

Edited by
Matthew Todd

Separation of Enantiomers

Synthetic Methods

Edited by
Matthew Todd

Separation of Enantiomers

Related Titles

Christmann, M., Bräse, S. (eds)

Asymmetric Synthesis II

More Methods and Applications

2012

ISBN 978-3-527-32921-2

Ma, S. (ed.)

Handbook of Cyclization Reactions

2009

Print ISBN: 978-3-527-32088-2

Dai, L., Hou, X. (eds.)

Chiral Ferrocenes in Asymmetric Catalysis Synthesis and Applications

2009

Print ISBN: 978-3-527-32280-0

Cordova, A. (ed.)

Catalytic Asymmetric Conjugate Reactions

2010

Print ISBN: 978-3-527-32411-8

Yudin, A.K. (ed.)

Catalyzed Carbon-Heteroatom

Bond Formation

2010

Print ISBN: 978-3-527-32428-6

Cybulski, A., Moulijn, J.A., Stankiewicz, A. (eds.)

Novel Concepts in Catalysis and Chemical Reactors

Improving the Efficiency for the Future

2010

Print ISBN: 978-3-527-32469-9

Blaser, H., Federsel, H. (eds.)

Asymmetric Catalysis on Industrial Scale

Challenges, Approaches and Solutions 2nd Edition

2010

Print ISBN: 978-3-527-32489-7

Edited by Matthew Todd

Separation of Enantiomers

Synthetic Methods

WILEY-VCH
Verlag GmbH & Co. KGaA

The Editor**Dr. Matthew Todd**

The University of Sydney
Faculty of Science
School of Chemistry
Sydney, NSW 2006
Australia

Cover**Auguste Rodin, *The Cathedral***

Modeled 1908, Musée Rodin cast in 1955, Bronze. Size: 25 1/4 x 12 3/4 x 13 1/2 inches; with permission from: Iris and B. Gerald Cantor Foundation, 1180 S. Beverly Drive, Suite 321, Los Angeles, California USA 90035-1153

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for**British Library Cataloguing-in-Publication Data**

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <<http://dnb.d-nb.de>>.

© 2014 Wiley-VCH Verlag & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN: 978-3-527-33045-4

ePDF ISBN: 978-3-527-65091-0

ePub ISBN: 978-3-527-65090-3

Mobi ISBN: 978-3-527-65089-7

oBook ISBN: 978-3-527-65088-0

Cover Design Adam-Design, Weinheim, Germany

Typesetting Laserwords Private Limited, Chennai, India

Printing and Binding Markono Print Media Pte Ltd., Singapore

Printed on acid-free paper

Contents

List of Contributors IX

1	Introduction: A Survey of How and Why to Separate Enantiomers	1
	<i>Matthew Todd</i>	
1.1	Classical Methods	2
1.2	Kinetic Resolution ('KR')	3
1.3	Dynamic Kinetic Resolution ('DKR')	5
1.4	Divergent Reactions of a Racemic Mixture ('DRRM')	7
1.5	Other Methods	8
	Acknowledgments	9
	References	9
2	Stoichiometric Kinetic Resolution Reactions	13
	<i>Mahagundappa R. Maddani, Jean-Claude Fiaud, and Henri B. Kagan</i>	
2.1	Introduction	13
2.2	Kinetic Treatment	14
2.2.1	Reactions First-Order in Substrate	14
2.2.1.1	Scope and Validity of Equation 2.6	18
2.2.1.2	Equivalent Formulations of the Basic Equation 2.6	19
2.2.2	Reactions Zero- or Second-Order in Substrate	19
2.2.3	Improvement of Kinetic Resolution Processes	20
2.2.4	Use of Enantio-Impure Auxiliaries	21
2.3	Chiral Reagents and Racemic Substrates	22
2.3.1	Esterification	22
2.3.2	Amide and Peptide Formation	30
2.3.3	Cycloaddition Reactions	35
2.3.4	Conjugate Additions	39
2.3.5	Borane-Involving Reactions	41
2.3.6	Kinetic Resolution of Allenes	43
2.3.7	Olefination Reactions	45
2.3.8	Deprotonation Reactions	48
2.3.9	Miscellaneous	49
2.4	Enantiodivergent Formation of Chiral Product	51

2.4.1	Introduction	51
2.4.2	Creation of a Stereogenic Unit	52
2.4.3	Formation of Regioisomers	54
2.5	Enantioconvergent Reactions	55
2.6	Diastereomer Kinetic Resolution	56
2.7	Some Applications of Kinetic Resolution	58
2.7.1	Organometallics and Analogues	58
2.7.2	Racemic Catalysts	61
2.7.3	Enantiomeric excess's and Stereoselectivity Factor Measurements by Mass Spectrometry	63
2.7.4	Mechanistic Studies. The Hoffmann Test	66
2.7.5	Miscellaneous	69
2.8	Conclusion	70
2.A	Table of <i>s</i> Factors Higher than 10 for Some Reactions	70
	References	71
3	Catalytic Kinetic Resolution	75
	<i>Hélène Pellissier</i>	
3.1	Introduction	75
3.2	Kinetic Resolution of Alcohols	76
3.2.1	KR of Alcohols Using Chiral Acylation Catalysts	76
3.2.2	Oxidative KR of Alcohols	81
3.2.3	Miscellaneous Kinetic Resolutions	87
3.3	Kinetic Resolution of Epoxides	88
3.3.1	Hydrolytic Kinetic Resolution	88
3.3.2	Ring Opening of Epoxides by Nucleophiles Other than Water	92
3.4	Kinetic Resolution of Amines	93
3.5	Kinetic Resolution of Alkenes	97
3.6	Kinetic Resolution of Carbonyl Derivatives	101
3.7	Kinetic Resolution of Sulfur Compounds	102
3.8	Kinetic Resolution of Ferrocenes	103
3.9	Conclusions	105
	Abbreviations	105
	References	107
4	Application of Enzymes in Kinetic Resolutions, Dynamic Kinetic Resolutions and Deracemization Reactions	123
	<i>Cara E. Humphrey, Marwa Ahmed, Ashraf Ghanem, and Nicholas J. Turner</i>	
4.1	Introduction	123
4.2	Kinetic Resolutions Using Hydrolytic Enzymes	123
4.2.1	Lipases in Organic Synthesis	123
4.2.2	Structural Features of Lipases	124
4.2.3	Typical Substrates for Lipases and Esterases	125
4.2.4	Monitoring the Progress of Lipase-Catalysed Resolutions	126

4.2.5	Kazlauskas' Rule	127
4.2.6	Activated Acyl Donors	128
4.2.7	Examples of Lipase-, Lipolase- and Hydrolase-Catalysed Reactions in Synthesis	129
4.2.7.1	Resolution of Secondary Alcohols	129
4.2.7.2	Resolution of Amines	131
4.2.7.3	Hydrolysis of Lactams and Nitriles	132
4.2.7.4	Epoxide Hydrolases	133
4.2.8	Strategies for Controlling and Enhancing the Enantioselectivity of Enzyme-Catalysed Reactions	134
4.2.8.1	Substrate Engineering	134
4.2.8.2	Solvent Engineering	135
4.2.8.3	Immobilization and Chemical Modification	136
4.2.8.4	Directed Evolution and Enzyme Libraries	137
4.3	Dynamic Kinetic Resolution	138
4.3.1	Non-Enzyme-Catalysed Racemization	139
4.3.1.1	<i>In Situ</i> Racemization via Protonation/Deprotonation	139
4.3.1.2	<i>In Situ</i> Racemization via Addition/Elimination	140
4.3.1.3	<i>In Situ</i> Racemization via Oxidation/Reduction	140
4.3.1.4	<i>In Situ</i> Racemization via Nucleophilic Substitution	141
4.3.1.5	<i>In Situ</i> Racemization via Free Radical Mechanism	141
4.3.2	Metal-Catalysed Racemization	141
4.3.2.1	Ruthenium-Based Catalysts	142
4.3.2.2	Non-Ruthenium Catalysts	145
4.3.3	Enzyme-Catalysed Racemization	147
4.4	Deracemization	148
4.4.1	Deracemization of Secondary Alcohols	148
4.4.2	Deracemization of Carboxylic Acids	150
4.4.3	Deracemization of Amino Acids and Amines	151
4.4.4	Deracemization of Enol Actates	152
4.5	Enantioconvergent Reactions	153
4.6	Conclusions	153
	References	154
5	Dynamic Kinetic Resolution (DKR)	161
	<i>Keiji Nakano and Masato Kitamura</i>	
5.1	Introduction	161
5.2	Definition and Classification	162
5.3	Dynamic Kinetic Resolution (DKR)	164
5.3.1	Tautomerization	164
5.3.2	Pyramidal Inversion, Deformation and Rotation	181
5.3.3	Elimination–Addition and Addition–Elimination	184
5.3.4	Nucleophilic Substitution	193
5.3.5	Others	198
5.4	Mathematical Expression	201

5.5	DKR-Related Methods	204
5.5.1	DYKAT through a Single Enantiomeric Intermediate	205
5.5.2	DTR of Two Diastereomeric Intermediates	206
5.5.3	Stereoinversion	206
5.5.4	Cyclic Deracemization	207
5.5.5	Enantio-Convergent Transformation	207
5.6	Concluding Remarks	208
	References	209
6	Enantiodivergent Reactions: Divergent Reactions on a Racemic Mixture and Parallel Kinetic Resolution	217
	<i>Trisha A. Russell and Edwin Vedejs</i>	
6.1	Introduction: The Conceptual Basis for Kinetic Resolution and Enantiodivergent Reactions	217
6.2	Divergent RRM Using a Single Chiral Reagent: Ketone Reduction	222
6.2.1	Racemic Ketones and Chiral Non-Enzymatic Hydride Donors	227
6.3	Divergent RRM under Oxidative Conditions	229
6.4	Organometallic Reagents and Regiodivergent RRM	237
6.5	Regiodivergent RRM in Selective Reactions of Difunctional Substrates	248
6.6	Divergent RRM Using Two Chiral Reagents: Parallel Kinetic Resolution (PKR)	252
6.7	Conclusion	262
	Acknowledgement	262
	References	262
7	Rare, Neglected and Potential Synthetic Methods for the Separation of Enantiomers	267
	<i>Matthew Todd</i>	
7.1	Resolution through the Selfish Growth of Polymers: Stereoselective Polymerization	267
7.2	Resolution through Photochemical Methods	271
7.3	Combinations of Crystallization and Racemization	274
7.3.1	Crystallization-Induced Dynamic Resolution (CIDR)	275
7.3.2	Ripening	277
7.4	Destruction Then Recreation of Stereocentres: Enantioselective Protonations	278
7.5	Dynamic Combinatorial Chemistry	280
7.6	Asymmetric Autocatalysis	282
7.7	Miscellaneous	283
7.8	Concluding Remarks	283
	Acknowledgements	284
	References	284

List of Contributors

Marwa Ahmed

University of Canberra
Faculty of Education, Science,
Technology & Mathematics
(ESTeM)
Biomedical Science Discipline
Kirinari Street, Bruce
Canberra, ACT 2601
Australia

Jean-Claude Fiaud

Université Paris-Sud
Laboratoire de Catalyse
Moléculaire (UMR 8182)
Institut de Chimie Moléculaire et
des Matériaux d'Orsay
15 rue Georges Clemenceau
91405 Orsay
France

Ashraf Ghanem

University of Canberra
Faculty of Education, Science,
Technology & Mathematics
(ESTeM)
Biomedical Science Discipline
Kirinari Street, Bruce
Canberra, ACT 2601
Australia

Cara E. Humphrey

Investigator III
NIBR/GDC/PSB Prep Labs
WKL-122.U1.28
Klybeckstrasse 141
4057 Basel
Switzerland

Henri B. Kagan

Université Paris-Sud
Laboratoire de Catalyse
Moléculaire (UMR 8182)
Institut de Chimie Moléculaire et
des Matériaux d'Orsay
15 rue Georges Clemenceau
91405 Orsay
France

Masato Kitamura

Nagoya University
Department of Basic
Medicinal Science
Graduate School of
Pharmaceutical Science
Furo-cho, Chikusa-ku
Nagoya 464-8601
Japan

Mahagundappa R. Maddani

Mangalore University
Department of Chemistry
Mangalagangotri-574199
Karnataka
India

Matthew Todd

The University of Sydney
Faculty of Science
School of Chemistry
Sydney, NSW 2006
Australia

Keiji Nakano

Kochi University
Department of Applied Science
2-5-1 Akebono-cho
Kochi 780-8520
Japan

Nicholas J. Turner

The University of Manchester
Manchester Institute of
Biotechnology-3.019
School of Chemistry
131 Princess Street
Manchester M13 9PL
UK

Hélène Pellissier

Aix Marseille Université
Centrale Marseille
CNRS
iSm2 UMR 7313
Marseille 13397
France

Edwin Vedejs

University of Michigan
Department of Chemistry
930 N. University Ave.
Ann Arbor, MI 48109
USA

Trisha A. Russell

Whitworth University
Department of Chemistry
300 W. Hawthorne Rd.
Spokane, WA 99218
USA

1

Introduction: A Survey of How and Why to Separate Enantiomers

Matthew Todd

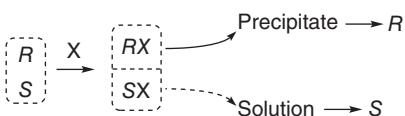
This book is about the separation of enantiomers by synthetic methods, which is to say methods involving some chemical transformation as part of the separation process. We do not in this book cover chromatographic methods for the separation of enantiomers [1]. Nor do we focus on methods based on crystallizations as these have been amply reviewed elsewhere (see below). We are concerned mainly therefore with resolutions that involve a synthetic component, so mostly with the various flavours of kinetic resolutions through to more modern methods such as divergent reactions of a racemic mixture (DRRM). This introduction briefly clarifies the scope of the book.

The reasons such methods are of continued importance are threefold:

- 1) *Society: the need for enantiopure compounds.* New molecules as single enantiomers are important to our continued well-being because they are the feedstocks of new medicines, agrochemicals, fragrances and other features of modern society in a chiral world. Of the 205 new molecular entities approved as drugs between 2001 and 2010, 63% were single enantiomers [2]. Nature provides an abundance of enantiopure compounds, but we seek, and need, to exceed this by obtaining useful unnatural molecules as single enantiomers, and we may reasonably want to access both enantiomers of some compounds.
- 2) *Academia: the basic science involved in the behaviour of chiral compounds.* If we seek the state of the art in our discipline, we cannot help but think that rapid and selective chemical distinction between enantiomers, which results in their facile separation, is something beautiful in itself. There have been many successful methods developed for the synthetic separation of enantiomers, as we shall see, and these are both *de facto* interesting and instructive to consider for the design of future examples of such processes. The relationship between kinetic resolution and asymmetric catalysis is strong, and one can inform the design of the other. It is hoped that the diverse examples described in this book stimulate thoughts in the reader of what is possible next.
- 3) *Industry: the need for new methods.* There remain many classes of compounds that still cannot be resolved, or where efficiencies are too low for widespread

adoption. It is still the case that classical resolution techniques are overwhelmingly used over other more complex methods. Of the 128 drug candidate molecules assessed in a recent industry survey, half were being developed as single enantiomers, and the sources of the stereocentres were mainly the chiral pool (55%) with resolution (28%) and asymmetric synthesis (10%) responsible for fewer examples [3]. This is, predictably, a feature of economics as much as science and one must not be too quick to judge new fields like asymmetric catalysis versus older ones like classical resolution. Pasteur added something enantiopure to a racemate in 1853 [4], whereas the catalytic prowess of a metal centre surrounded by chiral ligands was first demonstrated only in 1968 [5]. In addition, many chiral acids and bases have proven to be useful in classical resolutions, while Nature does not seem to be so generous in its supply of molecules that can effect catalytic, asymmetric transformations. The great progress made in synthetic chemistry has not (yet) brought us to the position that allows us to make any enantiopure substance in quantity given that resources are always limited. That leaves us with the synthesis of a racemate from which we pick one enantiomer out. Such a process can be remarkably efficient and cost-effective, if such tools are available, but the great successes described in this book should not hide the fact that we require better separation methods with wide applicability if we are to avoid an overreliance on just using whatever Nature provides.

The various methods considered in this book may be classified as follows.


1.1 Classical Methods

A racemate can be resolved with ease if it happens that the enantiomers form separate crystals – a so-called conglomerate. It becomes possible to separate, physically, the enantiomeric crystals – a process sometimes referred to as *triage*. This is what Pasteur famously achieved in 1848 with a sample of ammonium sodium tartrate [6]. Such good fortune is quite rare and is in any case not a ‘synthetic method’ in the strictest sense (nor is it practical on a large scale). Other physical processes (alone, without any attendant synthetic process) such as evaporation or sublimation can be used to increase the enantiomeric excess of organic compounds, including amino acids [7].

Another important but non-synthetic method involves harvesting crops of enantioenriched crystals by seeding a supersaturated racemate and is known as *resolution* by *entrainment*, or *preferential crystallization*. These approaches have been well reviewed and will not be covered here [8]. Rare (but spectacular) examples where crystallizations of conglomerates are observed combined with racemization events in solution, leading to *total spontaneous resolutions* [9], are briefly mentioned in Chapter 7 as there have been interesting recent developments on that front. Included therein are special cases where diastereomeric interactions in solution combined with racemization may yield more than a 50% yield of one enantiomer,

often known as a *deracemization*. Racemization is treated as a synthetic process of sorts, but we essentially stop short of processes where stereochemistry is created from prochiral intermediates since such a subject is formally the province of asymmetric catalysis. We will not be covering separations based on physical partitioning of enantiomers using, for example, chiral solvents, macrocycles or membranes [10].

Clearly the best-known non-chromatographic method for the separation of enantiomers, the so-called classical resolution, involves combination of a racemate and an enantiopure compound to form diastereomers that can be separated based on physical properties and the enantiomerically pure compound re-isolated (Scheme 1.1).

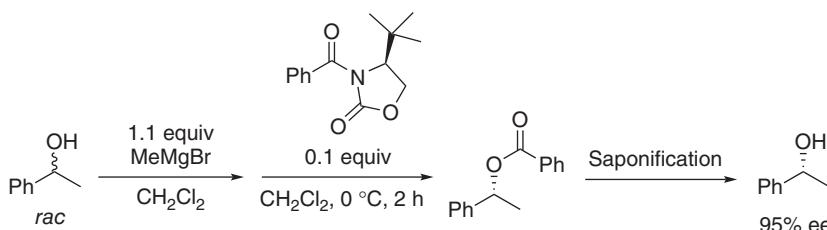
Scheme 1.1 The classical resolution: the separation of intermediate diastereomers differing in their physical properties.


The process is subtle and complex, belying its apparent simplicity on paper. My own experience with obtaining an important drug as a single enantiomer was instructive, and the process was publicly laid out over time as the project was carried out in an open source manner, meaning anyone could contribute to the solution and alter the direction of the research [11]. The project began with an assessment of a number of catalytic, asymmetric synthetic methods but feedback from the community was heavily in favour of moving to a search for a resolution, partly because the drug was needed for a low price. Sure enough a resolution was the solution. Sensitivity to conditions was illustrated by the eventual switch from one resolving agent to another – the structural difference was merely the substitution of the resolving agent's methoxy group for a hydrogen atom – resulting in the opposite enantiomer of the desired compound being isolated in the solid. This important and endlessly surprising area of organic chemistry, now including the so-called Dutch resolution approach of using mixtures of resolving agents, has been widely reviewed [12].

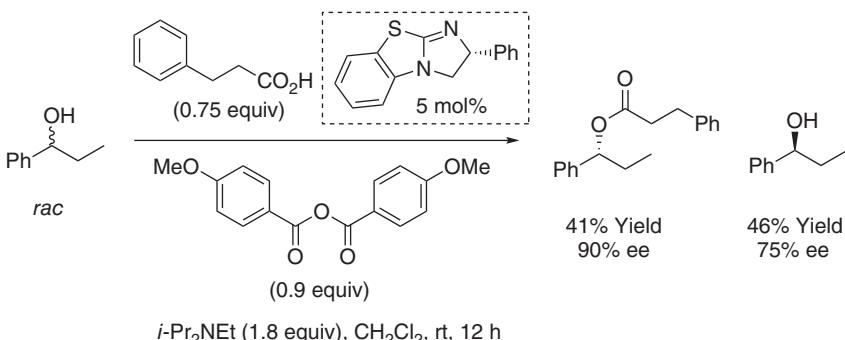
1.2

Kinetic Resolution ('KR')

A conceptually simple and well-known method for the separation of enantiomers is the kinetic resolution. A racemate is subjected to some reaction using a chiral agent and one of the enantiomers of the racemate reacts more quickly than the other (Scheme 1.2). The 'selectivity factor', s , is an expression of the difference in the rates of the two reactions.


The enantiomer ratio is shown using a formalism borrowed from Ed Vedejs in Chapter 6. As can be seen, the composition varies dynamically as the reaction

Scheme 1.2 Generic kinetic resolution showing the ratio of enantiomers with conversion.


proceeds. At the outset, the system displays its best synthetic selectivity between the enantiomers because an equal amount of each enantiomer is present. As the reaction proceeds, statistics begins to interfere as the fast-reacting enantiomer is depleted. Success is a curse – as the fast-reacting enantiomer concentration reduces it becomes difficult to stop the slow-reacting enantiomer from participating – a ‘mass action’ problem. This explains the two best-known features of kinetic resolutions – that the maximum yield for the process is necessarily 50%, but that high enantiomeric excesses are found at the extremes of conversion – that is, that the enantioenrichment of the product (whatever that may be) is largest at the start of the reaction while the enantiomeric excess of the starting material left behind is largest just before the end of the reaction. In a kinetic resolution, one cannot usually have one’s cake (high enantiomeric excess) and eat it (high yield).

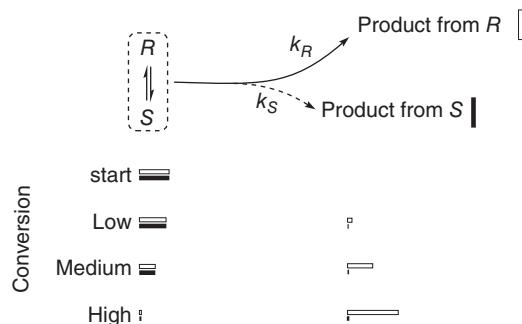
A simple approach to kinetic resolution is to use a stoichiometric *reagent*. In the example shown in Scheme 1.3, an enantioenriched alcohol is obtained from a racemate through the addition of an enantiopure-acylating agent [13]. If 1 equivalent of the reagent were used, a 1 : 1 mixture of diastereomers would result with no kinetic differentiation. Stoichiometric kinetic resolutions thus necessarily employ a sub-stoichiometric amount of the reagent – in the example shown only 0.1 equivalents is used. This method for the separation of enantiomers is described in detail by Maddani, Fiaud and Kagan in Chapter 2.


Scheme 1.3 Example of a stoichiometric kinetic resolution: preparation of an enantioenriched alcohol through the addition of an enantiopure-acylating agent.

The obvious alternative is to use a chiral *catalyst* to effect some reaction on the racemate. Frequently, the reaction does not introduce a new stereocentre, and a typical example is shown in Scheme 1.4. This process, developed by Birman, involves an acylation of an alcohol effected by a catalytic quantity of an enantiopure nucleophilic catalyst [14]. Catalytic methods are covered by Hélène Pellissier in Chapter 3.

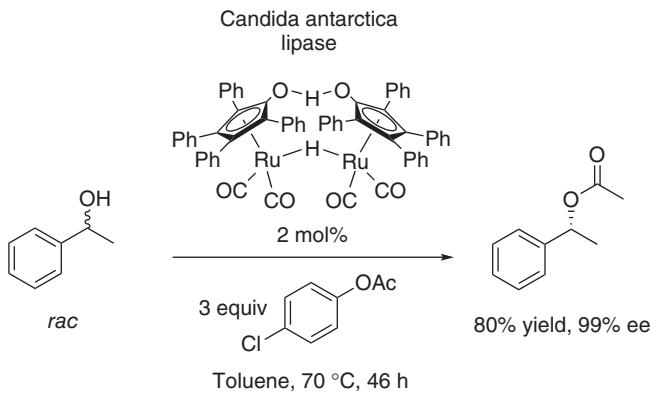
Scheme 1.4 Example of a catalytic kinetic resolution of a racemic alcohol.

The catalyst can be an enzyme, and some of the most impressive examples have been of this type. In the example shown in Scheme 1.5, a lipase acts on a kilogram of the racemic starting material to generate enantioenriched products that may be separated by distillation after filtration of the enzyme from the reaction mixture [15]. The use of enzymes in kinetic resolutions is covered by Humphrey, Ghanem and Turner in Chapter 4.


Scheme 1.5 Example of catalytic kinetic resolution effected by an enzyme.

1.3

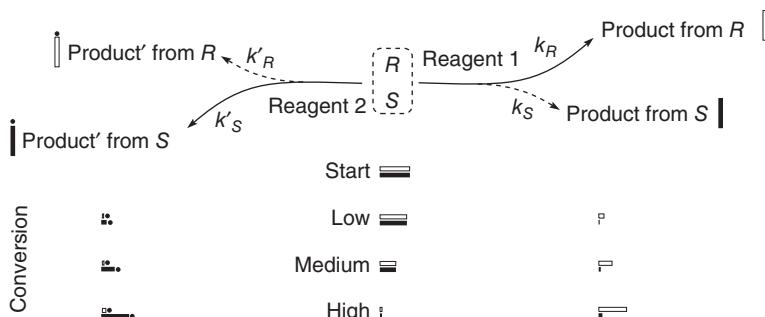
Dynamic Kinetic Resolution ('DKR')


Kinetic and classical resolutions both suffer from the weakness that the maximum yield of a product is 50%. This limit is removed if the enantiomers of the starting material can be interconverted (Scheme 1.6). The challenge is significant – to run a kinetic resolution in the forward direction and a simultaneous racemization of the

starting materials that leaves any compound derived from the starting materials unaffected. The racemization needs to be rapid with respect to the asymmetric transformation, to prevent build-up of the slow-reacting enantiomer.

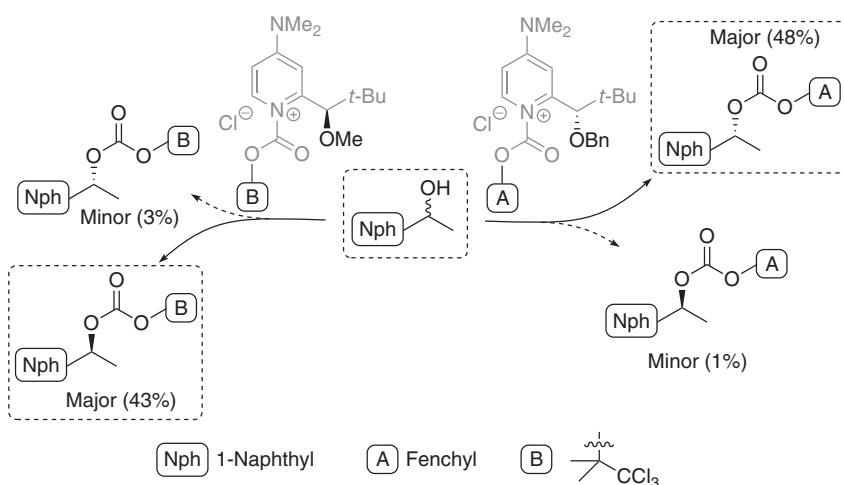
Scheme 1.6 Generic dynamic kinetic resolution showing the ratio of enantiomers with conversion.

This seemingly insurmountable task has been solved, with several impressive systems having been demonstrated to date, although the number of cases is far lower than those for regular kinetic resolutions. In the example shown in Scheme 1.7, the kinetic resolution of secondary alcohols is achieved with a lipase while the racemization is effected by a ruthenium complex [16]. This example illustrates well the striking effectiveness of two orthogonal chemical processes that might a priori be expected to interfere with each other. Dynamic kinetic resolutions (DKRs) are reviewed by Nakano and Masato Kitamura in Chapter 5. The chapter also includes a description of rarer processes that are frequently confused with DKR but which are mechanistically distinct [17], such as the dynamic kinetic asymmetric transformation (DYKAT); the similarity is that DYKAT and DKR achieve complete conversion of a racemate to one enantioenriched product but the DYKAT product is typically not convertible back to starting material (needed for a separation of


Scheme 1.7 Example of dynamic kinetic resolution.

enantiomers) and involves an intermediate that is chiral, unlike a true DKR that proceeds via an achiral intermediate. Some of these distinctions are covered also in Chapter 7. The role of enzymes in DKR processes is covered also in Chapter 4.

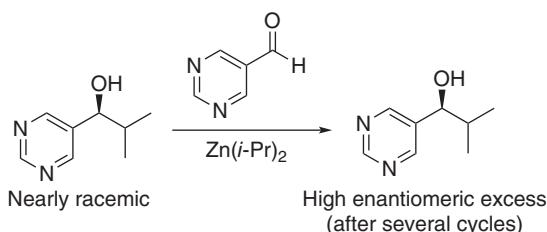
1.4


Divergent Reactions of a Racemic Mixture ('DRRM')

The essential weakness of a simple kinetic resolution is the build-up of the slow-reacting enantiomer of the starting material, a process that may be solved by DKR. There is another solution – to have the slow-reacting enantiomer be consumed by another reaction, to give a second product that may be separated from the first. In other words, to have the enantiomers give distinct (enantioenriched but not enantiomeric) products at similar rates (Scheme 1.8) – known as a *divergent reaction of a racemic mixture*. As for the DKR process, the starting material ideally remains as a raceme throughout, in which case the maximum yield of any given product is 50%. Strictly speaking for the process to be called a *resolution*, there must be a means of separating the products and converting them back to the enantiopure starting materials. The term *DRRM* encompasses processes that involve the addition of one or two chiral reagents to a racemate. The concept is well illustrated by the latter, involving addition of two chiral reagents to a racemate as shown; this subclass of DRRM is frequently referred to as *parallel kinetic resolution (PKR)*.

Scheme 1.8 Generic divergent reaction of a racemic mixture (note that the *product* from *R* is not the enantiomer of the *product* from *S*).

The specific example shown (Scheme 1.9) involves two pseudo-enantiomeric reagents [18]. One of the reagents reacts rapidly with the (*R*)-enantiomer of the starting alcohol while the other reacts preferentially with the (*S*)-enantiomer. Although a kinetic resolution of the racemate would be possible with either reagent alone, the mass action problem would mean that the reagent's selectivity would need to be very high to match the yield and enantiomeric excess values obtained from the DRRM. This process was discovered by Ed Vedejs, who reviews the field in Chapter 6.



Scheme 1.9 Example of a divergent reaction of a racemic mixture.

1.5 Other Methods

At the end of this book, I summarize a small number of ‘neglected’ cases not covered elsewhere, such as the use of circularly polarized light, polymerizations, ‘ripening’ processes, dynamic combinatorial chemistry and even several thermodynamic processes. In some of these cases, the potential for future significance in the synthetic separation of enantiomers is clear but the fields are not yet mature because the methods are young, exhibit recurrent issues, or have been developed for other reasons – in the case of polymerizations the eye of the polymer chemist is typically on the polymer, not on any enantiomeric excess that might be contained in the residual solution. This chapter is a little unusual – it appears that these disparate methods have never previously been collected together; the separate fields typically do not cite each other despite their ultimately sharing a common theme.

One striking example mentioned in this final chapter requires us to bend the term *racemate* to include ‘very near racemates’ that contain a very small enantiomeric excess. Enrichment of such samples by direct crystallization-based methods would typically only be attempted by committed optimists. In such a situation, we could synthesize more of the excess enantiomer preferentially if we had an appropriately asymmetric autocatalytic reaction – our initial excess enantiomer could replicate at the expense of the other. Preparatively, this is the effective separation of the enantiomers we used at the outset. Such a system has its physical realization in the Soai autocatalysis in which a very small enantiomeric excess of a pyrimidyl alcohol is amplified over several cycles to give an almost enantiopure sample of the alcohol (Scheme 1.10) [19].

Scheme 1.10 The Soai reaction that achieves a form of synthetic separation of enantiomers through selective autocatalysis.

These and other processes are not by any means widespread or generalizable, and they have not yet had an impact on the industrial preparation of enantiopure compounds, but are included as suggestions of where the vibrant and important field of the synthetic separation of enantiomers might go next. Some of these methods also remind us of the ‘prototypical’ synthetic separation of enantiomers that may have played a role in the origin of life.

Acknowledgments

I thank Paul A Bartlett (UC Berkeley) and Craig Williams (University of Queensland) for helpful comments.

References

1. (a) Toda, F. (2010) *Enantiomer Separation – Fundamentals and Practical Methods*, Kluwer Academic Publishers, Dordrecht; (b) Chang, C., Wang, X., Bai, Y., and Liu, H. (2012) *TRAC-Trend. Anal. Chem.*, **39**, 195–206, doi: 10.1016/j.trac.2012.07.002; (c) Ward, T.J. and Ward, K.D. (2012) *Anal. Chem.*, **84**, 626–635, doi: 10.1021/ac202892w
2. Agranat, I., Wainschtein, S.R., and Zusman, E.Z. (2012) *Nat. Rev. Drug Disc.*, **11**, 972–973, doi: 10.1038/nrd3657-c1
3. Carey, J.S., Laffan, D., Thomson, C., and Williams, M.T. (2006) *Org. Biomol. Chem.*, **4**, 2337–2347, doi: 10.1039/b602413k
4. Pasteur, L. (1853) *C. R. Acad. Sci.*, **37**, 162–166.
5. Knowles, W.S. and Sabacky, M.J. (1968) *Chem. Commun.*, 1445–1446, doi: 10.1039/C19680001445
6. Pasteur, L. (1848) *C. R. Acad. Sci.*, **26**, 535.
7. (a) Garin, D.L., Greco, D.J.C., and Kelley, L. (1977) *J. Org. Chem.*, **42**, 1249–1251, doi: 10.1021/jo00427a033; (b) Chickos, J.S., Garin, D.L., Hitt, M., and Schilling, G. (1981) *Tetrahedron*, **37**, 2255–2259, doi: 10.1016/S0040-4020(01)97981-5; (c) Klussmann, M., Iwamura, H., Mathew, S.P., Wells, D.H., Pandya, U., Armstrong, A., and Blackmond, D.G. (2006) *Nature*, **441**, 621–623, doi: 10.1038/nature04780; (d) Hayashi, Y., Matsuzawa, M., Yamaguchi, J., Yonehara, S., Matsumoto, Y., Shoji, M., Hashizume, D., and Koshino, H. (2006) *Angew. Chem. Int. Ed.*, **45**, 4593–4597,

doi: 10.1002/anie.200601506; (e) Breslow, R. and Levine, M.S. (2006) *Proc. Natl. Acad. Sci. U.S.A.*, **103**, 12979–12980, doi: 10.1073/pnas.0605863103; (f) Perry, R.H., Wu, C., Neffiu, M., and Cooks, R.G. (2007) *Chem. Commun.*, 1071–1073, doi: 10.1039/b616196k; (g) Fletcher, S.P., Jagt, R.B.C., and Feringa, B.L. (2007) *Chem. Commun.*, 2578–2580, doi: 10.1039/b702882b; (h) Blackmond, D.G. and Klussmann, M. (2007) *Chem. Commun.*, 3990–3996, doi: 10.1039/b709314b; (i) Cintas, P. (2008) *Angew. Chem. Int. Ed.*, **47**, 2918–2920, doi: 10.1002/anie.200705192; (j) Weissbuch, I. and Lahav, M. (2011) *Chem. Rev.*, **111**, 3236–3267, doi: 10.1021/cr1002479; (k) Viedma, C., Ortiz, J.E., de Torres, T., and Cintas, P. (2012) *Chem. Commun.*, **48**, 3623–3625, doi: 10.1039/c2cc18129k; (l) Hein, J.E. and Blackmond, D.G. (2012) *Acc. Chem. Res.*, **45**, 2045–2054, doi: 10.1021/ar200316n

8. (a) Jacques, J., Collet, A., and Wilen, S.H. (1981) *Enantiomers, Racemates and Resolutions*, Chapter 4, Jon Wiley & Sons, Inc., New York; (b) Eliel, E.L. and Wilen, S.H. (1994) *Stereochemistry of Organic Compounds*, Chapter 7, Wiley-Interscience, New York.

9. (a) Jacques, J., Collet, A., and Wilen, S.H. (1981) *Enantiomers, Racemates and Resolutions*, Chapter 6, Jon Wiley & Sons, Inc., New York; (b) Amabilino, D.B. and Kellogg, R.M. (2011) *Isr. J. Chem.*, **51**, 1034–1040, doi: 10.1002/ijch.201100051; (c) Noorduin, W.L., Vlieg, E., Kellogg, R.M., and Kaptein, B. (2009) *Angew. Chem. Int. Ed.*, **48**, 9600–9606, doi: 10.1002/anie.200905215

10. (a) Schuur, B., Verkuij, B.J.V., Minnaard, A.J., de Vries, J.G., Heeres, H.J., and Feringa, B.L. (2011) *Org. Biomol. Chem.*, **9**, 36–51, doi: 10.1039/c0ob00610f; (b) Bowman, N.S., McCloud, G.T., and Schweitzer, G.K. (1968) *J. Am. Chem. Soc.*, **90**, 3848–3852, doi: 10.1021/ja01016a046; (c) Kyba, E.B., Koga, K., Sousa, L.R., Siegel, M.G., and Cram, D.J. (1973) *J. Am. Chem. Soc.*, **95**, 2692–2693, doi: 10.1021/ja00789a051; (d) Zhang, X.X., Bradshaw, J.S., and Izatt, R.M. (1997) *Chem. Rev.*, **97**, 3313–3362, doi: 10.1021/cr960144p; (e) Pirkle, W.H. and Pochapsky, T.C. (1989) *Chem. Rev.*, **89**, 347–362, doi: 10.1021/cr00092a006; (f) Newcomb, M., Helgeson, R.C., and Cram, D.J. (1974) *J. Am. Chem. Soc.*, **96**, 7367–7369, doi: 10.1021/ja00830a042; (g) Aoki, T. (1999) *Prog. Polym. Sci.*, **24**, 951–993, doi: 10.1016/S0079-6700(99)00020-9; (h) Maier, N.M., Franco, P., and Lindner, W. (2001) *J. Chromatogr. A*, **906**, 3–33, doi: 10.1016/S0021-9673(00)00532-X; (i) Eliel, E.L. and Wilen, S.H. (1994) *Stereochemistry of Organic Compounds*, Chapter 7-7, Wiley-Interscience, New York.

11. (a) Woelfle, M., Olliaro, P., and Todd, M.H. (2011) *Nat. Chem.*, **3**, 745–748, doi: 10.1038/nchem.1149; (b) Woelfle, M., Seerden, J.-P., de Gooijer, J., Pouwer, K., Olliaro, P., and Todd, M.H. (2011) *PLoS Negl. Trop. Dis.*, **5** (9), e1260. doi: 10.1371/journal.pntd.0001260

12. (a) Eliel, E.L. and Wilen, S.H. (1994) *Stereochemistry of Organic Compounds*, Chapter 7-3, Wiley-Interscience, New York; (b) Jacques, J., Collet, A., and Wilen, S.H. (1981) *Enantiomers, Racemates and Resolutions*, Chapter 5, Jon Wiley & Sons, Inc., New York; (c) Boyle, P.H. (1971) *Q. Rev. Chem. Soc.*, **25**, 323–341, doi: 10.1039/QR9712500323; (d) Kellogg, R.M., Nieuwenhuijzen, J.W., Pouwer, K., Vries, T.R., Broxterman, Q.B., Grimbergen, R.F.P., Kaptein, B., La Crois, R.M., de Wever, E., Zwaagstra, K., and van der Laan, A.C. (2003) *Synthesis*, 1626–1638, doi: 10.1055/s-2003-40508

13. Evans, D.A., Anderson, J.C., and Taylor, M.K. (1993) *Tetrahedron Lett.*, **34**, 5563–5566, doi: 10.1016/S0040-4039(00)73882-2

14. (a) Shiina, I. and Nakata, K. (2007) *Tetrahedron Lett.*, **48**, 8314–8317, doi: 10.1016/j.tetlet.2007.09.135; (b) Birman, V.B., Jiang, H., Li, X., Guo, L., and Uffman, E.W. (2006) *J. Am. Chem. Soc.*, **128**, 6536–6537, doi: 10.1021/ja061560m

15. Hull, J.D., Scheinmann, F., and Turner, N.J. (2003) *Tetrahedron: Asymmetry*,

14, 567–576, doi: 10.1016/S0957-4166(03)00019-3

16. Persson, B.A., Larsson, A.L.E., Ray, M.L., and Bäckvall, J.-E. (1999) *J. Am. Chem. Soc.*, **121**, 1645–1650, doi: 10.1021/ja983819+

17. Faber, K. (2001) *Chem. Eur. J.*, **7**, 5004–5010, doi: 10.1002/

1521-3765(20011203)7:23<5004::AID-CHEM5004>3.0.CO;2-X

18. Vedejs, E. and Chen, X. (1997) *J. Am. Chem. Soc.*, **119**, 2584–2585, doi: 10.1021/ja963666v

19. Soai, K., Shibata, T., Morioka, H., and Choji, K. (1995) *Nature*, **378**, 767–768, doi: 10.1038/378767a0

2

Stoichiometric Kinetic Resolution Reactions

Mahagundappa R. Maddani, Jean-Claude Fiaud, and Henri B. Kagan

2.1

Introduction

The resolution of a racemic mixture is a basic process, which was discovered by Pasteur in 1848 by the manual separation of the 1:1 mixture of enantiomeric crystals of racemic ammonium sodium tartrate [1]. Later Pasteur discovered the resolution of a racemic mixture by the temporary combination with a chiral auxiliary followed by the separation of diastereomers [2]. It was again Pasteur who found that racemic ammonium tartrate in aqueous solution was half-destroyed by *penicillium glaucum* mould, allowing the preparation of ‘unnatural’ (–)-tartaric acid for the first time [3]. Enzymatic kinetic resolutions (KRs) rapidly became the preferred method to isolate enantioenriched compounds from a racemic mixture, and remained so for many years (see Chapter 4). The first non-enzymatic KR occurred in 1899, when Marckwald and McKenzie [4] realized the partial esterification of racemic mandelic acid by (–)-menthol, releasing a slightly enantioenriched (–)-mandelic acid. (–)-Borneol was also used in a similar reaction [5]. Several examples of KR (in homogeneous conditions) of alcohols or amines by chiral acylating agents were subsequently described. In those days, the isolation and purification of end products were tedious, sometimes with contamination by chiral impurities. Moreover, measurement of the enantiomeric composition was always based on polarimetric measurements (hence the obsolete expression ‘optical purity’). Consequently, some reports on KRs until the end of 1960s needed to be considered with caution. Bredig and Fajans [6, 7] were the first to do a detailed kinetic study on the example of partial asymmetric decarboxylation of camphorcarboxylic acid mediated by some alkaloids. Another early kinetic treatment was described by Kuhn [8] during his investigations of photodecomposition of racemic *N,N*'-dimethyl- α -azidopropionamide with circularly polarized light.

We published in 1988 an extended review article on the basis of KR and the main results [9]. A chapter is devoted to KR in the stereochemistry textbook by Eliel *et al.* [10]. Some recent reviews are available on various aspects of non-enzymatic KR [11], for example, practical considerations [12], metal-catalyzed KR processes (Chapter 3) [13], dynamic KR (Chapter 5) [14, 15], parallel KR

reactions (Chapter 6) [16, 17] or on various aspects of enantiodivergent reactions (Chapter 6) [18].

This chapter focuses on stoichiometric KR reactions. In Section 2.2, the main kinetic treatments are discussed. In Section 2.3, some examples of the use of chiral reagents in KR are presented. In Sections 2.4 and 2.5, the cases of enantiodivergent and enantioconvergent reactions are discussed. The KR of diastereomers is kinetically similar to KR of enantiomers and is briefly presented in Section 2.6. Finally, some examples of applications of KR are collected in Section 2.7.

2.2

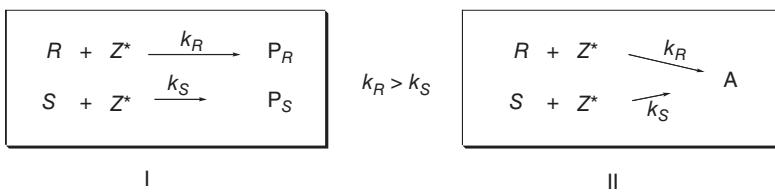
Kinetic Treatment

The expression ‘KR’ emphasizes that the racemic mixture undergoes a separation under a chiral influence in a kinetically controlled process. In principle, the word ‘resolution’ refers to the isolation of one of the enantiomers of racemic mixture after a partial transformation of the initial mixture. If the reaction product is chiral, as in the esterification of a racemic alcohol, then the KR will afford a product with some enantiomeric excess. The full transformation of a racemic mixture by coupling with a chiral auxiliary will give a 1 : 1 mixture of diastereomers and is not considered as a KR process, unless the reaction is stopped at an intermediate stage, leaving some enantioenriched starting material.

In an enantioselective reaction, such as an asymmetric hydrogenation of a ketone, the enantiomeric excess of the chiral product (ee_{prod}) is generally constant with conversion. This is not true in a KR, where enantiomeric excess of the recovered starting material (ee_{sm}) and enantiomeric excess of the product (ee_{prod}) change with conversion extent. These points are discussed on a quantitative basis in the next sections.

2.2.1

Reactions First-Order in Substrate


Scheme 2.1 indicates a general presentation of the KR of a racemic compound (*R, S*) when the product is chiral (case I) or achiral (case II). In both cases, the KR process is characterized by two competitive reactions going with different rates on the two enantiomers of the racemic mixture. Each rate depends on the concentrations of the reactants, the rate constants and the kinetic law. A common situation is a kinetic law first-order in substrate, here the (*R*) and (*S*) enantiomers (Scheme 2.1).

For an irreversible reaction, the basic set of equations is

$$\frac{d[R]}{dt} = -k_R[R][Z^*] \quad \frac{d[S]}{dt} = -k_S[S][Z^*]$$

The concentration of the chiral auxiliary Z^* will not influence the relative rate, which is expressed as follows.

$$\frac{d[R]/dt}{d[S]/dt} = \left(\frac{k_R}{k_S} \right) \left(\frac{[R]}{[S]} \right) \quad (2.1)$$

Scheme 2.1 Stoichiometric kinetic resolution process under the influence of a chiral reagent Z^* with formation of a chiral product P (case I) or an achiral product A (case II).

Equation 2.1 simplifies into Equation 2.2 by elimination of time t and taking $k_R/k_S = k_{\text{rel}} = s$ (stereoselectivity factor).

$$\frac{d[R]}{[R]} = s \frac{d[S]}{[S]} \quad (2.2)$$

Integration of Equation 2.2 gives Equation 2.3 where $[R_0]$ and $[S_0]$ are defined as the initial concentrations of the two enantiomers. This general equation characterizes homocompetitive reactions carried out on two different substrates.

$$s = \frac{\ln([R]/[R_0])}{\ln([S]/[S_0])} \quad (2.3)$$

If one starts from a racemic mixture, then $[R_0] = [S_0]$.

The reaction time t was classically used as the parameter to discuss the course of a KR [6–8, 19]. Conversion extent C gives equations that are easier to handle, especially if taken with values lying between 0 (initial state) and 1 (full transformation) [20, 21]. Conversion C is denoted by $C = 1 - ([R] + [S])/x_0$, where x_0 is the initial concentration of the racemic mixture. Enantiomeric excess of the remaining starting material (ee_{sm}) is defined as follows.

$$\text{ee}_{\text{sm}} = \frac{([S] - [R])}{([S] + [R])} \quad (2.4)$$

In the above equation $[S] > [R]$ because it was assumed that $k_R > k_S$, as in Scheme 2.1.

From Equation 2.4, the values of $[S]$, $[R]$, $[S_0]$ and $[R_0]$ are derived (see Equation 2.5).

$$\begin{aligned} [S] &= 0.5(1 + \text{ee}_{\text{sm}})(1 - C)x_0 \\ [R] &= 0.5(1 - \text{ee}_{\text{sm}})(1 - C)x_0 \\ [S_0] &= [R_0] = 0.5x_0 \end{aligned} \quad (2.5)$$

By using the values from Equation 2.5, Equation 2.3 gives the stereoselectivity factor s that may be transformed into Equation 2.6.

$$s = \frac{\ln[(1 - \text{ee}_{\text{sm}})(1 - C)]}{n[(1 + \text{ee}_{\text{sm}})(1 - C)]} \quad (2.6)$$

Equation 2.6 allows one to compute the curves $\text{ee}_{\text{sm}} = f(C)$ for various values of s . One example is indicated in Figure 2.1 with $s = 10$ and is discussed below. A software is available for the drawing of such curves [22].

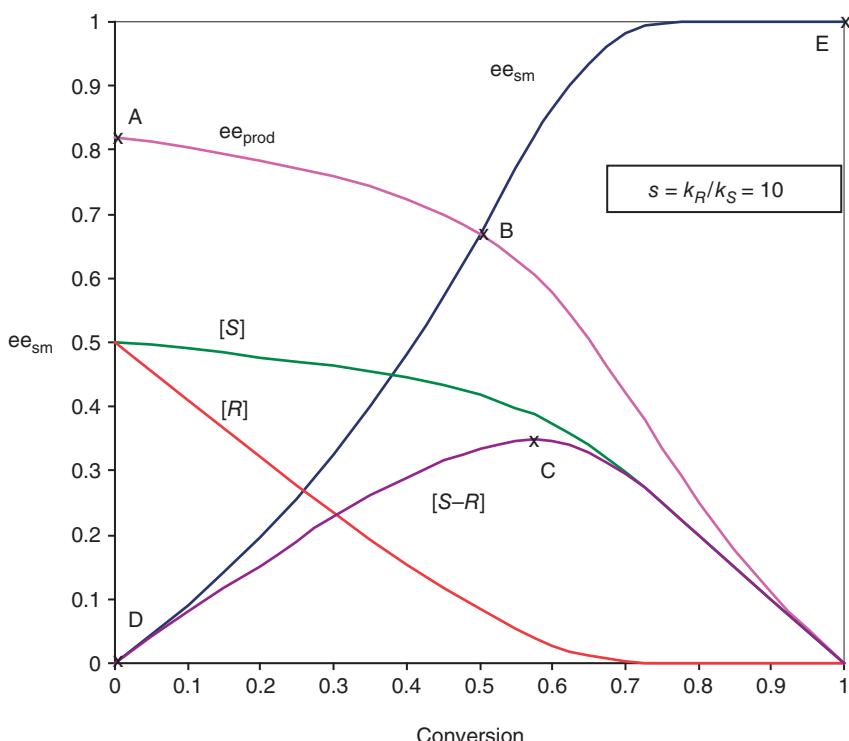


Figure 2.1 Kinetic resolution first-order in substrate ($s = k_{\text{rel}} = 10$).

The curve $\text{ee}_{\text{sm}} = f(C)$ in Figure 2.1 shows that the recovered material has a continuous increase in ee_{sm} with conversion. At 50% conversion, $\text{ee}_{\text{sm}} = 67\%$. The evolution of $[R]$ and $[S]$ during the KR is given by Equation 2.5 and is plotted in Figure 2.1 (for $x_0 = 1$). The excess in (S) enantiomer expressed by $([S] - [R])$ instead of ee_{sm} is also conversion dependent, with an intermediate optimum value as $[S] - [R]$ is equal to zero for $C = 0$ and 1. This maximum occurs because the depletion in the fast-reacting (R) -enantiomer is such that accumulation of the (S) -enantiomer will invert the reaction rates. At the inversion point, the rate of destruction of the both enantiomers are equal, $k_S [S] = k_R [R]$ or $[S]/[R] = s$. Here, $\text{ee}_{\text{sm}} = (s - 1)/(s + 1)$.

If the product is chiral (Scheme 2.1, case II), it is easy to calculate its enantiomeric excess (ee_{prod}) defined by $\text{ee}_{\text{prod}} = ([\text{Prod}_R] - [\text{Prod}_S])/([\text{Prod}_R] + [\text{Prod}_S])$. There is an excess of Prod_R as $k_R/k_S > 1$. The material balance imposes a relationship between C , ee_{sm} and ee_{prod} . By taking into account that 0.5 mol of (R) -enantiomer of the initial racemic mixture is distributed between the chiral product and the recovered starting material, Equation 2.7 may be derived, which is independent of s .

$$\frac{\text{ee}_{\text{sm}}}{\text{ee}_{\text{prod}}} = \frac{C}{(1 - C)} \quad (2.7)$$

This allows to modify the fundamental equation (Equation 2.6), by introducing ee_{prod} thanks to Equation 2.7. This leads to the following equation.

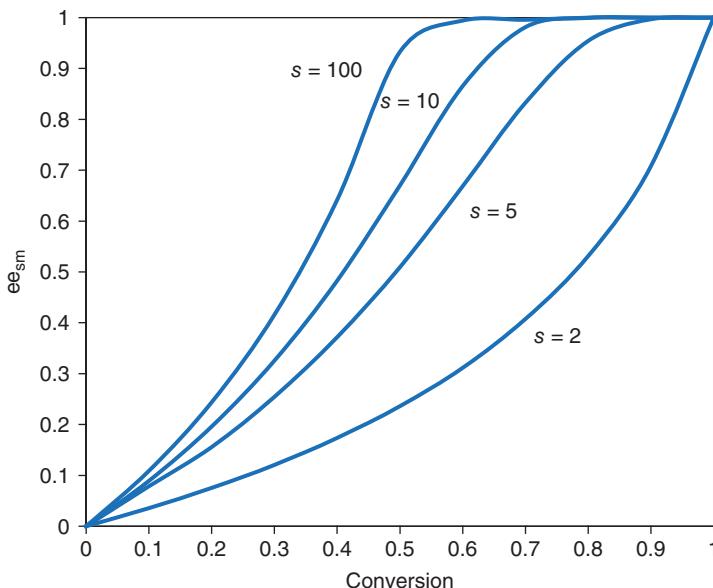
$$s = \frac{\ln[1 - C(1 + ee_{prod})]}{\ln[1 - C(1 - ee_{prod})]} \quad (2.8)$$

On Figure 2.1 is also plotted the evolution of ee_{prod} with conversion by using Equation 2.9. There is a progressive decrease of ee_{prod} from the initial value of $(s - 1)/(s + 1)$ to zero at full conversion of the racemic mixture.

Some following remarkable points are indicated in Figure 2.1.

Point **A**: initial ee_{prod} , equal to $(s + 1)/(s - 1)$, because $[Prod_R]/[Prod_S] = s$.

Point **B**: crossing point with $ee_{prod} = ee_{sm}$ and $C = 0.5$ (as calculated using Equation 2.7). Frequently KRs are run to 50% conversion.


Point **C**: inversion rates, where $ee_{sm} = (s - 1)/(s + 1)$. The conversion value may be calculated from Equation 2.3 by fixing, for example, $x_0 = 1$.

Point **D**: initial enantiomeric excess of the starting material ($ee_{sm} = 0$).

Point **E**: end-point concerning the recovered material. It is close to 100% ee.

The fundamental equation (Equation 2.6) has been obtained by Sharpless *et al.* in 1981 [21] and was inspired by a previous treatment of one of us in 1974 [20] for photoresolution (see Section 2.3). By varying the s value, families of curves were plotted as shown in Figure 2.2.

It is interesting to recall that Equation 2.6 applies only for first-order kinetics in substrate but is independent of the order in reagent Z^* . Indeed, Z^* is a common

Figure 2.2 Kinetic resolution first-order in substrate for various s values.

Table 2.1 Values of ee_{sm} (%) for kinetic resolutions run to 50% conversion.

<i>s</i>	1.1	2.0	3.0	4.0	5.0	10.0	15.0	20.0	50.0	100	150	500	700
ee_{sm}	3.3	23.6	36.4	44.8	50.9	67.0	74.3	78.7	88.7	93.3	95.1	98.1	98.5

Table 2.2 Conversion (%) necessary to recover starting material with $ee_{sm} = 99\%$.

<i>s</i>	2.0	4.0	5.0	10.0	15.0	20.0	50.0	100	150	300	500	700
<i>C</i> (%)	99.7	91.3	86.6	72.1	65.5	61.9	54.9	52.3	51.5	50.6	50.3	50.1

partner in the two parallel reactions of Scheme 2.1 and is eliminated during the establishment of Equation 2.1. A similar situation occurs with a chiral catalyst, the two rate constants representing rate constants of pseudo first-order reactions. The *s* values are very useful to compare various KR reactions. For example, which is the most efficient process: a KR that gives an ee_{sm} of 50% at 40% conversion, or the one where ee_{sm} is 40% at 30% conversion? The use of Equation 2.6 easily gives an answer to this question, as one calculates $s = 11.4$ and 42.9, respectively; the second process is the best.

From the fundamental equation (Equation 2.6), one can build tables relating *s*, ee_{sm} and *C* values. For example, in Table 2.1 are listed couples of *s* and ee_{sm} values for 50% conversion (*C* = 0.5) of a racemic substrate. In Table 2.2 are similarly indicated some pairs of *C* and *s* values necessary to recover the starting material in 99% ee.

Similar calculations apply to the KR of a non-racemic mixture of initial enantiomeric excess $ee_0 = ([S] - [R])/([S] + [R])$, which gives the following.

$$s = \frac{\ln[(1 - ee_{sm})(1 - C)/(1 - ee_0)]}{\ln[(1 + ee_{sm})(1 - C)/(1 - ee_0)]} \quad (2.9)$$

Horeau calculated which conversion (as a function of *s*) is needed to enhance an initial enantiomeric excess ee_0 to a given final enantiomeric excess ee_{sm} (for example, of 99%) [23].

2.2.1.1 Scope and Validity of Equation 2.6

Equation 2.6 has been established for well-defined conditions: pseudo first-order in substrate (but any order in chiral auxiliary, stoichiometric or catalytic) and no change of mechanism during the course of the reaction, for example, no auto-induction by the products. Reactions with chiral catalysts are especially susceptible to auto-induction. It is then useful to give the calculated *s* values with an indication of the correspondence between conversion and ee_{sm} or ee_{prod} [11]. We advise running experiments for at least two values of conversion and subsequent verification that the *s* values obtained are identical or similar. If not, this can indicate a change in the structure of the reagent during the reaction or a non-first-order reaction in substrate. The extrapolation of *s* at initial conversion is a characteristic value for a