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xix

Increasing population and high energy consumption per capita in many countries have steadily 
increased the global demand for energy. This follows several issues related to energy production, 
storage, and consumption. Recently, many industries have started to promote aerogel energy for 
purposeful applications, including thermal insulators, catalysis, energy storage devices, sensors, 
electrodes, and super capacitors. The specialties involved in aerogel technology have many 
 possibilities to influence the scientific society by helping in research, industrial access, commer-
cialization, and social development. Aerogels have attained worldwide attention from many 
research and industrial areas due to their fascinating properties – high porosity, low density, high 
specific  surface area, and low dielectric permittivity, as well as extraordinarily low thermal 
 conductivity. All of these special properties of aerogel are capable of promoting sustainable and 
successful development.

Aerogels for Energy Saving and Storage has huge relevance due to the efficient properties of aero-
gels that will satisfy multiple purposes in the future energy saving technology. The upcoming 
energy still exists as a question because of the progressing consumption of energy due to large 
population growth over the world. The energy storage, storage system, and energy consumption 
rate have much influence in these aspects. Aerogels offer several attractive properties for over-
coming energy- related challenges.

This book discusses current and promising applications for energy- based aerogels. Chapter 1 
illustrates the history and properties of aerogels in a detailed manner. The next chapter gives infor-
mation about the overall outlook of aerogel in different conversion devices. Other chapters deal 
with aerogels based on materials such as metal, inorganic and organic materials, polymer, gra-
phene, clay, silica, and so on. Moreover, hybrid, graphene, and CNT- based aerogels, including their 
applications, are detailed in other chapters. Theoretical modeling on thermal- mechanical struc-
ture and property is portrayed in Chapter 16. The book culminates with the future state of art and 
new challenges in aerogel research and study progression.

This is the first time such a comprehensive analysis using energy studies has been undertaken to 
understand the diverse applications possible with aerogels. Therefore, a reference book of this type 
is invaluable for recognizing the hidden possibilities of future energy and the storage in aerogel. 
Many industries, researchers, and students will benefit from this book because of the science- 
based perspective that we are offering on aerogel in future energy and storage.

Aerogel experts have been willing to share their knowledge through this book, which is of 
 significant benefit to scientists and researchers around the world. It brings attention to new 
 discoveries for researchers and students in the field of energy and environmental sustainability.

Preface
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Of significant value, this book reviews the scientific literature published so far in order to study 
the energy of aerogel from the various branches of science. We cover all the advances developed 
from aerogels and the specialties relating their morphology, properties, processability, applica-
tions, and future perspectives.
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1

Chinese physicist Prof. Kun Huang mentioned in his course “Solid State Physics” before 1964 that 
“here we only discuss the crystal, not because non- crystalline solids are unimportant but because 
they are over- complicated” (translated) [1]. Aerogels, normally nanoporous noncrystalline solids, 
exhibit numerous unique properties but are not fully understood. Among them, their physical 
properties are fundamental to aerogel science, which strongly affects the noncrystalline theory and 
related applications. The aerogel science has been booming recently. Plenty of aerogels with novel 
compositions, structures, properties, and applications have joined the community. Research papers 
and patents related to aerogels have increased sharply. A symposium mainly referring to aerogel 
was added to the 2017 MRS Spring Meeting & Exhibit, and two series of international conferences 
(International Seminar on Aerogels, and International Conference on Aerogel- Inspired Materials) 
and one series of regional conferences (Sino- International Symposium on Aerogels) has been held 
biennially. Many new findings and concepts have come to the fore but lack timely updates about 
the definition and theory.

Thus, in this chapter, we will briefly introduce the history, physical properties, and applications, 
especially for the energy- related applications. The definition of aerogels, mechanisms, and pros-
pects will also be discussed. We hope the audience can learn something and perhaps come up with 
novel ideas based on the historical progress, developing theory, smart design for specific applica-
tions, and selected works in this chapter. We hope more researchers join us and paint a bright 
future for the aerogel science.

1.1   Definition and History of the Aerogels

1.1.1  Basic Characteristics and Definition of Aerogels

The aerogel is a very special solid whose physics properties could be much different from its solid 
and gas components. One of the most notable samples is the sonic velocity in aerogels. As we 
know, the sound velocity through silica aerogels could be as low as 100 m s−1, which is much lower 
than that in the dense silica (>5000 m s−1) and the air (~340 m s−1) included. Therefore, in our 
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1 The History, Physical Properties, and Energy-Related Applications of Aerogels2

previous review, we suggested that aerogel is not only a novel material but also a new state of 
 matter due to its unique position in the phase diagram and the diverse compositions [2].

There is no uniform definition of the term aerogel since the concept is still developing. Traditional 
academicians think that aerogel is a supercritical fluid- dried gel, while the gels with freeze drying, 
air drying, and ambient drying without large shrinkage are regarded as cryogel, xerogel and ambi- 
gel, respectively. The public may think the classifications are complex and prefer simple and iden-
tifiable definitions. Thus, the aerogel is defined as “a light, highly porous solid formed by 
replacement of liquid in a gel with a gas so that the resulting solid is the same size as the original” 
and “a solid material of extremely low density, produced by removing the liquid component from 
a conventional gel” by Merriam- Webster Dictionaries and Oxford Dictionaries, respectively. These 
definitions indicate a wet process the aerogel has undergone and a distinctive feature of ultralight. 
Similarly in the Aerogel Handbook, Pierre applied the initial idea of Kistler to define it as the “gels 
in which the liquid has been replaced by air, with very moderate shrinkage of the solid net-
work” [3]. A longer definition in Hüsing’s review (also in Ullmann’s Encyclopedia of Industrial 
Chemistry) designates the aerogel as the “materials in which the typical structure of the pores and 
the network is largely maintained . . . while the pore liquid of a gel is replaced by air.”

Recently, several studies have used the term aerogel to refer to the solid formed from a gel by 
nonsupercritical drying [4]. Thus, the academic community of aerogel science tends to approve the 
definition of the aerogels identified by the specific structure but not the preparation or drying 
method. IUPAC (international union of pure and applied chemistry) gave aerogel a definition of 
“gel comprised of a microporous solid in which the dispersed phase is a gas,” seeming not to men-
tion the forming or drying method [5]. However, the word gel refers to a wet sol- gel process. Indeed, 
most aerogels reported are derived from the wet gel via a sol- gel process. Some are not, however, 
For example, Gao’s group developed a “sol- cryo” method to construct ultra- flyweight carbon aero-
gels by direct cryodesiccation of the aqueous, fluid solutions of carbon nanotubes (CNTs) and 
graphene oxide(GO) without undergoing the gelation process. That means the aerogel is not neces-
sarily derived from a gel [6]. The other representative sample is that Aliev et al. developed a dry 
method (catalytic chemical vapor deposition) to prepare straight sidewalls of multi- walled nano-
tube forests and corresponding transparent carbon nanotube aerogel. The wet sol- gel process is not 
necessary to form an aerogel as well. Thus, in a broad sense, aerogel- related porous materials clas-
sified originally as xerogel or cryogel are gradually accepted as aerogels. Nowadays, aerogel is 
increasingly recognized as a matter with gel- like structure and unique characteristics, without 
considering the preparation or drying method.

Here, the definition of an aerogel in a broad sense should be regarded as a state of matter whose 
structure is similar to the solid networks of a gel with gas or vacuum in- between [2]. This definition 
ensures the aerogel in a high- vacuum environment could be still called “aerogel.” Moreover, this 
definition does not emphasize the wet sol- gel process but focuses on the gel- like structure. 
According to IUPAC, gel means a “non- fluid colloidal network or polymer network that is expanded 
throughout its whole volume by a fluid.” To induce the concept of gel- like structure could further 
avoid discussing the preparation process.

But it is not easy to describe the gel structure due to its complexity. In our opinion, as shown in 
Figure  1.1, a typical gel- like structure should have the following characteristics: (i) highly dis-
persed, coherent, and randomly distributed networks and pores that are expanded throughout its 
whole volume; (ii) hierarchical structure ranging from nanoscale primary structure (building 
blocks and pores) to its monolithic appearance; (iii) fractals in- between different hierarchies; 
(iv) normally composed of noncrystalline or nanocrystalline matter. Normal nanoporous powders 
with porosity could not be identified as the aerogel since they cannot be monolithic.
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Traditional foams or cellular solids, even though their density is ultralow, cannot be recognized 
as aerogels probably due to the closed pores or large primary structure. Biology- derived porous 
materials with fine and hierarchical structure (like woods) could not be regarded as aerogels 
because of their relatively ordered structure and lack of microscopic fractal features. It is worth 
noting that fractals are emphasized because they are usually derived from multi- body random 
movements of the building blocks normally limited by diffusion or reaction. The forming process, 
named self- organized criticality by Bak, leads to a significantly complex structure, which may be 
extremely important for the unique properties or special behavior of the aerogel [7].

The gel- like structure leads to some property characteristics of aerogels, such as ultralow density, 
ultralow thermal conductivity, ultralow modulus, ultralow refractive index, ultralow dielectric 
constant, ultralow sound speed, high specific surface area and ultrawide adjustable ranges of phys-
ical properties. As one frequently mentioned characteristic, apparent density of the aerogel could 
be lower than air density. However, ultralow density is not a necessary feature, since many kinds 
of aerogels show relatively high density. Also, the aerogel could be, but not necessarily, formed as 
a monolith. The common forms of the aerogel include thin film, granule, powder, and sheet, for 
example.

The gel- like structure could be characterized by using different characterizations, among which 
nitrogen adsorption/desorption and small- angle X- ray scattering (SAXS) analysis are the most 
powerful tools in our opinion. By using BET (Brunner−Emmet−Teller), BJH (Barrett- Joyner- 
Halenda), DFT (Density Functional Theory), or FHH (Frenkel−Halsey−Hill) method to treat 
nitrogen adsorption/desorption results, we could statistically analyze the pore structure, getting 
abundant information including specific surface area, pore volume, average pore size, surface 
interaction, pore size distribution, micropore size distribution, surface fractal dimension, and so 
on  [8]. The fractal types and fractal dimensions in different sizes, and characteristic lengths 
of  hierarchical structure could be statistically obtained by analyzing the intensity- wave vector 
 relationship of SAXS results [9–12].

Primary structure
1–5 nm

Surface fractals

Secondary structure
20–50 nm

Macroscopic
appearance

Aerogels
Hierarchical structure

Fractals

Figure 1.1  Typical gel- like structure of aerogels.
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1.1.2  Brief History and Evolution of the Aerogel Science

The history of the aerogel science was introduced in detail in our previous review [2]. Here we just 
make a brief introduction and update. As we know, aerogel was invented and named by Kistler in 
1931. The roots of “aerogel” include aero and gel, which means the wet gel replaces the liquid 
inside with the air without damaging its solid microstructure [13]. Although a series of different 
aerogels were prepared, and some fascinating properties were shown, the following research was 
limited before the 1970s, probably because of complex and time- consumption preparation pro-
cesses  [14]. After that, in the period of the 1970s and 1980s, organic precursors developed by 
Teichner’s group in 1968 and Russo et al. in 1986 simplified the preparation, leading to a fast devel-
opment of aerogel science [15, 16]. At the same period, novel sol- gel methods and carbon dioxide 
supercritical fluid drying also promoted the development significantly [17]. The first and second 
international symposiums on aerogels (ISA) were held in 1985 and 1988, respectively. In the 1990s, 
the birth of organic and carbon aerogel and surface- modified ambient drying aroused broad inter-
est from both academic and industrial communities [3, 18–20]. The third to sixth ISA continued to 
promote aerogel research, generating various ideas for potential applications that are still develop-
ing now. From the early twenty- first century to the present, many great achievements in aerogel 
science were realized. Numerous novel advances – including versatile sol- gel methods for prepar-
ing oxide aerogels, complex gradient aerogels, and ingeniously designed composite aerogels – have 
been developed and successfully applied in the fields of energy, environment, architecture, medi-
cine, and aerospace  [21–42]. Moreover, Brock et  al. first prepared the chalcogenide aerogel via 
reverse micelle synthesis and supercritical fluid drying, arousing a broad interest in developing the 
single- component aerogels with novel composition [43–45]. After that, a series of novel aerogels, 
including CNT aerogel, graphene aerogel, carbide aerogel, diamond aerogel, single- element aero-
gels, hybrid aerogels, biomass aerogels, polymeric aerogels, and bio- inspired aerogels were added 
into the aerogel communities in succession [6, 41, 46–99]. In addition, the properties, applications, 
industrialization, and commercialization of the aerogel were widely developed in this period. 
Several series of academic conferences mainly concerning aerogels were held recently and pro-
duced many novel ideas.

As shown in Figure 1.2, there are 20,354 papers recorded in Science Citation Index (SCI, Web 
of Science WOS Core Collection) from 1975 to 2020, searching with the keyword “aerogel” or 
“aerogels” as the topic on October 14, 2020. The number of papers published increased sharply 
from 1975 to 2020. The one- year record in 2019 is 2459, higher than the total papers published 
during 1975–2001 (2287 in total for 27 years), showing that aerogel science has become a rela-
tively hot topic.

Also, aerogel science becomes more and more interdisciplinary, affecting fundamental science to 
applied science. As shown in Figure 1.3, in the early period of 1975–1984, the top five fields include 
physics, instruments, nuclear science, chemistry, and electrochemistry. More than 70% of the papers 
belong to physics- related areas. But during 1985–1994, the proportion of physics- related areas 
decrease to less than one- half. Materials science and chemistry increases significantly, according to 
the data in Figure 1.3b. After that, the proportion of physics- related areas tends to decrease continu-
ously, and the proportion of chemistry and materials science reaches about 50%. At the same time, 
engineering researches increase obviously to about one- fifth of the top five fields. To further analyze 
the interdisciplinarity, the “interdisciplinary index” is introduced by calculating the quotient of the 
total number of research areas divided by the article counts. As shown in Figure 1.4, the interdisci-
plinary index increased significantly from 2.18 in 1985–1994 to 4.33 from 2015 to 2020, which means 
that on average, each article covered 4.33 research areas during 2015–2020.
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The Journal of Non- Crystalline Solids, ACS Applied Materials & Interfaces, Journal of Sol- Gel 
Science and Technology, RSC Advances, Journal of Materials Chemistry A, Carbon, Chemical 
Engineering Journal, Nuclear Instruments Methods in Physics Research Section A, Microporous and 
Mesoporous Materials, and Chemistry of Materials are the top 10 journals published aerogel- related 
articles. Interestingly, in the early period of 1985–1994, the top 5 journals include Journal of Non- 
Crystalline Solids, Journal de Physique, Physical Review Letters, Physical Review B, and Journal of 
Sol- Gel Science and Technology, in which the physics- related researches dominate. However, from 
2018 to 2020, the top  5  journals changed to ACS Applied Materials & Interfaces, Chemical 
Engineering Journal, Journal of Materials Chemistry A, Carbon and Carbohydrate Polymers, in 
which the chemistry- related researches dominate. Journal of Non- Crystalline Solids ranks over 30 
during 2018–2020, indicating a dramatic change in aerogel science. The average number of cita-
tions per paper is 26.6, according to the data from WOS core collection. High average citations and 
wide distribution of frequent journals indicate that aerogel research has gotten broad attention. 
More and more scientists, engineers, businesspeople, investors, government officers, and the pub-
lic pay close attention to the aerogel field, which ensures a bright future of aerogel science.

1.2   The Physics Properties of the Aerogels

One of the most fascinating things of aerogels lies in their unique properties. According to incom-
plete statistics, there are more than 10 property records held by silica aerogels among solid state 
matter, including lowest reflective index, lowest sound speed, lowest modulus, lowest dielectric 
constant, and broadest adjustable range of several kinds of properties. Today the records may be 
refreshed by other materials, but most of them are other kinds of aerogels. Thus, aerogels are truly 
interesting materials, worth being regarded as a new state of matter [2].

Here we will briefly update the physics properties of the aerogels, including the mechanical, 
thermal, optical, electrical, and acoustic properties. We will focus on the discussion about why the 
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Figure 1.2  Papers recorded in Web of Science Core Collection from 1975 to 2020.
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different kinds of aerogels exhibit unique properties and attempt to clarify the relationship between 
the microstructure and properties. Since there are far too many studies about the different proper-
ties, only the most relevant works will be chosen for this chapter. Most of them relate to aerogels 
with a single component but not composites in order to give a simple physical picture and possible 
mechanism.

1.2.1  Mechanical Properties

Nanoporous structure is one of the characteristics of aerogels [3], and porosity over 90% gives the 
aerogel many unique characteristics. The first one is the extremely low density. The apparent den-
sity of silica aerogel can be as low as 1–3 mg cm−3, which is close to the density of air [100]. It is 
possible to prepare aerogels with even lower density. Mecklenburg et al. prepared an aerogel- like 
materials called aerographite by depositing carbon on an adjustable ZnO template [101]. The metal 
Zn reduced by hydrogen gas evaporates and leaves an ultralight aerographite with the lowest den-
sity of 0.18 mg cm−3. Gao’s group even developed an all- carbon aerogel with the lowest density of 
0.16 mg cm−3 by directly freeze- drying aqueous solutions of CNTs and giant graphene oxide 
sheets [6]. The aerogel is currently the lowest- density solid, and its density can be normally deter-
mined by the ratio of reagents and the shrinkage ratio. The adjustable range of density and relative 
properties are quite broad, which could be designed in the ingenious gradient density aerogel [102]. 
Aerogels also have the properties of large specific surface area, good macroscopic uniformity, and 
strong doping adsorption capacity mainly due to its nanoscale structure and ultralow density.

However, the ultralow density leads to some characteristics, among which mechanical proper-
ties are unique. Normally, the aerogels are ultra- soft (low modulus) and extremely fragile, which 
may limit their applications. Thus, the mechanical properties of aerogels are of great concern. The 
mechanical performance could be evaluated from different aspects, such as tensile strength, bend-
ing strength, impact strength, and hardness. It is not hard to understand that these mechanical 
properties are closely related to the density of the aerogel. Due to the brittleness of the nanoporous 
structure and framework particles, the aerogel has low rigidity, high brittleness, and low tensile 
and compressive strength, and these mechanical properties are highly dependent on density. 
Studies have shown that there is a power function relationship between mechanical parameters 
such as Young’s modulus, hardness, and the elastic parameters (EP) of silica aerogels, and den-
sity [103]. In one study, silica gels were produced by hydrolysis and polycondensation of tetrameth-
oxysilane (TMOS) diluted in acetone in a one- step synthesis mode, and dried by supercritical 
drying method. Figure 1.5 shows that the low- density aerogels are more elastic, while the high- 
density aerogels are more rigid [104, 105]. In lower densities, within a range of 80–150 kg m−3, the 
silica aerogels can withstand up to 70% of the compressive strain and restore to the original vol-
ume; at higher densities, they tend to break under small strains and exhibit glass- like behav-
ior  [106]. To understand the viscoelastic behavior of the aerogels, DMA/DMTA (dynamic 
mechanical analysis or dynamic mechanical thermal analysis) is one of the most commonly used 
methods. DMA/DMTA can be used to measure the storage modulus, loss modulus, and loss factor, 
which are three important factors of dynamic mechanical properties [107]. Tensile or compressive 
testing is another widely used method, by which the Young’s modulus, tensile strength, and elon-
gation at break can be measured.

There is a well- known scaling law between the modulus and density of silica aerogels. The expo-
nent could be larger than 3, which means the modulus of the aerogels could be much lower than 
that of other porous materials or cellular solids [108, 109]. Brinker et al. mentioned that the ultra-
high modulus- density scaling exponents (~3.6) of the silica aerogels may be due to dangling 
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skeletons without load bearing [105]. This explanation may be the best understanding about the 
ultralow modulus of the silica aerogel and ultralow sound speed from the statics. However, there 
must be a special mechanism of the scaling law, but not the other forms like linear or just positively 
related. Murillo et al. simulated the density- modulus relationship of the modeled silica aerogels 
and obtained the exponent larger than 3 (3.11) [104]. It was nice data, which approximately coin-
cided with the experimental results. However, the study lacks enough evidence for structural simi-
larity between the silica aerogels and the model samples formed through 3000 K thermal treatment 
and cooling down of β- cristobalite. There is still no study considering the microscopic mechanism 
of the scaling law.

Researchers have done fruitful works in enhancing the mechanical properties of aerogels. One 
commonly adopted method is to design fiber-enhanced doped aerogel composites [110]. The brit-
tleness of the silica aerogel can be traced to the weak interparticle connecting zones. Therefore, it 
is reasonable to enhance the interparticle connection to improve the toughness of aerogels. In this 
respect, to bridge the nanoparticles could improve the mechanical properties and behaviors of 
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Figure 1.5  (a) Hardness, (b) Young’s modulus, and (c) elastic parameters of the aerogel with different 
density [103] / with permission of AIP Publishing; (d) simulated elastic modulus vs. density for silica 
aerogels [106] / with permission of Elsevier; (e) modulus- density scaling relationships of highly porous gels 
and human bone [107] / With permission of Springer Nature.


