 36 22 12 26 26 10 16 20 14

In order to validate our mathematical model, we explore the utilization of four differ-
ent vehicle types traversing various paths within the network. As previously mentioned,
the CPLEX optimizer is limited to solving a single-objective mathematical model for
this task. In this subsection, we carry out the validation of our MM for each of the
specified objectives. Initially, our primary objective revolves around determining the
optimal infrastructure cost, ensuring the successful journey of each vehicle type along
their respective paths within the network. Subsequently, we address the problem with
an objective of maximizing the battery lifetime for each vehicle type, accomplished
by maintaining the largest possible charge variation within the defined minimum and
maximum preferable values. For comprehensive details regarding the energy supply
rate, energy consumption rate for each vehicle type, and additional data, please refer to
Tables 2 and 3.

Table 2. Vehicles data

The
minimum
charge

The
maximum
charge

The
maximum
preferable
charge

The
minimum
preferable
charge

The
energy
supply
rate in
DWC
(kw)

The energy
consumption
rate in DWC
(kw/100km)

The
energy
supply
rate in
SWC
(kw/h)

The energy
consumption
rate for
internal
travel in
SWC

V
1

1,76 7,04 6,5 2 4.2 25,2 8 1,25

V
2

6,44 25,76 24 7,5 3 19,6 10,5 0,5

V
3

3,68 14,72 13,5 4,2 5 19,5 7 0,8

V
4

5 20 18,5 5,8 5.5 34,7 9,5 1.8

The objective is to get the optimal number of stations, power segments, and inverters
that allow each type of vehicle to move in the network between any two points. To
test our model, since the resolution with CPLEX is based on an objective, we fix one
objective each time, and we minimize the other. The following tables show the results
found (Table 4):


