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Foreword

Deep Learning: A Practical Introduction, authored by Manel Martínez-Ramón, Meenu Ajith,
and Aswathy Rajendra Kurup, stands as a pragmatic guide, which prepares the engaged
student to digest and understand advanced deep learning concepts. Designed primarily as
an educational resource for graduate-level courses in deep learning, this book is enriched
with a valuable collection of exercises and practical Python tutorials, making it an ideal
educational tool.

Deep learning, a cornerstone of modern artificial intelligence, has seen a meteoric rise in
usage, powering the creation of text, images, and videos, from simple prompts, and enhanc-
ing our predictive capabilities in a diverse array of applications. This book offers a thorough
exploration of deep learning fundamentals, an essential component for students in engi-
neering or computer science.

The authors begin by tracing the intriguing history of deep learning, setting the stage for
a deeper dive into the subject. They skillfully introduce various methods for training and
optimizing algorithms, alongside an overview of essential programming tools and libraries
which are prevalent today, including Python, NumPy, TensorFlow, and Pytorch.

The book then covers a broad range of fundamental models including recurrent neural
networks, transformers, unsupervised learning, and deep Bayesian networks. Within each
of these chapters, there is an accessible introduction and detailed explanation of each mod-
eling framework, which allows the reader who is new to deep learning to gain a foothold
in this extraordinarily important space, while also providing practical examples including
code and data as well as references for further learning. Additionally, it offers references for
extended learning, bridging the gap between fundamental concepts and recent advance-
ments in the field.

The author’s provides a clear and comprehensive introduction to deep learning, making
it an essential addition to the field’s literature. Whether you are an instructor designing a
course or a student embarking on self-directed learning, this book is an invaluable resource
for navigating the complexities and applications of deep learning.

In essence, Deep Learning: A Practical Introduction is not just a textbook; it is a gateway to
understanding and applying one of the most influential technologies in the field of artificial
intelligence today. It is a useful tool for (i) instructors who want to teach core deep learning
topics to their students, (ii) researchers in a variety of fields, including my own field of
neuroimaging, who want to develop domain-specific methods, and (iii) students who are
interested in self-learning on this important topic.



xviii Foreword

Overall, I strongly endorse Deep Learning: A Practical Introduction as a valuable resource
for both educators aiming to impart core deep learning concepts to their students and for
learners pursuing self-study in this vital area. The book’s blend of theoretical insights and
practical applications, including code and data examples, makes it a standout choice for
anyone looking to delve into the world of deep learning.

Vince Calhoun
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Preface

The present book is intended to be a comprehensive introduction to deep learning that
covers all major areas in this discipline. This document is designed to cover a full semester
graduate class in deep learning, and it contains all the materials necessary to build the
class. We structured our work in a classical way, starting from the fundamentals of neural
networks, which are then used to describe the different elements of deep learning used
in artificial intelligence, from the classic convolutional neural network and recurrent
neural networks (RNNs) to the transformers, plus unsupervised learning structures and
algorithms. In every chapter, we follow a schema where first the structures are described,
and then the criteria and algorithms to optimize them are developed. In most cases, full
mathematical developments are included in the description of the structure optimization.

Chapter 1 is a first contact with deep learning, where we introduce the most basic type
of feedforward neural network (FFNN), which is called the multilayer perception (MLP).
Here, we first introduce the low-level basic elements of most neural networks and then the
structure and learning criteria.

Chapter 2 is complementary to Chapter 1, but its contents are valid for the rest of the book
since it provides details about the practical training of deep learning structures, which we
have omitted from the first chapter in order to make it more concise and compact.

These readers who do not have a knowledge of basic Python will benefit from using
Chapter 3 in order to start experimenting with learning machines in this programming
language. In this chapter, authors assume that the reader has reviewed Chapter 1, which
implies that they have been introduced to the concepts of structure, criteria, and algorithms.
If so, readers already had the opportunity to see some basic Python codes containing at least
a class with methods and an instantiation of it to be used in the examples and exercises,
without needing to understand their Python structure. In this chapter, we introduce the
basic elements of Python to be used throughout the book, and we will revisit the code
previously introduced in Chapter 3, among other examples.

The concepts and structure of convolutional neural structures are described in
Chapter 4. It starts with the concept of convolution in two dimensions and its justification
for its use in deep learning, after which the structure of a convolutional neural network is
described. The training of such a structure is not commonly found in the literature, assum-
ing that the students and practitioners understand and can apply the backpropagation to
them. We offer in this chapter a full development of the backpropagation for convolutional
neural networks and we summarize the algorithms, so the practitioner can program it.
Still, most importantly, they will understand exactly how it works.



xx Preface

Chapter 5 covers the basics of the RNN. The chapter starts off with the architecture of
the RNN and then explains how these networks are used for modeling sequential infor-
mation. Further into the chapter, the training criterion is introduced, which describes the
feed-forward training, loss functions, and backpropagation through time. Next, the different
types of RNN and their application are discussed. The following section explains the short-
comings of RNNs and highlights the details on different types of gradient problems and
the solutions to these problems. Then, the shortcomings of RNNs and highlights the details
on different types of gradient problems and the solutions to these problems are explained.
After that, the details on other RNN-derived structures which were introduced to mitigate
the short-term memory problem associated with the traditional RNNs are discussed.

Chapter 6 provides a structured and comprehensive overview of the developments in
attention-based networks. The first section summarizes the different types of attention
mechanisms based on sequence, levels, positions, and representations. Finally, we review
the network architectures that widely use attention and also discuss a few applications in
which attention-based networks have shown a significant impact.

Chapter 7 gives a comprehensive outline of deep unsupervised learning. The overview
gives an introduction to the two main categories of deep unsupervised learning such
as probabilistic and nonprobabilistic models. The chapter is mainly devoted to the
autoencoder, which is one of the widely used nonprobabilistic deep unsupervised learning
methods. First, the basic elements, training criteria, and the extensions of autoencoders
are explained. Following this, an overview of the deep belief networks (DBNs) is given and
it constitutes the basic blocks (restricted Boltzmann machines), training using contrastive
divergence, and the variations of DBN. Finally, we also provide different applications of
unsupervised deep learning.

Chapter 8 briefly covers the generative adversarial networks (GANs). Primarily, it intro-
duces the two elements of GANs namely discriminator and generator. After this, the com-
plete architecture of the GAN is illustrated to have a higher level of understanding of the
network. Next, the training criteria are outlined which describes the alternate training pro-
cess between the discriminator and the generator. The loss functions that model the prob-
ability distribution of the data is also added in this section. Finally, popular models derived
from GAN are presented, and the chapter is concluded by summarizing the advantages and
trade-offs of GAN.

Chapter 9 covers the main topics of deep Bayesian networks. Here, the authors do not
intend to be exhaustive by covering the state of the art of deep Bayesian networks, Instead,
we propose a chapter that gives the reader a general view of the characteristics and different
philosophies of Bayesian networks with respect to previously introduced structures and
algorithms. After introducing the general concepts of deep Bayesian networks, including
structures and criteria (thus following the same format used in the rest of the book) we
explain the main optimization algorithms used in the current literature, with several
examples.

June, 2024
Albuquerque, New Mexico

Manel Martínez-Ramón
Meenu Ajith
Aswathy Rajendra Kurup
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1

1

The Multilayer Perceptron

1.1 Introduction

The concept of artificial intelligence (AI) is relatively simple to explain, and it can be enun-
ciated as a possible answer to the question of how to make a machine that is able to perform
a given task without being explicitly programmed for it, but instead, extracting the neces-
sary information from a set of data. Let us say, for example, that a machine is needed to
classify green and red apples. The machine is provided with a camera, and all the mecha-
nisms necessary to place one apple at a time in front of it and then throw it in one of two
buckets. A machine wired to do this will relay in binary operators as “IF,” “THEN.” If the
color is red, throw it in bucket A, otherwise, in bucket “B.”

The limitations of this method are obvious. If a pear is mistakenly introduced in the pro-
cess, it will be classified as a green apple. Also, how can we use the same or similar structure
for a different or more complex task? As in the previous machine, an AI approach uses fea-
tures found in the data in order to take the decision, but the algorithm is not explicitly
programmed. Instead, the machine has a specific parametric structure capable of learning
from data. The learning process involves the optimization of a certain measurable criterion
with respect to the parameters. The deep learning (DL) structures for artificial intelligence
are able to learn complex tasks from the available data, but they also have capabilities such
as learning how to extract the useful features for the task at hand, provide probabilistic out-
puts (i.e. “the probability of apple is 97%”), and many others. The basic element of such a
structure in DL is the so-called artificial neuron, a simple concept that provides the power
and nonlinear properties.

This chapter is intended to be a first contact with DL, where we introduce the most
basic type of feedforward neural network (FFNN), which is called the multilayer percep-
tron (MLP). Here, we first introduce the low-level basic elements of most neural network
(NN)s, then the structure and learning criteria.

The elements introduced in this chapter will be used throughout the book. We start from
the single perceptron, we construct a basic MLP, where the different activations are devel-
oped, and then the notation based on tensors is also justified as a generalized tool to be
used throughout the book. After this, we present the maximum likelihood (ML) criterion
as a general criterion, which is then particularized to the classic cases corresponding to the

Deep Learning: A Practical Introduction, First Edition.
Manel Martínez-Ramón, Meenu Ajith, and Aswathy Rajendra Kurup.
© 2024 John Wiley & Sons Ltd. Published 2024 by John Wiley & Sons Ltd.
Companion website: https://github.com/DeepLearning-book

https://github.com/DeepLearning-book


2 1 The Multilayer Perceptron

different output activations. Finally, the backpropagation (BP) is detailed and then summa-
rized so that can be translated into a computer program.

In this chapter, examples and exercises are presented in a way that assumes that the stu-
dent does not necessarily know about programming in Python. Examples will be focused on
the behavior of the MLP, without focusing on the programming, and the exercises intended
to modify, at a high-level data, parameters, and structures in order to answer questions to
different practical cases. Chapter 3 explains, in particular, how the different examples have
been coded, thus they will be reviewed in that chapter from the point of view of practical
programming.

1.2 The Concept of Neuron

The idea of the artificial neural network (ANN) is obviously inspired by the structure
of the nervous system. The first attempt to understand how neural tissue works from a
logical perspective was published in 1943 by Warren S. McCulloch and Walter Pitts (1943)
(Fig. 1.1). They proposed the first mathematical model for a biological neuron in his paper.
In this model, the neuron has two possible states, defined as 0 or 1 depending on whether
the neuron is resting or it has been activated or fired. This represents the axon of the
neuron. The input of this neuron model consists of a number of dendrites whose excitation
is also binary. This elemental structure is completed with an inhibitory input. If this input

Figure 1.1 Warren S. McCulloch (left) and Walter Pitts in 1949. Source: R. Moreno-Díaz and
A. Moreno-Díaz (2007)/with permission from Elsevier.
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is activated, the neuron cannot fire. If the inhibitory input is deactivated, the neuron can
be activated if the combination of inputs is larger than a given threshold. This model is
fully binary and, since it includes mathematical functions that cannot be differentiated, it
cannot be treated mathematically in an easy way. Certain modifications that will be seen
further give rise to what is known as the artificial neuron in use today.

Section 1.2.1 contains an introduction to the concept of artificial perceptron from an alge-
braic point of view. A possible way to train a single perceptron is introduced in Sections 1.2.2
and 1.2.3, as well as the limitations of this structure as a linear classifier.

The concept of artificial NN was introduced by the psychologist Frank Rosenblatt
(Fig. 1.2) in 1958 Rosenblatt (1957, 1958). In this paper, he proposed a structure of the
visual cortex perceptron (Fig. 1.3). The structure presented in Rosenblatt (1958) contained
the fundamental idea that is used in any artificial learning structure. In the first stage

Figure 1.2 Frank Rosenblatt. Source: https://news.cornell.edu/stories/2019/09/professors-
perceptron-paved-way-ai-60-years-too-soon/ last accessed November 30, 2023.
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Figure 1.3 The perceptron as described in Rosenblatt (1958)/American Psychological Association.
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(Retina), the device collects the available observation or input pattern intended to be
processed in order to extract knowledge of it. The second stage (Projection area) is in
charge of processing this observation to extract the information needed for the task at hand.
This information is commonly called the set of features of the input pattern. The third stage
(Association area) is intended to process these features to map them into a given response.
For example, the response may be to recognize some given object classes present in the
scene. Rosenblatt is the father of the artificial perceptron. He proved that by modifying
the McCulloch–Pitts neuron model, the neuron could actually learn tasks from the data.
In particular, his model had weights that multiplied each of the inputs to the neuron as
well as the input bias or threshold that could be adjusted for the neuron to perform a given
task. He developed the Mark 1 perceptron machine, which was the first implementation
of his perceptron algorithm. This device was not a computer but an electromechanical
learning machine. The machine consisted of a camera constructed with an array of 400
photocells, the output of each one connected randomly to the dendrites of a set of neurons.
The weights, or attenuations applied to these inputs, were controlled with potentiometers
whose axes were connected to electric motors. During the learning procedure, the motors
adjusted the input weights. This machine was able to distinguish linearly separable
patterns, or patterns that were at one or another side of a hyperplane in the space of 400
dimensions spanned by the camera inputs depending on its binary class. The invention
was then limited in its capabilities until it was proven that a perceptron constructed with
more than one layer of neurons MLP had nonlinear capabilities, that is, the ability to
separate patterns that could not be separated by a hyperplane. Nevertheless, the MLP could
not be trained using the techniques introduced by Rosenblatt for his perceptron. It was in
1971 that Paul Werbos, in his PhD thesis (P. J. Werbos 1974) introduced the BP algorithm,
which made it possible to adjust the weights of a multilayer perceptron.

1.2.1 The Perceptron

From a conceptual point of view, a perceptron is a function made to perform a binary
classification. In order to describe this function, let us first introduce the necessary nota-
tion and concepts associated with it. Assume a given observation that consists of a collec-
tion of D magnitudes observed from a physical phenomenon. These magnitudes are stored
in a column vector, which will be called x ∈ ℝD, which lies in a space of D dimensions.
For illustrative purposes, let us construct a set of artificial data in a space of D = 2 dimen-
sions as in Fig. 1.4.

The figure shows a set of points with coordinates x = (x1, x2)⊤, where operator ⊤ denotes
the transpose operation, meaning that the vector is a column one even if it is written as
a row vector. In this toy example, the data belongs to one of two classes (black or white)
that we will label arbitrarily with the labels 1,−1, though in some cases, labels 1, 0 are more
convenient. It can be seen that the data is linearly separable, that is, both classes can be sep-
arated by placing a line between the black and white clusters of data. That is, roughly speak-
ing, the idea of the perceptron. It must be trained to place a separating hyperplane between
both classes. We define the hyperplane (particularized to a line in the two-dimensional
example) as

w⊤x + b = 0 (1.1)


