

Dieter Eberlein Grundlagen der Lichtwellenleitertechnik

Studienausgabe

utb 5743

Eine Arbeitsgemeinschaft der Verlage

Brill | Schöningh – Fink · Paderborn Brill | Vandenhoeck & Ruprecht · Göttingen – Böhlau Verlag · Wien · Köln Verlag Barbara Budrich · Opladen · Toronto facultas · Wien Haupt Verlag · Bern Verlag Julius Klinkhardt · Bad Heilbrunn Mohr Siebeck · Tübingen Narr Francke Attempto Verlag – expert verlag · Tübingen Ernst Reinhardt Verlag · München transcript Verlag · Bielefeld Verlag Eugen Ulmer · Stuttgart UVK Verlag · München Waxmann · Münster · New York wbv Publikation · Bielefeld Wochenschau Verlag · Frankfurt am Main

Dieter Eberlein

Grundlagen der Lichtwellenleitertechnik

Studienausgabe

expert verlag · Tübingen

Umschlagabbildung: © iStock.com/Thomas-Soellner

Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.dnb.de abrufbar.

© 2021 · expert verlag GmbH Dischingerweg 5 · D-72070 Tübingen

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlages unzulässig und strafbar. Das gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Alle Informationen in diesem Buch wurden mit großer Sorgfalt erstellt. Fehler können dennoch nicht völlig ausgeschlossen werden. Weder Verlag noch Autoren oder Herausgeber übernehmen deshalb eine Gewährleistung für die Korrektheit des Inhaltes und haften nicht für fehlerhafte Angaben und deren Folgen.

Internet: www.expertverlag.de eMail: info@expert.verlag

CPI books GmbH, Leck

utb-Nr. 5743 ISBN 978-3-8252-5743-9 (Print) ISBN 978-3-8385-5743-4 (ePDF)

Inhalt

1	Grune	dlagen der Lichtwellenleiter-Technik	11
	1.1	Physikalische Grundlagen der Lichtwellenleiter-Technik	11
	1.1.1	Prinzip der optischen Informationsübertragung	12
	1.1.2	Vor- und Nachteile der LWL-Übertragung	13
	1.1.3	Elektromagnetisches Spektrum	15
	1.1.4	Signalausbreitung im Lichtwellenleiter	17
	1.1.5	Dämpfung im Lichtwellenleiter	20
	1.1.6	Zusammenfassung	27
	1.2	Lichtwellenleiter-Typen und Dispersion	28
	1.2.1	Stufenprofil-Lichtwellenleiter und Modendispersion	28
	1.2.2	Gradientenprofil-Lichtwellenleiter und Profildispersion	33
	1.2.3	Vergrößerung Bandbreite-Längen-Produkt	39
	1.2.4	Biegeunempfindliche Multimode-LWL	45
	1.2.5	Standard-Singlemode-LWL und chromatische Dispersion	47
	1.2.6	Singlemode-Lichtwellenleiter mit reduziertem Wasserpeak	56
	1.2.7	Dispersionsverschobener Singlemode-Lichtwellenleiter	57
	1.2.8	Cut-off shifted Lichtwellenleiter	58
	1.2.9	Non-zero dispersion shifted Lichtwellenleiter	59
	1.2.10	NZDSF für erweiterten Wellenlängenbereich	62
	1.2.11	Lichtwellenleiter mit reduzierter Biegeempfindlichkeit	62
	1.2.12	2 Kategorien von Singlemode-LWL	66
	1.2.13	Trends bei der Faserentwicklung	67
	1.2.14	Polarisationsmodendispersion (PMD)	72
	1.2.15	Alterung von Lichtwellenleitern	84
	1.2.16	Zusammenfassung	94
	1.3	Optoelektronische Bauelemente	95
	1.3.1	Elektrooptische Wechselwirkungen im Halbleiter	96
	1.3.2	Sender und Empfänger	98
	1.3.3	Transceiver	99
	1.4	Literatur	105
2	Lösba	are Verbindungstechnik von Lichtwellenleitern	107
	2.1	Allgemeine Eigenschaften	107

Inhalt

2.2	Koppelverluste zwischen Lichtwellenleitern 108
2.2.1	Verluste zwischen Multimode-LWL
2.2.2	Verluste zwischen Singlemode-LWL 110
2.3	Stirnflächenkontakt 111
2.3.1	Stecker mit ebener Stirnfläche 111
2.3.2	Stecker mit physischem Kontakt 112
2.3.3	Schrägschliffstecker 113
2.3.4	APC/HRL-Stecker 114
2.4	Verdrehsicherung 114
2.5	Stift-Hülse-Prinzip 115
2.6	Verringerung der Steckerdämpfung 117
2.6.1	Ablageverfahren 117
2.6.2	Prägeverfahren 118
2.7	Zur Kompatibilität von geprägten und getunten 0,1 dB-Steckern 120
2.7.1	Einfluss der Technologie auf die geometrischen Parameter 120
2.7.2	Mischung von geprägten Steckern mit getunten Steckern 122
2.8	Dämpfungs- und Reflexionsklassen 124
Lichtv	vellenleiter-Messtechnik 127
3.1	Allgemeine Hinweise
3.2	Messung von Leistungen und Dämpfungen 129
3.2.1	Definierte Anregung des Multimode-LWL 129
3.2.2	Leistungsmessung 130
3.2.3	Dämpfungsmessung 132
3.2.4	Zusammenfassung 139
3.3	Optische Rückstreumessung 139
3.3.1	Prinzip der Rückstreumessung 140
3.3.2	Rückstreukurve als Messergebnis 142
3.3.3	Interpretation der Ereignistabelle 148
3.3.4	Reflektierende Ereignisse 150
3.3.5	Überlagerung mehrerer Reflexionen 151
3.3.6	Zusammenfassung 152
3.4	Analyse von Rückstreudiagrammen 152
3.4.1	Interpretation der Rückstreukurve 152
3.4.2	Auswertung problematischer Rückstreudiagramme 156
3.4.3	Kopplung von Singlemode-LWL mit unterschiedlichen
	Modenfelddurchmessern 161
3.4.4	Geisterretlexionen 165
3.4.5	Zusammenfassung 169

Inhalt

4	Fiber	to the Home/Building	. 171
	4.1	Anforderungen an die Bandbreite	. 171
	4.2	Netzstrukturen	. 174
	4.2.1	Ethernet-Punkt-zu-Punkt (EP2P)	. 174
	4.2.2	Punkt-zu-Multi-Punkt	. 175
	4.2.3	Vergleich der Varianten	. 181
	4.3	Offene Infrastruktur	. 182
	4.4	Wellenlängenbelegung bei FTTx	182
	4.5	Normen	183
	4.5.1	Gigabit-PON	. 184
	4.5.2	Gigabit-Ethernet-PON	. 184
	4.5.3	Next-Generation PON	. 185
	4.5.4	Downstream 10 Gbit/s	. 185
	4.5.5	TWDM-PON	. 186
	4.5.6	Wellenlängenmultiplex-PON (P2P WDM-PON)	187
	4.5.7	Zusammenfassung FTTx-Varianten	. 190
5	Planen von LWL-Strecken aus physikalischer Sicht		
	5.1	Allgemeine Regeln	. 191
	5.2	Planung des Dämpfungsbudgets	192
	5.3	Pegeldiagramm	. 195
	5.4	Dispersion in Lichtwellenleitern	198
	5.4.1	Chromatische Dispersion	198
	5.4.2	Dispersionstoleranz	. 200
	5.4.3	Kompensation der chromatischen Dispersion	201
	5.4.4	Chromatische Dispersion bei Fasermischungen	203
	5.5	Systemplanung	. 203
	5.5.1	Einkanalübertragung	. 203
	5.5.2	Grobes Wellenlängenmultiplex	205
	5.5.3	Dichtes Wellenlängenmultiplex	. 206
	5.6	Zusammenfassung	. 207
6	Trends der optischen Nachrichtenübertragung		
	6.1	Wichtige aktuelle Entwicklungen	209
	6.2	Dichtes Wellenlängenmultiplex	. 210
	6.2.1	Zwei Wege zum hochbitratigen System	210
	6.2.2	Grundlagen Dichtes Wellenlängenmultiplex	213
	6.2.3	Bandbreite und Wellenlänge	. 214
	6.2.4	Genormtes Raster	. 216
	6.2.5	Anforderungen an die Komponenten	218

Inhalt

	6.3	Grobes Wellenlängenmultiplex 230
	6.3.1	Einsatzfälle für Grobes Wellenlängenmultiplex 230
	6.3.2	Normung Grobes Wellenlängenmultiplex
	6.3.3	Erschließung des gesamten Wellenlängenbereiches 233
	6.3.4	Anforderungen an die Komponenten 235
	6.3.5	DWDM-over-CWDM-Technik 236
	6.3.6	Zusammenfassung 237
	6.4	Passives und aktives Wellenlängenmultiplex 239
	6.5	Probleme beim Übergang zu höheren Datenraten 240
	6.6	Bauelemente für flexible optische Netze 241
	6.7	Weiterentwicklung der Modulationsverfahren 242
	6.7.1	Grundlagen der Modulation 242
	6.7.2	Herkömmliche Modulation 243
	6.7.3	Höherwertige Modulation 244
	6.7.4	Beispiel für Modulationsverfahren 244
	6.7.5	Fortgeschrittene Übertragungsverfahren 247
	6.8	Datenraten größer als 100 Gbit/s 248
	6.9	Zusammenfassung und Ausblick 249
7	Anha	ng
	7.1	Abkürzungen
	7.2	Formelzeichen und Maßeinheiten 256
	7.3	Fachbegriffe
Reais	ter.	272
Abbil	dunasv	verzeichnis
Tabel	lenver	zeichnis

Vorwort

Die Bundesregierung beschloss bis zum Jahr 2025 die Schaffung einer Gigabit-fähigen Infrastruktur. Das erfordert enorme Anstrengungen im Breitbandausbau.

Große Streckenlängen **und** hohe Datenraten können **ausschließlich** mit Lichtwellenleitern realisiert werden. Nur der Lichtwellenleiter ermöglicht eine Infrastruktur, die auch die Anforderungen der nächsten Jahrzehnte erfüllt.

Neben Weitverkehrsanwendungen dringt die Faser zunehmend in die Fläche ein. Die Fasern enden immer dichter an den Wohnungen, Büros und Funkmasten. Ein Gigabit/Sekunde Bandbreite beim Teilnehmer ist bereits Realität.

Die Errichtung von 5G-Netzen erfordert einen engmaschigen Ausbau der LWL-Netze. Die Faser wird genutzt, um die Daten an den Antennen zu sammeln bzw. zu verteilen.

Auch in Rechenzentren spielt der Lichtwellenleiter eine große Rolle. Dort müssen zunehmend höhere Bandbreiten übertragen werden.

Durch Wellenlängenmultiplex, moderne Modulationsverfahren, Polarisationsmultiplex und kohärente Empfänger können riesige Datenmengen über Lichtwellenleiter übertragen werden. 800 Gbit/s-Systeme (pro Wellenlänge) wurden bereits realisiert.

Das vorliegende Buch spannt den Bogen von einer ausführlichen Abhandlung der Grundlagen der Lichtwellenleiter-Technik über lösbare Verbindungstechnik, LWL-Messtechnik, Fiber-to-the-Home/Building und Planung bis zu den Trends der optischen Nachrichtenübertragung.

Ich möchte mich ganz herzlich bei meiner Frau Regine Eberlein für die kritische Durchsicht der Texte und meiner Tochter Julia Wychlacz für die Bearbeitung der Zeichnungen bedanken.

Dresden, Januar 2021

Dieter Eberlein

Der Lichtwellenleiter (LWL) durchdringt alle Lebensbereiche und löst zunehmend den Kupferleiter ab:

- Der Kunststoff-LWL (POF: Polymer Optical Fiber) dient der Kurzstreckenübertragung. Er wird millionenfach im PKW oder im Wohnbereich eingesetzt.
- Der PCF-LWL (PCF: Polymer Cladded Fiber) wird vor allem im industriellen Bereich mit starken elektromagnetischen Störungen verwendet.
- Herkömmliche Gradientenprofil-LWL dienen der Inhouse-Verkabelung bei geringen Anforderungen an die Bandbreite.
- Gradientenprofil-LWL mit optimiertem Brechzahlprofil sind f
 ür die breitbandige Inhouse-Verkabelung (Gigabit-Ethernet, 10 Gigabit-Ethernet, 40 Gigabit-Ethernet, 100 Gigabit-Ethernet) speziell in Rechenzentren geeignet.
- Mit Hilfe des Wellenlängenmultiplex (WDM: Wavelength Division Multiplex, CWDM: Coarse Wavelength Division Multiplex, DWDM: Dense Wavelength Division Multiplex) gelingt es, die Übertragungskapazität des Lichtwellenleiters zu vervielfachen und damit riesige Übertragungskapazitäten zu erreichen.
- Weltweit hat FTTH (Fiber to the Home) bzw. FTTB (Fiber to the Building) eine sehr große Bedeutung erlangt. Privathaushalte erhalten über einen Lichtwellenleiter direkt breitbandige Dienste wie Sprache, Daten und Video. 1 Gbit/s-Netze sind mittlerweile verfügbar.
- 5G erfordert massiven Ausbau der LWL-Netze.

1.1 Physikalische Grundlagen der Lichtwellenleiter-Technik

In diesem Abschnitt beschreiben wir die physikalischen Grundlagen der Lichtwellenleiter-Technik. Ausgehend vom Prinzip der optischen Informationsübertragung werden die wesentlichen Bestandteile eines solchen Systems erläutert und die wichtigsten Vorteile gegenüber herkömmlichen Übertragungssystemen herausgestellt. Auch die Ursachen für die Begrenzung der Leistungsfähigkeit von LWL-Systemen werden erwähnt.

Die Darstellung des elektromagnetischen Spektrums zeigt, wo der optische Bereich, der für die LWL-Übertragung genutzt wird, einzuordnen ist.

Das Prinzip der Signalausbreitung im Multimode-LWL wird anhand der Totalreflexion veranschaulicht. Um diese zu gewährleisten, müssen bestimmte Anforderungen an den Aufbau des Lichtwellenleiters und bei der Einkopplung des Lichts erfüllt werden.

So ist innerhalb eines Akzeptanzkegels einzukoppeln. Die Einführung des Begriffes der numerischen Apertur des Lichtwellenleiters zeigt, wodurch dieser Akzeptanzkegel beeinflusst wird.

Schließlich wird die Dämpfung definiert, typische Dämpfungseffekte im Lichtwellenleiter erläutert und ihre Auswirkungen auf den spektralen Dämpfungsverlauf gezeigt.

1.1.1 Prinzip der optischen Informationsübertragung

Die optische Informationsübertragung ist mit Hilfe von Lichtwellenleitern oder über die Freiraumausbreitung möglich. Die nachfolgenden Betrachtungen beziehen sich ausschließlich auf den Lichtwellenleiter.

Ein elektrisches Signal moduliert in einem Sendemodul einen optischen Träger und erzeugt damit ein optisches Signal. Die Modulation kann analog oder digital erfolgen.

Der Sender muss sehr kleine Abmessungen haben, um effektiv in den kleinen Kern des Lichtwellenleiters einkoppeln zu können. Darüber hinaus muss das Bauelement mit sehr hohen Datenraten (bis in den Gigabit-Bereich) ansteuerbar sein. Diese Anforderungen können von herkömmlichen Bauelementen (zum Beispiel Glühbirne) nicht erfüllt werden.

Es wurden optoelektronische Bauelemente auf der Basis von Halbleitermaterialien entwickelt, die die genannten Kriterien erfüllen. Als Sender kommen Lumineszenzdioden oder Laserdioden zum Einsatz.

Das optische Signal der Senderdiode wird in den Lichtwellenleiter eingekoppelt. Es ist auf eine hohe Qualität der Einkopplung zu achten, um die Koppelverluste möglichst gering zu halten. Das Prinzip der optischen Informationsübertragung wird in Bild 1.1 dargestellt.

Bild 1.1: Prinzip der optischen Informationsübertragung

Der Lichtwellenleiter kann für geringe Anforderungen ein Multimode-Stufenprofil-LWL, beispielsweise ein Kunststoff-LWL oder ein PCF (Polymer Cladding Fiber) sein. Für höhere Anforderungen kommt der Gradientenprofil-LWL zum Einsatz. Höchste Anforderungen bezüglich Dämpfung und Dispersion erfüllen Singlemode-LWL (vergleiche Abschnitt 1.2.5).

Am Ende der Übertragungsstrecke wird das optische Signal mit Hilfe des Empfängers in ein elektrisches Signal gewandelt, gegebenenfalls verstärkt und demoduliert. Die optisch-elektrische Wandlung übernimmt eine PIN- bzw. Lawinen-Photodiode.

Das Übertragungssystem kann dämpfungsbegrenzt oder dispersionsbegrenzt sein. Dämpfungsbegrenzung heißt, dass die maximal realisierbare Streckenlänge durch die Dämpfung im System begrenzt wird. Genauer gesagt: Die am Empfänger ankommende Leistung darf einen bestimmten Wert nicht unterschreiten, damit das Signal noch fehlerfrei oder mit einer noch zulässigen Fehlerrate detektiert werden kann.

Die **Dämpfungsbegrenzung** wird nicht nur durch eine zu hohe Streckendämpfung verursacht, auch die Höhe der eingekoppelten Leistung und die Empfindlichkeit des Empfängers spielen eine wichtige Rolle.

Dispersionsbegrenzung heißt, dass die maximal realisierbare Streckenlänge durch die Dispersion im System begrenzt wird. Dispersion verursacht eine Impulsverbreiterung während der Ausbreitung entlang des Lichtwellenleiters.

Die Auswahl der geeigneten Komponenten (Typ des Senders, Lichtwellenleiters und Empfängers) wird durch die jeweiligen Anforderungen an das Übertragungssystem bestimmt. Dabei ist es sinnlos, einen hohen Aufwand zur Reduktion der Dämpfung zu treiben, wenn das System dispersionsbegrenzt ist und umgekehrt. Bei der Erfüllung der beiden Forderungen sollte man optimieren (vergleiche Kapitel 5).

1.1.2 Vor- und Nachteile der LWL-Übertragung

LWL-Übertragungssysteme haben im Vergleich zu konventionellen, also auf Kupferkabeln basierenden Systemen eine Reihe gravierender **Vorteile**.

Mit elektrischen Multiplexverfahren werden heute 2,5 Gbit/s-, 10 Gbit/s-, 40 Gbit/soder 100 Gbit/s-Signale erzeugt. Mit optischen Multiplexverfahren (Wellenlängenmultiplex) können diese Signale erneut gebündelt werden, so dass bereits Übertragungskapazitäten von mehr als 10 Tbit/s auf einem einzigen Lichtwellenleiter realisiert werden können.

Die theoretische Bandbreite des Koaxialkabels liegt bei 1 GHz, die des Lichtwellenleiters bei 50 THz. Das entspricht einem Faktor 50.000! Deshalb ist der Lichtwellenleiter das Übertragungsmedium der Zukunft! Die geringen Verluste des Lichtwellenleiters ermöglichen eine optische Übertragung über mehr als 100 km. In Verbindung mit optischen Verstärkern ist es möglich, mehrere 1000 km über einen Lichtwellenleiter rein optisch zu übertragen.

Die Dämpfung des Lichtwellenleiters hängt im Gegensatz zum Kupferleiter nicht von der Bandbreite des übertragenen Signals ab. Hier zeigt der Lichtwellenleiter seine Überlegenheit vor allem im Teilnehmerbereich. Die Dämpfung des Kupferleiters steigt mit zunehmender Bandbreite an und ermöglicht nur Streckenlängen von wenigen Hundert Metern.

Da der Lichtwellenleiter ein Isolator ist, ermöglicht er eine Potenzialtrennung zwischen Sender und Empfänger. Es treten keine Potenzialausgleichsströme auf. Es besteht kein Zerstörungsrisiko der angeschlossenen Geräte bei Blitzeinschlägen.

Aber auch in Systemen, die an Datenraten und Streckenlängen nur geringe Anforderungen stellen, wird der Kupferleiter zunehmend durch den Lichtwellenleiter ersetzt. Vor allem in Umgebungen mit starken Störstrahlungen (Kraftwerke, Produktionsbetriebe) kommt die Unempfindlichkeit des Lichtwellenleiters gegenüber elektrischer Störstrahlung vorteilhaft zur Geltung.

Selbst im PKW wird der Kunststoff-LWL zur Vermeidung möglicher Störbeeinflussungen verwendet.

Die Tatsache, dass Lichtwellenleiter keine Signale abstrahlen, hat den Vorteil, dass LWL-Systeme prinzipiell abhörsicher sind.

Bei hinreichend kleinen Leistungen (< (15...150) mW) ist ein Einsatz in explosionsgefährdeten Räumen möglich, da nicht die Gefahr der Funkenbildung besteht.

Der Lichtwellenleiter hat ein geringes Gewicht und Volumen. Der Materialeinsatz ist gering. Mit einem Gramm Glas kann etwa die gleiche Informationsmenge übertragen werden, wie mit zehn Kilogramm Kupfer! Unter dem Gesichtpunkt "Green-IT" (Energie und Ressourcen sparen) ist das ein sehr wichtiger Aspekt.

Von **Nachteil** sind die aufwändige Messtechnik und die geringen Abmessungen des Lichtwellenleiters. Werden zwei Lichtwellenleiter miteinander verbunden, müssen die LWL-Kerne exakt zueinander positioniert werden.

Wegen der sehr kleinen Kerndurchmesser (Multimode-LWL: Kerndurchmesser typisch 50 μ m oder 62,5 μ m; Singlemode-LWL: Kerndurchmesser typisch 8 μ m) ist das eine sehr anspruchsvolle Aufgabe. Daraus ergeben sich besondere Anforderungen an die lösbare Verbindungstechnik (Steckerkonfektionierung) und an die nichtlösbare Verbindungstechnik).

Ein weiterer Nachteil ist, dass über LWL-Verkabelung keine Stromversorgung möglich ist. Eine zusätzliche Kupferverkabelung ist erforderlich.

Das LWL-Kabel kann im Erdreich nicht geortet werden, sofern es kein Metall enthält.

Die Komponenten sind teurer, da zusätzlich elektrisch-optische bzw. optisch-elektrische Wandler benötigt werden.

1.1.3 Elektromagnetisches Spektrum

Das elektromagnetische Spektrum überstreicht hinsichtlich Frequenz bzw. Wellenlänge 24 Zehnerpotenzen, beginnend vom niederfrequenten Bereich über die Rundfunkwellen, die optische Strahlung, die Röntgen- und γ -Strahlung bis zu den hochenergetischen kosmischen Strahlen.

In diesem riesigen Bereich nimmt das sichtbare Licht nur wenig Raum ein: Das ist der Wellenlängenbereich von 380 nm (violett) bis 780 nm (rot). Daran schließt sich zu kleineren Wellenlängen hin die ultraviolette Strahlung und zu größeren Wellenlängen hin die infrarote Strahlung an.

Bild 1.2: Das Spektrum der elektromagnetischen Wellen

Während die Übertragung mit Kunststoff-LWL vorzugsweise bei 570 nm bzw. 650 nm, also im sichtbaren Bereich erfolgt, liegen die Übertragungswellenlängen bei Anwendungen für die Telekommunikation bei 850 nm, 1300 nm, 1550 nm und 1625 nm/ 1650 nm, also im nahen Infrarotbereich und sind deshalb unsichtbar.

Einen Überblick über das Spektrum der elektromagnetischen Wellen gibt Bild 1.2. Man beachte die logarithmische Darstellung der Frequenz- bzw. Wellenlängenskala.

Die jeweiligen Übertragungswellenlängen ergeben sich aus den (bei modernen Lichtwellenleitern allerdings kaum noch bemerkbaren) Dämpfungsminima der Lichtwellenleiter und werden optische Fenster des Lichtwellenleiters genannt.

1.1.4 Signalausbreitung im Lichtwellenleiter

Der Lichtwellenleiter besteht aus einem Kern mit dem Durchmesser d_K und einem Mantel mit dem Durchmesser d_M (Bild 1.3). Der Durchmesser des Glasmantels beträgt bei Telekommunikationsfasern 125 µm. Unmittelbar nach dem Ziehen des Lichtwellenleiters wird eine zweistufige Schutzschicht auf den Mantel aufgebracht (Durchmesser 250 µm, neuerdings auch 200 µm (Abschnitt 1.2.13.2)).

Diese so genannte Primärbeschichtung (Coating) verhindert das Eindringen von OH-Ionen in den Lichtwellenleiter, was zu einer Dämpfungserhöhung führen würde. Außerdem gewährleistet das Coating einen mechanischen Schutz. Die Faser lässt sich gut handhaben. Ohne Beschichtung ist die Faser spröde und bricht schnell.

Bild 1.3: Struktur des Lichtwellenleiters

Das Coating ist eine zweischichtig aufgebaute Kunststoffhülle. Die innere weiche Schicht gewährleistet Unempfindlichkeit gegenüber Mikrobiegungen, geringe Dämpfungskoeffizienten und gutes Absetzverhalten. Die äußere harte Schicht dient dem Schutz der inneren Schicht und des Glases vor mechanischen Beschädigungen (Abriebfestigkeit, Durchstoßfestigkeit).

Das Prinzip der Signalausbreitung im Stufenprofil-LWL beruht auf der **Totalreflexion**. Fällt ein Lichtstrahl auf eine Grenzfläche zwischen einem optisch dichteren Medium mit der Brechzahl n_1 und einem optisch dünneren Medium mit der Brechzahl n_2 , so wird dieser Strahl in Abhängigkeit von seinem Einfallswinkel gebrochen oder reflektiert (Bild 1.5). Dabei bedeutet optisch dichteres Medium eine höhere Brechzahl und optisch dünneres Medium eine geringere Brechzahl, also $n_1 > n_2$.

Unter dem Einfallswinkel versteht man den Winkel zwischen dem Lot auf die Grenzfläche und dem einfallenden Strahl.

Bild 1.5: Änderung der Strahlrichtung zwischen zwei Medien

Der Zusammenhang zwischen dem Einfallswinkel α_1 und dem Austrittswinkel α_2 wird durch das Snelliussche Brechungsgesetz beschrieben:

$$\mathbf{n}_1 \cdot \sin \alpha_1 = \mathbf{n}_2 \cdot \sin \alpha_2 \tag{1.1}$$

Da $n_2 < n_1$ ist, muss entsprechend Gleichung (1.1) $\alpha_2 > \alpha_1$ sein. Der Strahl wird vom Lot weggebrochen (Strahl 1 in Bild 1.5). Vergrößert man den Einfallswinkel (Strahl 2), wächst auch der Austrittswinkel. Mit $\alpha_2 = 90^\circ$ ist der Grenzwinkel der Totalreflexion erreicht. Das ist der maximal mögliche Brechungswinkel. Für den **Grenzwinkel der Totalreflexion** folgt aus (1.1) mit sin90° = 1:

$$\alpha_{\rm Grenz} = \arcsin\left(\frac{n_2}{n_1}\right) \tag{1.2}$$

Wird dieser Winkel überschritten, geht die Brechung in eine Totalreflexion über (Strahl 3). Dann gilt das normale Reflexionsgesetz. Das Licht tritt nicht mehr aus dem Medium mit der Brechzahl n_1 aus, sondern bleibt in ihm gefangen.

Um das zu gewährleisten, müssen zwei Bedingungen erfüllt sein:

- Ein Glas mit höherer Brechzahl muss von einem Glas mit geringerer Brechzahl umgeben sein.
- Der Strahl muss auf die Grenzfläche zwischen den beiden Materialien hinreichend flach auftreffen.

Diese beiden Anforderungen wurden beim Entwurf des Lichtwellenleiters umgesetzt: Auf das optisch dichtere Kernmaterial mit der Brechzahl n_1 wird ein optisch dünnerer Mantel mit der Brechzahl n_2 aufgebracht (Bild 1.6). So ist die Brechzahl des Kerns stets höher als die des Mantels. Die höhere Kernbrechzahl erreicht man durch **Dotierung** des Quarzglases (SiO₂) mit Fremdatomen (meist GeO₂).

Bild 1.6: Totalreflexion im Stufenprofil-LWL

Damit der Strahl hinreichend flach auf die Grenzfläche zwischen Kern und Mantel trifft, das heißt damit der Grenzwinkel der Totalreflexion im Lichtwellenleiter α_{Grenz} nicht unterschritten wird, darf der Einfallswinkel Θ_{Grenz} (Akzeptanzwinkel) nicht überschritten werden. Durch nochmalige Anwendung des Brechungsgesetzes auf die Stirnfläche und unter Berücksichtigung der Winkelverhältnisse entsprechend Bild 1.6 gilt:

$$n_0 \sin \theta_{\rm Grenz} = n_1 \sin(90^\circ - \alpha_{\rm Grenz}) \tag{1.3}$$

Unter Berücksichtigung von $n_0 = 1$ (Luft) und Gleichung (1.2) ergibt sich:

$$\sin \theta_{\text{Grenz}} = n_1 \cos \alpha_{\text{Grenz}} = n_1 \cos \left[\arcsin \left[\frac{n_2}{n_1} \right] \right] = n_1 \cos \left(\arccos \sqrt{1 - \frac{n_2^2}{n_1^2}} \right) = \sqrt{n_1^2 - n_2^2}$$
(1.4)

Als **numerische Apertur** NA des Lichtwellenleiters wird der Sinus des Grenzwinkels Θ_{Grenz} definiert. Sie ist ein Maß dafür, wie groß der maximale Einfallswinkel auf die Stirnfläche sein darf, damit das Licht im Lichtwellenleiter noch geführt wird.

$$NA = \sin \theta_{Grenz} = \sqrt{n_1^2 - n_2^2}$$
(1.5)

Strahlen, die unter einem zu großen Winkel auf die LWL-Stirnfläche auftreffen, werden im Lichtwellenleiter nicht total reflektiert, sondern in den Mantel hinein gebrochen. Das Licht gelangt zur Beschichtung (diese hat eine größere Brechzahl als der Glasmantel) und wird stark gedämpft. Um das zu vermeiden, muss das Licht innerhalb des so genannten Akzeptanzkegels eingekoppelt werden (Bild 1.7).

Erfolgt die Einkopplung mit einem Winkel, der kleiner als θ_{Grenz} ist, wird das Licht an der Kern-Mantel-Grenze reflektiert, durchläuft den LWL-Kern, wird an der gegenüberliegenden Kern-Mantel-Grenze reflektiert und breitet sich so zickzackförmig durch den Lichtwellenleiter aus. Mit der Definition für die relative Brechzahldifferenz

$$\Delta = \frac{n_1^2 - n_2^2}{2n_1^2} \approx \frac{n_1 - n_2}{n_1} \tag{1.6}$$

kann man die numerische Apertur auch folgendermaßen darstellen:

NA =
$$n_1 \sqrt{2\Delta}$$

Bild 1.7: Akzeptanzkegel beim Multimode-LWL

Die numerische Apertur ist eine entscheidende Größe bei der Einkopplung von Licht in den Lichtwellenleiter und bei Kopplung von Lichtwellenleitern miteinander. Sie wird durch die Unterschiede zwischen den Brechzahlen von Kern und Mantel beeinflusst.

Das Prinzip der Totalreflexion, wie in Bild 1.6 dargestellt, funktioniert prinzipiell auch unter Verzicht auf den Glasmantel, da ja Luft eine deutlich kleinere Brechzahl (\approx 1) als das Kernglas hat und folglich die Funktion des Glasmantels übernehmen kann.

Jede Berührung des Glases würde aber an dieser Stelle den Effekt zerstören und einen Lichtverlust verursachen. Außerdem wäre wegen des großen Brechzahlunterschiedes zwischen Kern und Luft die numerische Apertur und damit die Modendispersion sehr groß (vergleiche Abschnitt 1.2.1.2).

1.1.5 Dämpfung im Lichtwellenleiter

1.1.5.1 Definition der Dämpfung

Die in den Lichtwellenleiter eingekoppelte Leistung P_0 fällt entlang des Lichtwellenleiters exponentiell ab:

$$P(L) = P_0 \cdot e^{-a'(L)}$$
(1.8)

Dabei ist a' die Dämpfung als dimensionslose Größe (in Neper), P_0 die eingekoppelte Leistung ($P_0 = P(L = 0)$) und L die durchlaufene Länge des Lichtwellenleiters. Die Dämpfung ergibt sich aus einem Leistungsverhältnis. Gebräuchlich ist die Definition in Dezibel (dB):

$$a/dB = 10 \lg \frac{P_0}{P(L)} \iff P(L) = P_0 \cdot 10^{-\frac{a(L)}{10dB}}$$
 (1.9)

Diese Darstellung unterscheidet sich von Gleichung (1.8). Gleichung (1.8) bezieht sich auf die Basis des natürlichen Logarithmus (e $\approx 2,7183...$) und Gleichung (1.9) auf die Basis des dekadischen Logarithmus. Man beachte, ob die Dämpfung in Dezibel oder Neper angegeben wird, wobei heute Neper kaum noch gebräuchlich ist. Durch Vergleich zwischen (1.8) und (1.9) ergibt sich folgender Zusammenhang:

$$a \text{ in } Dezibel = 10 \lg e^{a'} = 10a' \lg e = 4,34 \cdot a' \text{ in } Neper$$

$$(1.10)$$

Der **Dämpfungskoeffizient** oder Dämpfungsbelag α ist die auf die LWL-Länge bezogene Dämpfung und damit ein wichtiger Materialparameter. Ist dieser entlang des LWL konstant, so gilt:

Medium	Dämpfungskoeffizient	Abfall auf die Hälfte nach	
Fensterglas	25.000 dB/km	0,00012 km	
entspricht 2 % Dämpfung bei 3 mm Scheibendicke			
LWL um 1966	1.000 dB/km	0,003 km	
modernes optisches Glas	700 dB/km	0,004 km	
dichter Nebel	500 dB/km	0,006 km	
LWL um 1970	20 dB/km	0,15 km	
MM-LWL, 850 nm	2,5 dB/km	1,2 km	
MM-LWL, 1300 nm	0,7 dB/km	4,3 km	
SM-LWL, 1310 nm	0,33 dB/km	9,1 km	
SM-LWL, 1550 nm	0,20 dB/km	15 km	
SM-LWL, 1550 nm; Seekabel	0,16 dB/km	18,75 km	
SM-LWL, 1625 nm	0,22 dB/km	13,6 km	

Tab. 1.1: Beispiele für Dämpfungskoeffizienten

Die Maßeinheit ist analog zu oben dB/km oder 1/km, je nachdem, ob a oder a' im Zähler steht. Die Umrechnung zwischen diesen beiden Angaben ist zu beachten! In Tabelle 1.1 wurden typische Dämpfungskoeffizienten verschiedener Materialien zusammengestellt.

Während der Dämpfungskoeffizient von Fensterglas bei 25.000 dB/km liegt (Abfall auf die Hälfte nach 12 cm), beträgt der beste Dämpfungskoeffizient des Lichtwellenleiters 0,16 dB/km (Abfall auf die Hälfte nach 18,75 km). Dieser Wert ist mehr als fünf Größenordnungen geringer! Hieraus wird ersichtlich, welch große technologische Herausforderung es ist, ein derart reines Glas zu fertigen.

Aus der Definition entsprechend Gleichung (1.9) ergeben sich folgende Zusammenhänge zwischen linearer und logarithmischer Darstellung:

 $\alpha = \frac{a}{L}$

(1.11)

```
Beispiele: -30 dB = 1000

-20 dB = 100

-10 dB = 10

0 dB = 1

10 dB = 0,1

20 dB = 0,01

30 dB = 0,001
```

Aus den Beispielen ist zu erkennen, dass sich das Signal alle 10 dB um einen Faktor 10 verringert. Dämpfungen werden meist als positive dB-Werte und Verstärkungen als negative dB-Werte definiert.

Neben den angegebenen Werten lassen sich auch Zwischenwerte ableiten. Dabei hilft folgender Zusammenhang: 10 lg2 = 3,0103. Das heißt, ein Signalabfall auf die Hälfte $(P_0/P(L) = 2)$ entspricht etwa 3 dB. Eine nochmalige Halbierung entspricht 6 dB und so weiter:

```
Beispiele: 3 dB \approx 0,5

6 dB \approx 0,25

9 dB \approx 0,125

12 dB \approx 0,0625 => 2 dB \approx 0,625

15 dB \approx 0,03125 => 5 dB \approx 0,3125
```

Beträgt die Dämpfung 10 dB (also Abfall auf ein Zehntel) und man verdoppelt den Wert (also Abfall auf ein Fünftel), so sind 3 dB zu subtrahieren:

```
Beispiele: 10 \text{ dB} \approx 0,1

7 \text{ dB} \approx 0,2

4 \text{ dB} \approx 0,4

1 \text{ dB} \approx 0,8

-2 \text{ dB} \approx 1,6 => 8 \text{ dB} \approx 0,16
```

Durch diese einfachen Überlegungen lassen sich plausible Näherungen für jeden einzelnen dB-Wert ableiten.

Eine logarithmische Darstellung der Leistung ist sinnvoll, da diese viele Zehnerpotenzen überstreichen kann. Dabei wird die Leistung auf 1 mW bezogen. Das Ergebnis ist der Leistungspegel L oder einfach der Pegel. Dieser hat die Maßeinheit dBm:

$$L/dBm = 10lg\left(\frac{P}{1mW}\right)$$
(1.12)

Entsprechend dieser Definition gelten die folgenden Zusammenhänge zwischen Pegel und Leistung:

Gemäß der Definition nach Gleichung (1.12) haben Pegel kleiner als 1 mW negative und Pegel größer als 1 mW positive dBm-Werte. So wird es möglich, Leistungsverhältnisse als Differenzen darzustellen (ergibt sich aus den Logarithmusgesetzen) und auf einfache Weise die Dämpfung zu berechnen:

$$a/d\mathbf{B} = L_0/d\mathbf{Bm} - L_1/d\mathbf{Bm} \tag{1.13}$$

Beispiel: Ein Sender hat eine Ausgangsleistung von $P_0 = 0.5 \text{ mW}$ ($L_0 = -3 \text{ dBm}$), der Empfänger misst eine Leistung von $P_1 = 0.188 \text{ mW}$ ($L_1 = -7.268 \text{ dBm}$). Zur Berechnung der Dämpfung aus den Leistungen in Milliwatt benötigt man Gleichung (1.9) und damit (wegen der Logarithmierung) einen Taschenrechner:

a = 10lg(0.5 mW/0.188 mW) = 4,268 dB.

Werden die Dämpfungen aus den Pegeln berechnet, reicht eine einfache Subtraktion entsprechend Gleichung (1.13) aus:

a = -3 dBm - (-7,268 dBm) = 4,268 dB.

In einem weiteren Schritt zur Vereinfachung kann bei vielen Messgeräten der Pegel bei der Referenzierung auf Null gesetzt werden und das Ergebnis der Messung sind dann relative dB (bezogen auf die Referenzierung). Es wird direkt die Dämpfung der Strecke angezeigt.

Am Leistungsmesser kann eingestellt werden, ob die Anzeige in Milliwatt (Leistung), in dBm (Pegel) oder in relativen dB erfolgen soll.

Zusammenfassung und Beispiele:

- Angabe Leistung P in mW (absoluter Wert)
- Angabe Pegel L in dBm (relativer Wert; bezogen auf 1 mW)
- Leistung > 1 mW: Pegel ist positiv; Beispiel: 2 mW entspricht ≈ 3 dBm
- Leistung < 1 mW: Pegel ist negativ; Beispiel: 0,5 mW entspricht ≈ -3 dBm
- 3 dB entspricht 0,5 (50 %)
- -3 dB entspricht 2 (200 %)
- 13 dB = 10 dB + 3 dB \approx 0,1 \cdot 0,5 = 0,05

Beachte:

 $10 \text{ dBm} + 3 \text{ dBm} \neq 13 \text{ dBm} = 20 \text{ mW}$, sondern

$$10 \text{ dBm} + 3 \text{ dBm} = 10 \log \left(\frac{10 \text{mW}}{1 \text{mW}}\right) + 10 \log \left(\frac{2 \text{mW}}{1 \text{mW}}\right) \text{ in } \text{mW} = 10 \log \left(\frac{20 (\text{mW})^2}{1 (\text{mW})^2}\right) \approx 13 \text{mW} \text{ in } \text{mW}$$

Vorsicht bei der Umrechnung zwischen Pegeln und Leistungen!

1.1.5.2 Dämpfungseffekte im Lichtwellenleiter

Die Dämpfung im Lichtwellenleiter begrenzt die Leistungsfähigkeit optischer Nachrichtenübertragungssysteme. Deshalb ist das Verständnis der Ursachen der Dämpfung wichtig, um leistungsfähige Systeme zu entwickeln. Die Dämpfung wird durch Absorption, Streuung und Strahlungsverluste infolge Modenwandlung verursacht.

Verunreinigungen durch Ionen der Metalle Cu, Fe, Ni, V, Cr, Mn können **Absorptionen** bei bestimmten Wellenlängen bewirken. Mit den heutigen technischen Möglichkeiten kann man hochreines Glas realisieren, so dass die Absorptionsverluste keine Rolle mehr spielen.

Problematischer sind die Verunreinigungen durch Hydroxyl-Ionen, das heißt durch Wasser und dessen OH-Radikal. Dadurch steigt die Absorption bei den Wellenlängen 0,945 μ m, 1,24 μ m und 1,383 μ m stark an.

Da die so genannten **Wasserpeaks** eine endliche Breite besitzen, werden auch benachbarte Wellenlängenbereiche beeinflusst. Deshalb müssen die für die optische Übertragung genutzten Wellenlängen einen möglichst großen Abstand von diesen Dämpfungsmaxima haben.

Daraus ergeben sich begrenzte nutzbare Wellenlängenbereiche, die optischen Fenster. Bei Fasern, die ab dem Jahr 2000 gefertigt wurden, sind die Wasserpeaks sehr klein (Low-Water-Peak-LWL) und ein großer Wellenlängenbereich wird nutzbar (Abschnitt 1.2.6).

Außerdem bewirken Molekülschwingungen Eigenabsorptionen des LWL-Materials im ultravioletten und im längerwelligen Infrarotbereich. Letztere begrenzen den nutzbaren Wellenlängenbereich nach oben.

Während die bisher behandelten Dämpfungseffekte infolge Absorption durch Verbesserung der Technologie zunehmend unterdrückt werden, kann man die Verluste durch **Streueffekte** mit technologischen Maßnahmen nur bis zu einer physikalisch bedingten Grenze reduzieren.

Nichtlineare Streueffekte (Raman- oder Brillouinstreuung) können bei hohen Leistungen bzw. Leistungsdichten im Lichtwellenleiter auftreten (beispielsweise in Wellenlängenmultiplex-Systemen in Verbindung mit optischen Verstärkern) und sollen hier nicht weiter betrachtet werden.

Unvermeidbar ist jedoch die **Rayleighstreuung**, die durch Brechzahl- und Dichtefluktuationen im Glas hervorgerufen wird (vergleiche Kapitel 3). Sie wächst mit zunehmender Dotierung des Quarzglases mit Fremdatomen an, tritt jedoch auch im undotierten Quarzglas auf.

Bemerkenswert ist die starke Wellenlängenabhängigkeit der Rayleighstreuung: Sie fällt mit der vierten Potenz der Wellenlänge ab. Da in einem guten Lichtwellenleiter die Dämpfung im Wesentlichen durch die Rayleighstreuung bewirkt wird, nimmt die Dämpfung des Lichtwellenleiters vom ersten (850 nm) bis zum vierten (1625 nm) optischen Fenster stark ab.

Bild 1.8 zeigt den Dämpfungskoeffizient des Lichtwellenleiters als Funktion der Übertragungswellenlänge sowie die oben besprochenen dämpfungserhöhenden Effekte. Der Dämpfungskoeffizient wurde logarithmisch dargestellt. Dadurch wird die Rayleighstreu-Kurve eine Gerade. Deutlich sind die lokalen Minima für die optischen Fenster (850 nm = 0,85 µm, 1300 nm = 1,3 µm, 1550 nm = 1,55 µm) zu erkennen.

Bild 1.8: Dämpfungskoeffizient eines Lichtwellenleiters mit Wasserpeak als Funktion der Wellenlänge und typische Dämpfungseffekte

Prinzipiell vermeidbar sind die Strahlungsverluste durch Modenwandlungsprozesse. Hier unterscheidet man Makro- und Mikrobiegeverluste. Die Dämpfungen durch **Makrobiegungen** sind im Singlemode-LWL besonders hoch. Sie wachsen mit zunehmender Übertragungswellenlänge an. Die beschichtete Faser darf einen Biegeradius von 30 mm nicht unterschreiten. Das wird durch geeignete Abmessungen der Spleißkassetten gewährleistet.

Auch wenn Dämpfungen durch Makrobiegungen im Multimode-LWL erst bei geringeren Radien auftreten, darf auch dieser nicht in zu engen Radien abgelegt werden. Zu kleine Biegeradien (< 15 mm) können längerfristig zu Mikrorissen auf der Glasoberfläche und damit zum Faserbruch führen (Abschnitt 1.2.15).

Das bedeutet, dass der Multimode-LWL mit der gleichen Sorgfalt wie der Singlemode-LWL verlegt werden muss. Während man einen zu geringen Biegeradius beim Singlemode-LWL an einer erhöhten Dämpfung insbesondere bei Messung mit einer hohen Wellenlänge erkennt, ist dieser Installationsmangel beim Multimode-LWL oder beim biegeoptimierten Singlemode-LWL unter Umständen durch eine Messung nicht nachweisbar.

Die Faser kann, vor allem in Verbindung mit Feuchtigkeit, noch nach Jahren brechen. Deshalb ist unbedingt auf die Einhaltung der zulässigen Biegeradien zu achten.

Mikrobiegeverluste werden durch Biegungen verursacht, die sich entlang des Lichtwellenleiters periodisch oder statistisch verteilt, laufend ändern. Typische Biegeamplituden liegen bei 1 μ m. Sie können zum Beispiel durch die Rauhigkeit der Kunststoffhüllen (Adern) um den Lichtwellenleiter hervorgerufen werden, sind im Allgemeinen durch technologische Mängel im Herstellungsprozess der Fasern/Kabel bedingt und durch die Installation nicht beeinflussbar.

Meist wird heute die Technik zur Herstellung der Fasern/Kabel so gut beherrscht, dass Mikrobiegeverluste keine Rolle mehr spielen.

erstes optisches Fenster:	Multimode-LWL (850 nm)
zweites optisches Fenster:	Multimode-LWL (1300 nm) Singlemode-LWL (1310 nm)
drittes optisches Fenster:	Singlemode-LWL (1550 nm)
viertes optisches Fenster:	Singlemode-LWL (1625 nm/1650 nm)

Die optischen Fenster des Lichtwellenleiters werden folgendermaßen genutzt:

Wegen der hohen Makrobiegeempfindlichkeit des Lichtwellenleiters bei dieser Wellenlänge nutzt man das vierte optische Fenster zur Faserüberwachung und zur OTDR-Messung, um Installationsmängel zu erkennen.

Das erste optische Fenster wird ausschließlich vom Multimode-LWL und das dritte bzw. vierte optische Fenster ausschließlich vom Singlemode-LWL genutzt.

Im zweiten optischen Fenster erfolgt die Übertragung sowohl über Multimode- als auch Singlemode-LWL. Zur Kennzeichnung der Fasern/Kabel und Komponenten wurde vereinbart, dass die Angabe "**1300 nm**" sich stets auf Multimode-Anwendungen und die Angabe "**1310 nm**" auf Singlemode-Anwendungen bezieht. Die tatsächliche Wellenlänge des Senders kann von diesen Nennwerten abweichen.

Das Grobe Wellenlängenmultiplex (CWDM: Kapitel 6) nutzt auch den Wellenlängenbereich zwischen dem zweiten und dritten optischen Fenster (1271 nm, 1291 nm,..., 1611 nm). Das Anwachsen des Dämpfungskoeffizienten infolge der OH-Absorptionen stört.

Durch Modifikation des Herstellungsprozesses gelingt es, diesen Effekt zu vermeiden und den OH-Peak zwischen dem zweiten und dritten optischen Fenster stark zu unterdrücken (Low-Water-Peak-LWL: Abschnitt 1.2.6).

1.1.6 Zusammenfassung

Die optische Nachrichtenübertragung wird realisiert durch die Wandlung eines elektrischen in ein optisches Signal mittels einer Lumineszenzdiode oder einer Laserdiode, durch Übertragung des optischen Signals über einen Lichtwellenleiter oder durch den freien Raum und eine abschließende optisch-elektrische Wandlung mit einer PIN- oder Lawinen-Photodiode.

Die Auswahl der Komponenten wird durch die jeweiligen Anforderungen an das System insbesondere bezüglich der Datenrate und der Streckenlänge festgelegt.

Die Vorteile der LWL-Technik ergeben sich aus den hohen übertragbaren Datenraten, den großen überbrückbaren Streckenlängen und der Unempfindlichkeit gegenüber elektromagnetischen Störstrahlungen. Die Nachteile sind im Wesentlichen durch eine schwierigere Handhabbarkeit des Lichtwellenleiters im Vergleich zum Kupferleiter bedingt. Die Mess- und Verbindungstechnik ist aufwändiger.

Das elektromagnetische Spektrum umfasst einen Frequenz- bzw. Wellenlängenbereich von 24 Zehnerpotenzen. Die optische Nachrichtenübertragung nutzt davon nur einen sehr kleinen Anteil, das nahe Infrarot und den Bereich des sichtbaren Lichts.

Das Prinzip der Signalausbreitung im Multimode-LWL beruht auf der Totalreflexion. Die Parameter Kerndurchmesser und numerische Apertur beeinflussen die einkoppelbare Leistung in den Lichtwellenleiter und seine Übertragungseigenschaften.

Die Dämpfung ist ein Maß für die Verminderung der optischen Signalleistung im Lichtwellenleiter. Der Dämpfungskoeffizient ergibt sich aus der Dämpfung, bezogen auf die Länge des Lichtwellenleiters.