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Foreword

The term metabolomics was first introduced in the early 2000s, when spectroscopic 
and chromatographic techniques were being developed for profiling of metabolites 
within cells and tissues. The capabilities of instrumental techniques, primarily NMR, 
LCMS and GCMS, to obtain large quantities of such data resulted in big datasets. Com-
mon to other emerging omics technologies such as genomics, transcriptomics and pro-
teomics, computational methods were required to make sense of this data.

Computational methods for processing data can be applied to two steps of the 
metabolomics workflow. The first is for resolving and characterising raw instrumen-
tal data primarily from coupled chromatography and NMR spectroscopy, to produce 
peak tables for subsequent statistical processing. We list the main packages currently 
available in this book and their underlying principles, but this is not the focus of the 
text. These packages evolve rapidly, and most will change over the lifetime of this 
text. In addition, many involve proprietary or very complex and ever-evolving algo-
rithms often linked to expanding databases, which would be difficult or impossible to 
describe in detail. Finally full information is not always easily available from the devel-
opers or main users of some of the packages, but there are regularly updated websites 
with user manuals to which readers should refer. We have tried to gather information 
on most of these approaches in Chapter 2, all of which are unique, but some have been 
developed and are maintained by large teams, and it would be unrealistic for a reader 
of this book to reproduce these methods and not all developers are easily forthcoming 
about details.

In contrast, approaches for statistical or chemometric processing have a long vin-
tage and are likely to remain available in decades to come in a similar form to now, 
and all common methods are public domain. A textbook is designed to have a long life-
time, and the focus of this text is on commonly available chemometric methods. Many 
approaches and concepts used in current metabolomic statistical analysis were first 
formulated over 100 years ago, such as p values, ANOVA, distributions, least squares 
regression, PCA and so on. Another set of methods emerged around 50 years ago, 
such as PLS and SIMCA when there developed a more widespread need to interpret 
multivariate analytical data. A few are more recent such as ASCA. This text is an aid 
to modern-day research but not a theoretical text reviewing the latest chemometric 
methods proposed in the literature.

The choice of methods in this book is based on this author’s perception of some of 
the most widespread in current practice, based on the literature, on talking to practic-
ing colleagues and implemented in widespread packages. Of course there will be many 
other methods, and a comprehensive description of all chemometric approaches used 
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in metabolomics would be a series of texts: unfortunately such a series of texts would 
take many years to compile and probably involve several authors, and with the rapid 
development of this field the first book would almost certainly be dated when the last 
one appears. Within a single text and a single author, one can only describe the most 
common, but the advantage is that there is uniformity in presentation, so the methods 
are described in similar depth using similar notation and datasets. Most users are only 
exposed to a few of the most widespread methods.

This book can be used at various levels. At the top level, it is a description of the 
use and basis of the most common chemometric methods, illustrated by case studies. 
Readers may discover methods they had not been aware of, or interpretations they 
had not previously appreciated. This book advocates a hypothesis-based approach, as 
most of metabolomics is hypothesis driven. At a deeper level, some will want to follow 
the calculations in the book. This will enable understanding of the methods and can 
enable comparison with in-house software. There is sufficient description of how the 
methods are implemented and sample output to allow readers to compare with their 
own calculations; if there are differences, this may lead to changes in software usage 
or catalyse additional interpretation of data. Sometimes there are several comparable 
methods, and users may want to look at their results from different angles.

Although this author performed all calculations with in-house software devel-
oped using MATLAB, there is no requirement to use this package to reproduce results. 
Some numerical output has been compared by myself and by colleagues using other 
approaches, notably R, Excel (with VBA), PLS Toolbox and SIMCA, to both ensure 
identical results (except for the sign in PCA) and check numerical accuracy. Readers 
will be using a wide variety of favoured software environments. This author has over 
many years performed chemometrics calculations in MATLAB, Fortran, SAS, BASIC, 
Excel (with VBA), C and PL/1 where appropriate and has co-operated with colleagues 
who have additionally used R, PLS Toolbox, SIMCA, UNSCRAMBLER, Pirouette, Sir-
ius and Minitab. There are, of course, many other packages available suitable for the 
statistical analysis of metabolomics data. However, unlike the methods for resolution 
and characterisation of instrumental data, if correctly used, all these packages should 
come to identical answers. Most low-level programming languages allow all the steps 
in an algorithm to be coded in, and many high-level environments allow for scripting 
or macro commands to swiftly develop applications without complex programming. 
Some users will not want to do any programming and want more or less automated 
laboratory-based software, although usually some functionality is available by menu 
commands – approaches such as PCA and PLS should, if steps such as pre-processing 
are performed as described in this text, result in identical answers, providing there is 
sufficient flexibility in the software.

The 10 case studies in this book have been carefully chosen to span a range of 
applications. We have focussed on the main instrumental workhorses, namely NMR (3 
case studies), LCMS (2 case studies) and GCMS (2 case studies). Raman (1 case study), 
FTIR (1 case study) and single wavelength HPLC (1 case study) are used by some 
investigators who view themselves as working in metabolomics; therefore to satisfy 
such readers, we have also included data from these sources. The case studies come 
from human (4), plant (3), animal (2) and microbial (1) experiments reflecting a range 
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of applications, with data sources from Europe (6), Asia (2), North America (1) and 
Africa (1).

Some case studies are used more frequently to illustrate different methods than 
others, some being just illustrated by PCA, whereas others are mentioned in three 
or four chapters. There are excellent articles describing the full analysis of each case 
study referenced in the text, and it is not the aim of this book to copy the existing 
literature but to describe the main approaches and illustrate them where appropriate 
with one or more case studies using one or more steps in the analysis. The case stud-
ies can be downloaded from the companion Wiley website and are all in Excel format. 
The case studies are supplemented by a small number of simulations, with the larger 
simulations also available for download.

Although chemometric methods are widely recognised as essential to the analy-
sis of metabolomic data and there are many texts on general chemometrics methods 
mainly aimed at analytical chemists, there is a lack of books focussed on their applica-
tion to metabolomics. It is hoped that this text will be a useful reference.

In addition to a primary focus on metabolomics, this book will also be of interest 
to the general user of chemometrics in related fields, covering most of the common 
methods such as PCA, PLS, calibration, classification, experimental design and so on. 
It will also be of interest to the applied statistician interested in methods used in che-
mometrics. For these readers, the choice of and relative importance of methods dis-
cussed in the text are oriented towards metabolomics, and case studies are also related 
to data encountered in this field, but the applicability of the statistical approaches can 
easily be transferred to other fields. 

Richard G. Brereton
December 2023� Bristol, University of Bristol, UK
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1

C H A P T E R  1

The subject matter of this book is a synthesis between chemometrics and metabo-
lomics, both relatively recent scientific disciplines. This chapter describes the back-
ground to these disciplines and then introduces the background to the case studies 
which are used to illustrate the chemometric methods and describes some software 
packages that can be used to obtain results described in this text.

1.1  CHEMOMETRICS

The name chemometrics was first proposed by Svante Wold in 1972  in the context 
of spline fitting  [1]. Together with Bruce Kowalski, they founded the International 
Chemometrics Society and the term slowly took off in the 1970s. However, the pio-
neers did not widely use this term for some years, but a major event that catalysed it 
was a workshop in Cosenza, Italy, in 1983 [2] where many of the early pioneers met. 
After this time several initiatives took off, including the main niche journals, Jour-
nal of Chemometrics (Wiley) [3] and Chemometrics and Intelligent Laboratory Systems 
(Elsevier) [4], together with courses and the first textbooks [5, 6] with regular reviews 
and ACS (American Chemical Society) symposia starting a few years earlier [7].

However, these events primarily concern name recognition and organisation, and 
the main seeds for the subject were sown many years earlier.

Applied statistics was one of the main influences on chemometrics, although the 
two approaches have diverged in recent years. The modern framework for applied sta-
tistics was developed in the early 20th century and we still use terminology first defined 
during these decades. Before that, early academic statistics was mainly mathematical 
and theoretical, often linked to probability theory, game theory, statistical mechanics, 
distributions etc. and viewed as a subdiscipline of mathematics. Although many early 
pioneers had already used approaches previously that we would now regard as the 

Introduction

Data Analysis and Chemometrics for Metabolomics, First Edition. Richard G. Brereton.
© 2024 John Wiley & Sons Ltd. Published 2024 by John Wiley & Sons Ltd.  
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2  Chapter 1  Introduction�

forerunners of modern applied statistics, their ideas were not well incorporated into 
mainstream thinking until the early 20th century.

A problem in the 19th century was partly the division of academic disciplines. 
Would a mathematician talk to a biologist? They worked in separate institutes and had 
separate libraries and training. For applied statistics to develop, less insular thinking 
was required. There also needed to be some level of non-academic contribution as 
many of the catalysts were at the time linked to industrial, agricultural and medical 
problems. With core academic disciplines, the application of statistical methods in 
physics and chemistry, which would eventually progress to quantum mechanics and 
statistical mechanics, fell outside mainstream applied statistics and has led to special-
ist statistically-based methods that are largely unrelated to chemometrics.

However, in the first three decades of the 20th century, there was a revolution in 
thinking. Such changes primarily involved formalising ideas that had been less well 
established over the previous decades and even centuries. Karl Pearson [8] and Wil-
liam Gossett publishing under the pseudonym ‘Student’ [9] are recognised as two of 
the early pioneers. Pearson set up the first statistics department in the world, based in 
London, and his 1900 paper first introduced the idea of a p value, although historic 
predecessors can be traced several centuries back [10–12].

It was not until after the First World War that applied statistical methods were 
properly formalised in their modern incarnation. Ronald Fisher was possibly the most 
important figure in developing a modern framework for statistical methodology that 
many people still use today. In 1925 he published Statistical Methods for Research Work-
ers [13] and established the concepts of p values, significance tests and ANOVA (analysis 
of variance). Ten years later he wrote a book that described the basis of almost all statis-
tical experimental designs [14] used even now, and his paper on classification of irises 
(the plants) [15] is an essential introduction to multivariate classification techniques, 
with this dataset used even now for demonstrating and comparing new approaches. 
Other important workers over that period, included Harold Hotelling, who among oth-
ers was attributed with progressing the widespread use and recognition of PCA (princi-
pal components analysis) [16, 17] and Jerzy Neymar and Ergon Pearson who developed 
alternative approaches to hypothesis tests to those proposed by Fisher [18].

During the interwar period, many of the cornerstones of modern applied statistics 
were developed, and we continue to use methods first introduced during this era; many 
approaches used in chemometrics have a hundred-year vintage. However, there were 
some significant differences from modern practice. There was no capacity to perform 
intensive computations or generate large quantities of analytical data, so applications 
were more limited. Agriculture was at the forefront. During this era, the old land-
owning classes had to modernise to survive: many farm labourers left for the cities 
and agriculture became more automated. The relationship between landowners and 
tenants weakened and larger farms were viewed more as an industry rather than the 
birthright of aristocratic classes. This required a significant change in production, 
and agricultural statistics was very important, especially to improve the economies of 
Western Nations. Other important driving forces came from the use of psychology to 
interpret test scores, and from economics. Common to all these types of data is that 
experiments involved considerable investment in time, so it was reasonable to spend 
substantial effort analysing the results, some required weeks of manual calculations, as 
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data was expensive and precious. In modern days, spectra, in contrast, can be obtained 
relatively rapidly and quickly, so spending days or weeks performing statistical calcu-
lations would be an unbalanced use of resources.

Furthermore, without the aid of computers many of the multivariate methods we 
now take for granted would involve a large amount of time. Salsburg [19] claims as fol-
lows: ‘To get some idea of the physical effort involved, consider Table VII that appears 
on page 123 of Studies in Crop Variation. I. [20]. If it took about one minute to com-
plete a single large-digit multiplication, I estimate that Fisher needed about 185 hours 
of work to generate that table. There are fifteen tables of similar complexity and four 
large complicated graphs in the article. In terms of physical labor alone, it must have 
taken at least eight months of 12-hour days to prepare the tables for this article.’ Of 
course, Fisher would have had many assistants to perform calculations, and he would 
have been very well resourced compared to most workers of the time. Hence, only quite 
limited statistical studies could be performed routinely. Some algorithms and designs 
such as Yates’ algorithm [21] were developed with simplicity of calculation in mind as 
the data had special mathematical properties and although still reported in some text-
books even now are not so crucial to know about with the advent of modern computing 
power. Computers can invert large matrices very quickly, whereas a similar calculation 
might take days or longer using manual methods. In areas such as quantum chemistry, 
a calculation that may take up an entire PhD via manual calculations can now be done 
in seconds or less using modern computing.

The statistician of the first half of the 20th century would be armed with logarithm 
tables, calculators, slide rules and special types of graph paper, and in many cases would 
tackle less data-rich problems than nowadays. However, there was a gap between the 
mathematical literature where quite sophisticated methods could be described, often 
in intensely theoretical language, and the practical applications of much more lim-
ited and in most cases simpler approaches. Many of the more elaborate methods of 
those early days would not have much widespread practical use, but modern-day mul-
tivariate statistics can now take advantage of them. The chemometrician can routinely 
use methods that on very large spectroscopic or chromatographic datasets that were 
inconceivable prior to the widespread availability of modern computers.

In the post-war years, chemical manufacturing was of increased importance and 
multivariate methods were applied by industrial chemical engineers  [22]. G.E.P. Box 
worked with a group in the chemical company ICI in the UK for some years, before mov-
ing to the US. His text [23] written together with two co-authors, is considered a classic in 
modern statistical thinking for applied scientists emphasising experimental design and 
regression modelling and brings the work of the early 20th century into the modern era.

In the 1970s, mainstream applied statistics started to diverge from chemometrics. 
In chemometrics, we often come across short fat datasets, where the number of vari-
ables may far exceed the number of samples. For example, we may record thousands 
of mass spectral or NMR or chromatographic data points for each of perhaps 20–100 
samples. These sorts of problems were not conceivable to the original statistical pio-
neers, measurements were expensive, so variables were scarce. Fisher’s classic iris 
data [15] consisted of 150 samples but only four variables. Once sample sizes are less 
than the number of variables, some classic approaches for multivariate data analysis 
are no longer directly applicable, an important one is the Mahalanobis distance [24] 
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and the corresponding method of LDA (linear discriminant analysis) [15] which have 
to be adapted and cannot be directly applied to data whose variable to sample ratio 
exceeds 1. More recent methods such as PLS (partial least squares) [25, 26] and SIMCA 
(Soft Independent Modelling of Class Analogy) [27] were advocated in the 1970s and 
1980s very much with the needs of chemometricians in mind and coped well with such 
data. Chemometricians are often very interested in variables, for example, which are 
most significant out of possibly hundreds of candidates, whereas statisticians empha-
sise the significance of factors, in many cases using univariate tests. Although both 
types of thinking may come to similar types of conclusions, some traditional statistical 
approaches are invalid, as an example if there are more variables to samples, we can-
not use LDA to provide us information as to which variables are the most significant, 
whereas PLS might provide an answer. As such problems were inconceivable before 
the 1970s, the impetus to providing niche solutions for the chemometrician is of  
50-year vintage. Metabolomics is often a rich source of information where the number 
of variables far exceeds the number of samples so chemometrics is needed for statisti-
cal interpretation.

Although there are still a few workers in the chemometrics field who identify 
themselves as statisticians, their influence became quite limited after the 1980s, judg-
ing by attendance at chemometrics meetings, development of texts and courses and so 
on. In a way, this divergence is similar to those in areas such as quantum mechanics or 
statistical mechanics, which are also founded on statistical principles but are primarily 
led by numerate scientists.

However, the strong statistical parentage is an important cornerstone of chemo-
metrics. As many applications are moving away from the original ones of quantitative 
analytical and physical chemistry into more hypothesis-based science such as metabo-
lomics, the original aims of measuring more precisely or predicting more accurately 
are gradually being supplemented by more statistical aims to generate and test hypoth-
eses. In the latter case, chemometrics, whilst once routed in the physical sciences, is 
being adapted to tackle problems from those in biology, geology, psychology and so on, 
and requires a return to core statistical thinking. It is questioned for the future whether 
this will attract more applied statisticians back into the field, or whether niche chemo-
metrics experts will return to the mainstream statistical literature and then incorpo-
rate more statistical thinking into their publications and software without the need to 
bring mainstream statisticians directly into their collaborations.

Another parent of chemometrics was quantitative chemistry. Historically, it is 
important to understand that interdisciplinary research was not very widespread dur-
ing most of the formative years in the 20th century. Academia was highly compart-
mentalised, with students opting for specialist courses in, for example, chemistry, or 
mathematics or biology. Most university teachings except at the basic levels would 
have been by staff from a single department. Students might be introduced to statisti-
cal concepts at an early stage but if by mathematicians in a somewhat abstract man-
ner. If carried forward in courses such as physical and analytical chemistry, statistical 
methods would have been strongly oriented towards univariate measurement and esti-
mation or in specialist areas such as quantum chemistry.

At a research level, departments would have their own libraries and staff rooms. 
In many countries, to obtain academic positions staff would have to be very focused. 
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An analytical chemist might have to pass a committee for tenure or habilitation, which 
is narrowly defined in part because subsequent teaching duties will also be highly com-
partmentalised. Libraries, journals, books, staff rooms, even sports teams and social 
events would often be organised by departments. A chemist, if working in the right 
subdiscipline, could snatch some snippets of statistical thinking where needed, but 
it would mainly be developed independently within their own environment. An ana-
lytical chemist would be unlikely to visit a mathematics library or read a mainstream 
statistics journal, but would gather their statistical knowledge from analytical journals 
and books; the internet was not yet available so the ability to search for papers from a 
wide selection of journals was mainly restricted to visits to other departments’ librar-
ies. Analytical chemists would be introduced to niche statistics, for example, learning 
about precision and accuracy of measurements, but most would have limited exposure 
to other statistical texts except at a basic level.

Industrial cross-over with mainstream academics was also rather limited until the 
fourth quarter of the 20th century. Thus, the work, for example, G.E.P. Box and col-
leagues were doing in ICI in the 1950s would be unknown to chemists in many prestig-
ious universities. Formal statistical design of experiments, so important for improved 
industrial productivity, would not be adopted by mainstream synthetic chemists in an 
academic environment until the last decade of the 20th century.

Hence, the development of statistical thinking within mainstream chemistry, such 
as multivariate analysis and statistical experimental design, developed in quite unique 
ways. A few brave workers did, however try to introduce statistical and computational 
ideas to the chemistry community. Statistical methods such as univariate linear regres-
sion, determining accuracy and precision of measurements and so on, have been part 
of the analytical and physical chemists’ toolbox for more than a century. However, 
many techniques now recognised as part of chemometrics were shown to be recog-
nised within the mainstream chemistry community. In 1949, Mandel draws together 
a number of statistical techniques, including design of experiments and ANOVA [28], 
in a paper which has been cited just seven times at time of writing (December 2023), 
an almost forgotten paper. W.J. Youden, a pioneering statistician, wrote 37 articles for 
Industrial and Engineering Chemistry between 1950 and 1957, many on experimental 
designs and very relevant to analytical chemists and chemical engineers, which in turn 
have been cited only 60 times in total. In 1952, he published a review in the journal 
Analytical Chemistry [29] citing 154 references, which has, in turn, only received seven 
citations. Yet a paper in the journal Cancer by the same author published in 1950 [30] 
has received over 7000 citations at the time of writing. It would be a value judgement 
as to whether these different publications contained more in-depth or original infor-
mation, and the difference in reception would primarily relate to the difference in 
readership.

Hence, although analytical chemists were aware of traditional statistical methods, 
for example, how to fit a straight line or how to determine the 95% confidence in a 
mean, they were relatively uninterested at the time in the statistical revolution of Fisher 
and colleagues, and a traditional course in chemistry would not cover systematic exper-
imental design, ANOVA, multilinear regression, multivariate pattern recognition, etc. 
It took until the 1970s before the importance of these approaches, well established 50 
years ago in the mainstream statistical literature, started to slowly become recognised 
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within the chemistry community. Chemometrics by name was fundamentally born 
within the chemical sciences, where the first applications of for example chromatogra-
phy and spectroscopy for the analysis of complex mixtures were developed. As time has 
progressed, although the first uses of these instruments were within the analytical and 
physical community, their application to data-rich sciences such as in the biomedical 
sciences where large mixtures of chemical compounds have a metabolic significance, 
has led to a much wider applicability of these instrumental techniques, and so the con-
cepts from chemometrics. The original applications of NMR and MS in chemistry were 
primarily for the structural elucidation of individual molecules and it took several dec-
ades before they became established for the studies of mixtures.

It was not until the 1970s that analytical chemists started widely recognising the 
potential of statistical principles for experimental design. Stan Deming, whose first 
paper was published in 1967, published a well-cited paper in analytical chemistry on 
simplex optimisation in 1973 [31] followed up by a more comprehensive statistically 
based and well-regarded book in 1987 [32].

A parallel development happened within the physical chemistry community. 
Spectroscopists studied problems involving overlapping peaks of mixtures. They prob-
ably did not have much access to the statistical literature at the time, but did read the 
physical literature for example about eigenanalysis, which is related to PCA. There 
were several papers in the 1960s of which two are cited [33, 34]. Physical/analytical 
chemists of the time developed their methods in isolation to statisticians and, due to 
the limited availability of computers, applied their approaches to what we now regard 
as quite simple problems.

The prolific pioneer Ed Malinowski put together many of the first approaches 
to multivariate resolution of mixtures in the 1970s with statistical and algorithmic 
descriptions, culminating in his classic book published in 1980 [35]. Many of the meth-
ods now recognised as multivariate curve resolution that have a high profile in chemo-
metrics, emerge from Malinowski’s early work. Unlike most chemometrics methods, 
for example for classification or exploratory data analysis or regression, factor analysis 
(as defined by Malinowski) or multivariate curve resolution have a very specific role in 
chemometrics, so play a unique role; even now many approaches for resolving peaks 
in coupled chromatography incorporated in elaborate software have their origin in 
concepts first advocated by Malinowski.

By the 1980s, ideas from quantitative analytical and physical chemistry had started 
to become formalised both in the area of multivariate analysis and experimental 
design, and were slowly recognised initially by a rather small group primarily of ana-
lytical chemists. In the 2000s, basic chemometric concepts were starting to be intro-
duced in general analytical chemistry courses and books and rapidly developed into 
software that was essential for burgeoning applications of instrumental analysis such 
as metabolomics as discussed in Section 1.4.

The third catalyst was scientific computing. Many of the approaches described in 
the first half of the 20th century remained theoretical without the availability of good 
computer power, and prior to the 1970s, only really quite simple problems could be 
solved by chemometric methods.

In the 1950s, very few scientists and engineers had access to computers for daily cal-
culations. Computers were large and expensive institutional machines often developed 
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for defence (as the initiative originally came out of the Second World War). Individual 
researchers rarely had direct access, programs had to be sent in using punch cards or 
paper tape to trained operators, who would then feed the instructions to a mainframe 
and output would usually be in the form of printer paper sent back to the user. If there 
was a mistake in a program, this was very costly.

Early programs were in assembly language or machine code, which would be very 
hard for non-experts and take time to develop simple sets of instructions. In the 1950s, 
IBM developed a high-level language, called Fortran (Formula Translation)  [36], 
which was the basis of most scientific software for the next two decades. The language 
continues to be developed with regular updates. Most classical scientific software was 
written using Fortran. The vast majority of quantum chemistry packages are still writ-
ten in Fortran, and some build on subroutines over 50 years old. The 1960s was a 
particularly fruitful time for quantum mechanics computing. Prior to this era, it could 
take a graduate student almost an entire PhD just to calculate a few quantum mechan-
ical integrals, so the use of scientific computers revolutionised this field.

However, access to mainframes capable of running large scientific programs was 
very limited until the late 1960s and early 1970s. Scientists who were not viewed as 
hard-core physical scientists had limited possibilities, and it took some years before 
access to significant scientific computer power was broadened.

In the very late 1960s, a few chemists did get access to significant computing power. 
Peter Jurs and his co-worker Bruce Kowalski were some of the first writing a series 
of papers in the analytical literature  [37]. The impetus had been from Djerassi and 
coworkers who had pioneered the use of computers in structural elucidation [38] lead-
ing to the field of artificial intelligence. The Arthur program [39], developed for both 
mainframes and VAX minicomputers was one of the first widespread chemometrics 
packages but still one had to be very expert to install and use it.

In the 1980s, two important developments happened in computing that would 
move chemometrics from a specialist discipline to one that had the potential to be 
more widespread. The first and most important was the development of microcomput-
ers in the late 1970s to early 1980s, the most successful scientific models of the type 
based on the original IBM PC [40]. Once micros became widespread and relatively 
user-friendly, chemometrics software could extend to a far wider user base and allow 
laboratory-based scientists rather than primarily specialists with access to expensive 
communal mainframes, to access chemometrics software.

Another important development of the time was MATLAB, originally developed 
by Cleve Moler [41] in 1981. Most chemometricians like to think in terms of matri-
ces, and languages such as Fortran and BASIC were not naturally oriented towards 
matrix operations at the time. MATLAB, however, allows the programmer to develop 
code using matrix and vector algebra directly and contains fast algorithms for opera-
tions such as inverting large matrices. Operations such as PCA are also built-in. Since 
its early days, the software has been substantially expanded with GUIs (graphic user 
interfaces) and extensive graphics. MATLAB had a significant role in the development 
of chemometrics because workers could quickly develop matrix-oriented algorithms 
and often swapped code. Although many developing chemometrics methods now pre-
fer R or Python, there still is an important group of MATLAB users, and this environ-
ment strongly catalysed the fundamental developments from the 1980s onwards.
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The three catalysts, namely applied statistics, analytical/physical chemistry and 
scientific computing, converged in the 1980s to provide a fertile environment for the 
establishment of the discipline. Several events were responsible to create a specific 
launching pad for what is now well regarded as a coherent body of knowledge.

The NATO-sponsored meeting in Cosenza, Italy, in 1983  [2] brought together 
many of the experts working in this field at the time, not all would have regarded 
themselves as fundamental chemometricians until then. The journal Analytical Chem-
istry started publishing biennial fundamental reviews under the name ‘chemometrics’ 
as from 1980 [7] bringing together the last two years of papers in the field. Several reg-
ular workshops were established. The first comprehensive texts were published [5, 6] 
although some more specialist books had been published covering specific areas, but 
without the name ‘chemometrics’ in the title, in the years before. Two journals were 
established, published by Wiley [3] and Elsevier [4]. Several series of conferences were 
started at this period. These attracted mainly niche workers, most of whom had a back 
in computing within a chemistry environment and were not yet attracting biologists. 
There was a separate and very well-established area of biological statistics, mainly 
oriented towards univariate data.

The applications at this phase were fairly simple, with NIR (near infrared) calibra-
tion and HPLC (high-performance liquid chromatography) deconvolution predominat-
ing, and relatively small sample sizes. Some approaches such as PLS [26, 27] and SIMCA 
(self independent modelling of class analogy)  [27] as well as Malinowski’s extensive 
methods which he called factor analysis  [35] were very oriented towards and widely 
reported within the chemometrics community rather than using a general statistics 
toolbox, although PLS (originating in economics) has found a home more generally 
since. The emphasis at the time was primarily to be able to measure and estimate accu-
rately, often in areas such as pharmaceutical and food science, where the concentration 
of an ingredient or of a reactant had to be estimated by spectroscopic or chromatographic 
means accurately and quickly. Pattern recognition that has a high profile in modern  
chemometrics and metabolomics was not a very large part of the original literature. 
Many dedicated packages were developed over this period, most of which are still in 
existence now, these will be described in the section on software (1.4) below.

Hence, most of the tools now recognised as chemometrics were available in the 
1980s. However, the early promise did not materialise at the time, unlike many other 
data-rich areas such as bioinformatics and QSAR (quantitative structure–activity rela-
tionship) which had a similar vintage. As from the mid-1990s, there was a tremendous 
interest in the application of chemometrics to fundamental analytical chemistry, for 
example the resolution of overlapping peaks in HPLC, which generated a large number 
of technically sophisticated but in most cases not particularly widespread papers and a 
very introspective number of groups and conferences. There was less scope for huge inno-
vation compared to the 1970s when scientific computing was rapidly evolving and mul-
tivariate statistical methods were quite new to numerate chemists. In 2008, Paul Geladi 
and Phil Hopke ask ‘Is there a future for chemometrics?’ [42]. Many viewed the subject 
as rather a technical niche area without much general applicability. The number of spe-
cialist chemometrics groups in the world had hardly changed over the decades, just with 
a few new faces replacing those that had retired or left for other fields. It was not a par-
ticularly attractive area for researchers, without much funds, and appeared to flatten off.
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In contrast, during the last 15 years or so, there has been a substantial renaissance. 
This is because chemometrics has moved out of its original comfort zone of quantita-
tive analytical and physical chemistry and been embraced in areas such as metabo-
lomics, among others. Big datasets are now readily available using instruments, such 
as LCMS (liquid chromatography mass spectrometry), NMR (nuclear magnetic res-
onance), GCMS (gas chromatography mass spectrometry) and so on. The capability 
of instruments to analyse many samples, each in turn containing large quantities of 
information, means a new and urgent need to correctly interpret these immense data-
sets and also to understand how to correctly design the experiments and perform the 
sampling. Thus, over more than a decade, there has been a renewed urgent need for 
chemometrics expertise. The sort of problems tackled nowadays often differs from the 
traditional analytical chemistry problems. The latter often involved measuring more 
accurately. For example, can a spectroscopic technique estimate the concentration of 
an analyte in a mixture without chromatography, and if so how well? We might cre-
ate some reference standards or perform some independent and slower method of 
analysis, such as HPLC, and use multivariate analysis of a series of mixtures to create 
a calibration model. However, in many metabolomics problems, we are not certain of 
the answer in advance. For example, we may obtain the LCMS of donors’ serum with 
and without a disease. How certain there is enough information in the serum to dis-
tinguish each group? It may depend on whether the disease was correctly diagnosed 
and how far it has progressed. There will be confounding factors such as age or diet or 
genetics – how representative were the samples? And then if we think we can separate 
groups, which metabolites are most likely to be markers for the disease? How confi-
dent are we? In such a situation we do not know the answer in advance and are gener-
ating and testing hypotheses. In fact, most of science outside the core physical sciences 
is primarily based on hypothesis testing. Much of early chemometrics was developed 
by programmers good at algorithms and matrices, whereas the needs of biological sci-
entists are more hypothesis testing. This text aligns chemometrics methods primarily 
from the point of view of hypothesis formulation, which communicates more closely 
with the language of clinicians and biologists.

Chemometrics has had a renaissance because its methods are being applied to 
many scientific problems outside core quantitative chemistry. Nevertheless, most of 
the original methods, first pioneered over 50 years ago, are still relevant, and tech-
niques such as molecular spectroscopy or chromatography, once the domain of chem-
ists, are now widely used in many scientific fields. Understanding the fundamental 
statistical basis of chemometrics is an essential aid to safely and usefully employing 
these techniques, which have become widely available due to a plethora of software 
and datasets.

1.2  METABOLOMICS

The central dogma of biology is illustrated in Figure 1.1. In its simplest form DNA 
makes RNA, which makes proteins which make metabolites. The metabolic profile 
influences phenotype and so the characteristics of all organisms.

The study of systems biology is to connect these steps.
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The concept of a genotype is the oldest and was first defined early in the 20th cen-
tury by a number of papers by Johannsen  [43]. The concept of a genome was first 
described by Winkler in 1920 [44]. There is in fact no universally agreed definition 
of these two terms, despite widespread usage; however, a common distinction is as 
follows. A genome is an organism’s complete DNA, which includes all of its genes 
(coding/non-coding) and intergenic regions. The genotype refers to the genetic infor-
mation for a particular trait. In humans, the genome, for example, includes the portion 
of human DNA that codes for hair colour and decides the genotype for that trait.

Genomics therefore studies the entirety of an organism’s DNA. With improve-
ments in high-throughput sequences, the first whole genomes were sequenced in 
1980s and 1990s. The first complete genome sequence of a eukaryotic organelle, the 
human mitochondrion, was reported in 1981 [45] and the first chloroplast genomes 
followed in 1986  [46]. In 1992, the first eukaryotic chromosome, chromosome III 
of brewer’s yeast Saccharomyces cerevisiae, was sequenced [47]. The first free-living 
organism to be sequenced was that of Haemophilus influenzae in 1995  [48]. It was 
however the human genome project that catalysed this scientific discipline with the 
complete sequencing announced in 2003 [49], although a small number of sequences 
still remained.

Whereas the concept of a genome was well developed, the name genomics and the 
concept of this as a discipline is rumoured to have been proposed in 1986, with a birth-
place in the journal Genomics in 1987 [50]. This was the first recognised omics disci-
pline and great-grandparent of metabolomics. With genomics arrived a large amount 
of data and this catalysed the arrival of computationally intense disciplines such as 
bioinformatics to mine these large datasets, placing computing at the centre of mod-
ern biological research.

Next up was transcriptomics, this time concerned with RNA. The earliest known 
use of the noun transcriptome is in the 1990s. The earliest known use of this term 
in the scientific literature is from 1997 [51], which was the first key work to report 
the transcriptome of an organism describing 60,633 transcripts expressed in S. cer-
evisiae using serial analysis of gene expression. With the rise of high-throughput 
technologies and bioinformatics and the subsequent increased computational 
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FIGURE 1.1  Central dogma of biology.


