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Tissue damage due to disease or injury has been a major concern for the entire 
global population, and its remediation poses serious challenges to the healthcare 
providers, biomedical researchers, and professionals across the globe. The con-
cern becomes manifold since some organs and tissues have very limited self- 
renewal or regenerative capacity. Thus for restoring such injured or degraded 
tissues, we need to regenerate functional living tissue or even the whole organ 
artificially. This has resulted in an extremely important and emerging field of tis-
sue engineering and regenerative medicine, which offers the potential to provide 
solutions for bio- fabrication of functional tissues.

Bioprinting, the process of creating complex, living tissues using 3D printing 
technology has received paramount importance in recent times. The interdiscipli-
nary technology, lying at the intersection of engineering and biology, is the back-
bone of regenerative medicine and tissue engineering and points to the future of 
modern medicine.

Using this technology, it is important to precisely position multiple cell types 
layer by layer using computer- aided additive manufacturing techniques. 
Bioprinting is essentially a computer- aided transfer process for assembling bio-
logically relevant materials including biomolecules, cells, tissues, and biodegrad-
able biomaterials, resulting in the formation of an engineered bio- functional 
construct. Indeed it is a revolutionary concept in the regeneration or repair of 
damaged tissues by automating the layer- by- layer hierarchical fabrication of cell- 
laden structures both in vitro and in vivo.

Some of the early models of 3D bioprinting technology used computer- 
controlled ink- jet printer or graphics plotter and were used for precisely position-
ing the cells on a 2D substrate. This work provided the fundamental platform for 
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3D bioprinting. From those early efforts in mid- 1980s, the interdisciplinary 
endeavor in 3D bioprinting and regenerative medicine technology has progressed 
substantially over the past three and a half decades, making personalized medi-
cine a reality.

Since the original native tissues of a patient have their own distinct complex 
architecture as well as 3D organization and distribution of cells and extracellular 
matrix, it remains a significant challenge to precisely understand the complexity 
of native tissues from a structural and functional perspective. It holds endless 
promise for revolutionizing healthcare and various industries. From regenerative 
medicine to pharmaceutical testing and beyond, the possibilities offered by bio-
printing are vast and continually expanding. However, the growth in this field also 
holds the numbers of existing challenges that need to be addressed by the scien-
tific community.

In this context, the book 3D Bioprinting from Lab to Industry, edited by Prosenjit 
Saha, Sabu Thomas, Jinku Kim, and Manojit Ghosh, has opened up the exciting 
world of bioprinting and its modern industrial applications.

The book, written by some of the esteemed scientists in this field, will embark 
on a voyage through the intricate landscapes of bioprinting. The contributors of 
each chapter have shared their experiences to present the fundamental challenges 
along with the solutions that lie in each area. From the first chapter, where the 
authors explain the fundamental principles of 3D bioprinting, the readers will 
enjoy a journey through the diverse facets of  bioprinting –   controlling this trans-
lational technology to the design, fabrication, and applications of biomaterials 
and bioinks at industrial scale, the book covers all the important aspects of 3D 
bioprinting.

The broad overlap of additive manufacturing with tissue engineering has tran-
scended the boundaries of conventional medicine, presenting enormous potential 
for a future where organs can be printed on demand at laboratory, customized to 
individual needs with precision. It holds endless promise for revolutionizing 
healthcare for various industries. From regenerative medicine to pharmaceutical 
testing and beyond, the possibilities offered by bioprinting are vast and continu-
ally expanding. However, the growth in this field also holds the numbers of exist-
ing challenges that need to be addressed by the scientific community.

Because of its affordability, commercial viability, and capability to fabricate 
complex and hollow constructs, the extrusion- based bioprinting, one of the most 
common techniques in bioprinting field, has been employed to print living cells, 
tissue constructs, organ modules, and even organ on- a- chip devices. In this book, 
the extrusion- based 3D bioprinting has been covered in adequate details for the 
readers. Bioinks are formulation of materials suitable for processing by an  
automated biofabrication technology. With the advancement of  technology  –   
especially the introduction of extrusion- based printing techniques that use a 
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small- diameter nozzle to deposit bioinks for the fabrication of complex 
 constructs –   individual cells and cell aggregates lack the ability to withstand the 
shear stress.

Starting with an introduction of the fundamental principles of bioink, the 
authors have presented here the translational technology for the design, fabrica-
tion, and applications of biomaterials and bioinks at industrial scale.

Furthermore, the book presents the industrial applications of bioprinting, 
showcasing how this technology can be used in personalized medicine, from 
planning to implementation, through case studies and laboratory- based research 
outcomes. The profound impact of AI and machine learning on the design of 3D 
bioprinting has also been included here. The processing parameters on the design 
of scaffolds, organoids, and cell/tissue models during printing process have also 
been discussed in detail by the authors.

With a lucid introduction to the realm of bio printing, followed by cellular 
requirements and preparation for bio printing, the authors have discussed various 
materials used for bioprinting. Bioprinting in regenerated organs, 4D bioprinted 
multiresponsive structure, the controlling factors in bioprinting, in situ bioprint-
ing, machine learning, and in particular deep learning techniques in 3D bioprint-
ing, nanomaterial and design of scaffolds, organoids, and cell/tissue models 
during printing process have been discussed in detail by the authors.

How to plan a bioprinting project and how it moves from laboratory to industry 
are two very important issues, which have been discussed here. The industrial 
applications of bioprinting, showcasing how this technology is utilized in person-
alized medicine from planning to implementation, have been discussed here 
through case studies and lab- based research outcomes. Finally, toxicity issues 
hold paramount importance in 3D bioprinting, and along with this comes the 
most pertinent ethical issues involved in this area. These have also been ade-
quately discussed in this book.

For researchers, industry professionals, students, or anyone curious about the 
present and the future of 3D bioprinting and tissue engineering, this book will 
provide valuable insights into this rapidly evolving field. I hope that the book 
inspires and informs readers about the remarkable possibilities presented by 3D 
printing in shaping the future of modern medicine and healthcare industry.

Happy reading!
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1.1 Introduction of 3D Printing: Principles and Utility

3D printing (3DP), also known as additive manufacturing (AM), solid- freeform 
(SFF), and rapid prototyping (RP), is a fabrication technique using model data, 
where 3D structures are fabricated using controlled layer- by- layer deposi-
tion [1]. It was first described by Charles Hull in 1986, followed by production 
and commercialization by S. Scott Crump and his company Stratasys [2]. The 
basic subcategories of 3DP are stereolithography, fused deposition modeling, 
selective laser melting, electronic beam melting, and laminated object manufac-
turing [3]. 3DP involves scaffold construction by material addition, with high 
geometric precision reducing material waste. The primary procedure comprises 
data acquisition and synthesis of meshed 3D computer models in computer- 
aided design (CAD), followed by surface tessellation language (STL) file crea-
tion. This is followed by the slicing of mesh data into multiple 2D layer files and 
transferring them to a 3DP machine for fabrication [4]. Manufacture of complex 
designs, low cost, ease of access, and rapid and environment- friendly proce-
dures are some of the advantages of 3DP in industrial, research, healthcare, and 
biomedical sectors.
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1.2  Ink Preparation and Printability

The choice of the base material as well as the recipe of its preparation to cater to 
the need for 3DP are of utmost importance. Bioink is the material used to produce 
either engineered or artificial living tissue using 3DP. It is the cell- trapping milieu 
composed of a multicomponent aqueous mixture that usually forms gels. This 
sol- gel transition of bioink is offered either by ionic bonds, covalent bonds, hydro-
gen bonds, or van der Waals interactions. Bioinks may be hydrogels, decellular-
ized extracellular matrix, cell pellets, or tissue spheroids, of which hydrogels are 
the most common [5] due to their cell adhesion, growth, and proliferation capa-
bility since they absorb and retain large amounts of water. Ink for 3D bioprinting 
can be subdivided into two categories: cell- laden inks called bioink and cell- free 
inks called biomaterial ink. The bioinks usually consist of hydrogel precursors 
and are directly printed into Petri dishes filled with media and antibodies, whereas 
the biomaterial inks are usually utilized to print 3D scaffolds wherein the cells can 
be seeded on the scaffold under controlled conditions [6].

An ideal bioink should provide mechanical stability, stiffness, viscosity, surface 
tension, structural integrity, and biological ability – biocompatibility and biodeg-
radability [7]. Many natural polymers like alginate, agarose, gelatin, chitosan, col-
lagen, fibrin, and hyaluronic acid and synthetic polymers like polylactic acid 
(PLA), poly- D,L- Lactic acid (PDLLA), polylactic- co- glycolic acid (PLGA), polyvi-
nyl alcohol (PVA), acrylonitrile butadiene styrene (ABS), polyethylene glycol 
(PEG), polyether ketone (PEEK), polycaprolactone (PCL), polybutylene tereph-
thalate, and polyurethane (PU)  [8] are used as bioinks for 3DP in the form of 
single or multicomponent.

Printability: The term “printability” is the ability of a bioink to form a 3D structure 
with accurate fidelity and integrity as per the design and the geometry. However, 
the terminology modulates itself according to the printing approach. For extru-
sion printing, the bioink must be able to form continuous filament; for the inkjet 
technique, it should form well-defined droplets while for laser printing, a promi-
nent jet is required. The different printability indices [5] are the following:
1) Extrudability: The minimum extrusion pressure essential for printing at the 

desired flow rate.
2) Strand printability: Comparison of the diameter of printed strands with the 

CAD- generated parameters.
3) Integrity factor: Comparison of the thickness of printed scaffolds with 

designed geometries.
4) Pore printability: Comparison of the printed pores with designed internal 

geometry.
5) Irregularity: Comparison of outer geometry of scaffolds with designed 

parameters in X, Y, and Z directions.
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Rheological properties and gelation kinetics determine the printability of a 
bioink, which is again dictated by the type of bioprinting. Low- viscosity bioinks 
are preferred in inkjet bioprinting; rapidly crosslinkable, shear- thinning bioinks 
are desirable for extrusion bioprinting and photo- crosslinkable bioinks are 
 favorable for stereolithographic printing [9]. Rheological properties like viscosity, 
viscoelasticity, yield stress, shear thinning, elastic recovery, and viscoelastic 
shear moduli affect the printability of bioinks. The rheological properties of the 
crosslinked bioink must facilitate scaffold remodeling to mimic the ECM 
 environment. This process provides physicochemical cues to the cells, promoting 
their spreading and proper distribution. For instance, substrates that mimic the 
mechanical properties and Young’s modulus (~12 kPa) of native skeletal muscles 
offer better myogenic differentiation [10]. The key rheological parameters for a 
“good” bioink are described below:

Viscosity: Viscosity is the ratio of shear stress to shear rate and is governed 
by  the molecular weight and concentration of the polymer. High- viscosity 
inks are preferable for high- fidelity printing but may limit cell growth 
within  the substrate due to higher shear stress. This shear stress can be 
 overcome by either using hydrogel inks having shear- thinning properties 
or  using pre- gel solutions with lower viscosities. For e.g., alginate- based 
bioinks are directly extruded into calcium solution leading to ionic crosslink-
ing. Due to higher surface tension, viscous bioinks prevent droplet formation 
without any merger of the columns with one another. Hence, crosslinking 
agents come into the picture with the caution of appropriate concentration 
so as to avoid phase separation and phase change  [11]. Temperature- 
dependent hydrogen bonding or hydrophobic interactions may be exploited, 
as in case of gelatin, Pluronic, etc. Colloidal- like suspensions of densely 
packed microgels or jammed gels also prevent exposure of cells to high shear 
stress [12].

Viscoelasticity and yield stress: Viscoelasticity is the property of retaining elastic 
shape while allowing viscous flow. It is guided by three parameters – storage 
modulus (G′), viscous modulus (G″), and yield stress. Tan (δ), the ratio between 
G′ and G″, gives information about the rheological characteristics of the bioink. 
Yield stress is the stress limit beyond which deformation occurs. The parame-
ters of G′ and yield stress are governed by the number of crosslinks within the 
bioink. These crosslinks offer resistance to shape change within the yield stress. 
Paradoxically, though yield stress of the bioink renders shape and stiffness to 
the substrate, it can also deter cell encapsulation and further growth. Hence, 
additives like carrageenan, gellan gum, and hyaluronan are added to the bioinks 
to improve yield stress [13, 14]. However, in stereolithography and light- assisted 
bioprinting, low- viscosity bioink is required for easy flow and for each layer to 
be crosslinked with each other.
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Shear thinning: Shear thinning is the phenomenon where increase in shear rate 
results in the decrease in viscosity. Partially crosslinked hydrogels, colloidal 
 suspensions, polymer melts, or polymer solutions above certain critical 
concentrations show shear- thinning properties with shape preservation. Shear 
thinning leads to decrease in viscosity in the extrusion phase, but rise in viscos-
ity after extrusion results in shape preservation. For e.g., shape retention in 
printed calcium phosphate cement is due to high zero- shear viscosity [15]. PCL 
and PLA melts, used in polymer- based fused deposition modeling, possess 
intrinsic shear thinning properties due to shear- induced disentangling and 
alignment of long polymeric chains [16]. High resting viscoelasticity of pastes, 
solid suspensions, and colloidal dispersion bioinks arises due to the restoration 
of interaction between the suspended particles, which had been disrupted due 
to the shear- thinning process  [17]. Hydrogels demonstrate non- Newtonian 
fluid behavior with shear- thinning features. So, the random polymer chains 
align themselves in one direction under shear force and become suitable for 
extrusion process.

Surface tension: Due to surface tension, there is an attraction between the liquid 
molecules, which ensures a contact angle between each printed strand. When 
the substrate has a higher surface energy than the surface tension of the bioink, 
the ink spreads; conversely, lower surface energy results in less spread [18]. For 
e.g., shape fidelity in printed constructs of ceramic slurries is reduced by both 
surface tension and gravity. It has been observed that a reduction in surface 
energy leads to droplet formation instead of a cuboidal structure [19].

Elastic recovery: This property explains how the bioink recovers its original solid- 
like property without any distortion after undergoing deformation or transition 
from liquid to solid state [20]. Due to this feature, multi- layered structures can 
be built up. Elastic recovery is the combination of both viscous flow and elastic 
recovery where the viscous modulus, G″, explains the fluid- like behavior of 
bioinks, and elastic modulus, G′, defines the solid- like behavior of bioinks 
imparting elastic shape recovery. While the former allows mixing of cells and 
extrusion, the latter allows suspension of cells. Often, these moduli vary under 
different conditions of temperature, stress, and shear rate.

The recovery of solid- like behavior after extrusion through a needle must be 
fast to ensure good shape fidelity. The rheological evaluation of a bioink is done 
on the basis of the kinetics of yield stress and elastic recovery. The first step is 
to evaluate the effect of increasing shear stress and filament- forming capability, 
followed by the measurement of viscosity as a function of shear rate to evaluate 
the shear thinning property. Then, recovery tests are done to investigate whether 
the materials can restore their elastic properties on exposure to alternating low 
and high sheer stress [17].


