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Preface

This book originates from an elective course that one of the authors (M.A.A.) has developed and
offered at the University of Maryland, College Park, to senior undergraduate and entry-level grad-
uate students in engineering and science programs. The motivation to develop a new course was a
result of a certain dissatisfaction with the contents of the traditional thermodynamics course that
he had been teaching in the Department of Chemical and Biomolecular Engineering for almost
30 years.

Thermodynamics is a keystone in science and engineering, bridging the gap between funda-
mentals and applications. However, when one compares the content of conventional courses in
thermodynamics with what scientists and engineers often do in practice, one may notice a gap-
one that is widening every year. New emerging technologies and products deal with subjects such
as biomolecular and soft-matter engineering, micro-reactor chemistry and microcapsule drug
delivery, micro-fluidics and porous media, nanoparticles and nanostructures, supercritical-fluid
extraction, and systems at the edge of stability. Engineers often must design processes or products
under conditions where traditional thermodynamics may become insufficient, as in the case
of strongly fluctuating and nano-size systems, or dissipative structures away from equilibrium.
The scientific basis for such issues is not commonly addressed in traditional engineering thermo-
dynamics and transport courses. The aim of Mesoscopic Thermodynamics for Scientists and
Engineers is to fill this gap, at least partially.

Mesoscopic thermodynamics can be defined as a semi-phenomenological approach to pheno-
mena in systems where a mesoscopic length-scale, intermediate between the atomistic scale
and the macroscopic scale, emerges and where such a length explicitly affects the thermody-
namic properties and phase behavior. There are numerous topics to be considered in mesoscale
thermodynamics (equilibrium and nonequilibrium): finite-size and confined systems, fluctua-
tions, wetting and adsorption, interfacial phenomena, microphase separation and nucleation,
molecular self-assembly, self-organized criticality, and mesoscale dissipative structures. It would
be unrealistic to expect from an introductory-level book to address all or even most of them.
Each of these topics deserves a special monograph. Instead, this book emphasizes two major
universal features (described in Part I) that must be introduced into the traditional thermodynamic
framework in order to address mesoscopic phenomena. These features are fluctuations and local
(spatially dependent) properties. To make the text self-sufficient for the readers, Part I also includes
a summary of classical equilibrium and nonequilibrium thermodynamics (Chapter 2). Chapter 2
serves as an important background and guide to the core material of the book, but cannot
substitute a comprehensive textbook on thermodynamics. In Part II, a universal thermodynamic
approach to meso-heterogeneous systems is specified through examples, which are relevant to
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modern research and engineering practice. Most examples deal with meso-heterogeneous fluid
systems. Each chapter in both parts is supplemented by exercises.

The readers are assumed to have an undergraduate background in thermodynamics, calculus,
physics, and chemistry. Acquaintance with statistical mechanics would be useful, but is not
required for comprehension of the material. All chapters include references to textbooks, mono-
graphs, and journal research articles for further, more advanced reading. Although the description
of the topics is self-sufficient within the book, a supplementary conventional undergraduate text
on thermodynamics would be useful, especially in solving the problems provided at the end of
each chapter.

We are grateful to our colleague and collaborator Jan V. Sengers, Distinguished University
Professor Emeritus at the University of Maryland, for fruitful discussions and his valuable
comments on this text prior to publication. M.A.A. appreciates important contributions from his
colleagues, collaborators, and former students, especially Christopher E. Bertrand (PhD, 2010),
who helped in clarifying a number of issues addressed in this book.

College Park, MD
December 2023

Mikhail A. Anisimov and Thomas J. Longo
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Notations, Acronyms, and Units

General Notations

Symbols Designates (units)

 surface area (m2)
At total Helmholtz energy (J)
A = At∕n or At∕N Helmholtz energy per mole or per molecule (J/mol)
A0, B0, Γ0, D0, 𝜉0, 𝜎0 asymptotic critical amplitudes of weak susceptibility, spontaneous order parameter,

strong susceptibility, ordering field, correlation length, and surface tension,
respectively

a and b van der Waals constants (J ⋅ m3∕mol2) and (m3∕mol)
a0, b0, u0, e0, g0 coefficients of the Landau expansion in the meanfield theory of phase transitions
ai monomer random step (vector)
B second virial coefficient (m3∕mol)
b̃ mobility of a Brownian particle (m2 ⋅ K/s ⋅ J)
c molar concentration (mol/L); also, speed of light (m/s)
c0 gradient-term coefficient in the Landau-Ginzburg functional
C third virial coefficient (m3∕mol2)
CP isobaric molar or molecular heat capacity (J/mol ⋅ K)
CV isochoric molar or molecular heat capacity (J/mol ⋅ K)
C(r) spatial correlation function
C(t) temporal correlation function
D mutual diffusion coefficient in a binary solution (m2∕s)
DT thermal diffusion coefficient (m2∕s)
d number of dimensions (dimensionality) of space
Et total energy (J)
Ek kinetic energy (J)
Ep potential energy (J)
F force (vector) (N)
Gt total Gibbs energy (J)
G = Gt∕n or Gt∕N Gibbs energy per mole or per molecule (J/mol)
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g = |g| free-fall acceleration (m/s2)
Ht total enthalpy (J)
H = Ht∕n or Ht∕N enthalpy per mole or per molecule (J/K)
h magnetic field (vector) (A/m)
h generalized field variable
ℏ reduced (by 2𝜋) Planck’s constant

(1.0546 × 10−34 J ⋅ s)
jD mutual diffusion flux (mol/m2 ⋅ s)
jQ heat flux (J/m2 ⋅ s)
0 Krichevskiı̆ parameter
 generalized Krichevskiı̆ parameter
K reaction equilibrium constant
kB = R∕NA Boltzmann’s constant per molecule (1.38 × 10−23 J/K)
kP baro-diffusion ratio
kT thermo-diffusion ratio
𝓁 length (m)
M magnetization (vector) (A/m)
Mw molecular weight (g/mol)
m mass (kg)
n number of moles
ni number of moles for species i
N = nNA number of molecules
NA Avogadro’s number

(6.02 × 1023 molecules per mole)
Ni = niNA number of molecules for species i
 degree of polymerization
n𝜆 refractive index
NG Ginzburg number
P pressure (Pa; J/m3; N/m2)
pr probability
Q heat (J)
Qij components of a tensor order parameter
q wave number (vector) (m−1)
R gas constant (8.314 J/mol ⋅ K)
Rg radius of gyration (m)
Rh hydrodynamic radius of a Brownian particle
r distance
r average intermolecular distance
r0 molecular radius
St total entropy (J/K)
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S = St∕n or St∕N entropy per mole or per molecule (J/K)
T temperature (K)
t time
Ut total Internal energy (J)
U = Ut∕n or Ut∕N internal energy per mole or per molecule (J/K)
u = |u| velocity (speed) (m/s)
us thermodynamic speed of sound (m/s)
Vt total volume (m3)
V = Vt∕n (or V = Vt∕N) volume per mole or per molecule (m3)
W work (J)
w probability density
x ≡ x2 mole or molecular fraction of solute

in a binary mixture
xi mole or molecular fraction of species i
y effective “activity” of species
z vertical coordinate
zn molecular coordination number
z𝜏 dynamic critical exponent

Greek Notations

𝛼P isobaric or volumetric expansivity (K−1)
𝛼H Joule–Thompson coefficient (K/Pa)
𝛼s sound attenuation (m−1)
𝛼, 𝛽, 𝛾 , 𝛿, 𝜈, 𝜗, 𝜂 critical exponents of weak susceptibility, spontaneous order parameter, strong

susceptibility, ordering field, correlation length, surface tension, and correlation
function, respectively

𝛼̌ Onsager’s molar transport coefficient (mol/[m ⋅ s ⋅ J])
𝛽 Onsager’s cross transport coefficient (mol/[m ⋅ s ⋅ K])
𝛾̌ Onsager’s heat transport coefficient (J/[m ⋅ s ⋅ K])
𝛾i activity coefficient of species i
𝛿 Reaction kinetic coefficient (mol/[m3 ⋅ s ⋅ J])
𝛿′ Tolman’s length (m)
𝜀 dielectric constant
𝜖 energy of intermolecular interactions (J)
𝜁 bulk viscosity (Pa ⋅ s)
𝜁 interfacial thickness (m); also, extent of reaction
𝜂̃ dynamic shear viscosity (Pa ⋅ s)
𝜃 scattering angle
Θ Theta (Flory) temperature
𝜅 thermal conductivity (J/m ⋅ s ⋅ K)
𝜅T isothermal compressibility (Pa−1)
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𝜅Π osmotic compressibility (Pa−1)
𝜆 wavelength (m); also, a coupling constant
𝜆s sound wavelength (m)
𝜇 chemical potential of a pure substance (J/mol), equal to the Gibbs energy per

molecule G in a single-component system
𝜇cxc chemical potential along phase coexistence (J/mol)
𝜇0 chemical potential in zero-field (𝜇0 = 𝜇cxc for fluids for T < Tc)
𝜇i chemical potential of species i (J/mol)
𝜇21 = 𝜇2 − 𝜇1 exchange chemical potential (J/mol)
𝜉 correlation length of order-parameter fluctuations (m)
𝜉𝜓 de Gennes correlation length of polymer-chain fluctuations (m)
Π osmotic pressure (Pa)
𝜌 = n∕Vt or N∕Vt molecular or molar density (mol/m3)
𝜌i = 𝜌xi partial molar density (molar concentration)

of species i (mol/m3)
𝜌A = At∕Vt density of Helmholtz energy (J/m3)
𝜌S = St∕Vt density of entropy (J/m3 ⋅ K)
𝜎 surface tension (J/m2;N/m)
𝜏 relaxation time (s)
𝜐0 volume of a molecule (m3)
𝜙i volume fraction of species i
𝜙 ≡ 𝜙2 volume fraction of polymers in a polymer solution
𝜑 order parameter; generalized density
𝜑0 spontaneous order parameter (in zero ordering field)
𝜒̂ generalized dimensionless susceptibility
𝜒̂1 strong scaling susceptibility
𝜒̂2 weak scaling susceptibility
𝜒̂12 cross scaling susceptibility
𝝍 de Gennes polymer-chain order parameter (vector)
𝜓 critical exponent of shear viscosity
𝜛 Flory interaction parameter
Ωt = −PVt grand thermodynamic potential (J)

Special Notations

● In subscripts and superscripts: roman fonts indicate words, while italicized fonts indicate vari-
ables or functions.

● Circumflex (as in 𝜇̂) designates reduced (dimensionless) thermodynamic properties.
● The inverted circumflex (as in 𝛼̌) is used for Onsager transport coefficients.
● Over bar (as in N) designates average equilibrium properties
● Subscript c (as in Tc) designates critical parameters.
● Superscript ∘ (as in 𝜇∘1) designates a reference state.
● Bold (as in h or r) designate vectors.
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● Variation 𝛿 (as in 𝛿𝜌) designates fluctuation or variation.
● Total differential d and partial differential 𝜕 indicate derivatives.
● Differential with a bar d (as in dW) designates an inexact differential quantity of work or heat.
● Symbol Δ (as in ΔU) designates a property change or excess (as in ΔCV ).
● Symbol Å designates angstrom (1Å = 0.1 nm = 10−10 m).
● Brackets <> (as in ⟨𝛿𝜌⟩) designate statistical average of fluctuations or variations.
● The summation symbol,

∑
, assumes a summation over the index i, such as in

∑
𝜇iNi.

● The symbol ∼ indicates “scales as” or “order of,” the symbol ≈ indicates an approximate value,
while the symbol ≅ indicates a rounded quantity.

Acronyms

nOm 4-n-alkyloxyphenyl-4′-n-alkyloxybenzoates (n and m are the number of carbon atoms in
the alkyl groups)

6O6NO2 4-n-hexyloxyphenyl-4′-n-hexyloxynitrobenzoate
BMOAB 4-n-butyl-4′-methoxyazoxybenzene
CHX cyclohexane
CMC critical micelle concentration
CP critical point
DAG dysprosium aluminum garnet
DCP double critical point
DDAB didodecyldimethylammonium bromide
DLS dynamic light scattering
EOS equation of state
Freon-113 trichlorotrifluoroethane
HLM Halperin–Lubensky–Ma
LGCL liquid–gas critical line (locus)
LLCL liquid–liquid critical line (locus)
LGCP liquid–gas critical point
LLCP liquid–liquid critical point
LCEP lower critical end point
LP Lifshitz point
MBBA 4-methoxybenzylidene-4′-n-butylaniline
MC Monte Carlo
MD molecular dynamics
MFCP meanfield critical point
NAC nematic-smectic A-smectic C multicritical point
PBMA poly(butyl methacrylate)
PEO polyethylene oxide
PMMA polymethylmethacrylate
PS polystyrene
RG renormalization group
RMS root mean squared
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SANS small-angle neutron scattering
SAXS small-angle X-ray scattering
SLS static light scattering
SmA, SmC smectic A, smectic C
S,S-MBBPC S,S-(+)-4′′-(methylbutyl) phenyl-4′-(methylbutyl) biphenyl carboxylate
TBA tertiary butanol
TCP tricritical point
TP triple point
UCEP upper critical end point
VDW van der Waals

Greek Alphabet

A 𝛼 alpha N 𝜈 nu
B 𝛽 beta Ξ 𝜉 xi
Γ 𝛾 gamma O o omicron
Δ 𝛿 delta Π 𝜋 pi
E 𝜖 epsilon P 𝜌 rho
Z 𝜁 zeta Σ 𝜎 sigma
H 𝜂 eta T 𝜏 tau
Θ 𝜃 theta Υ 𝜐 upsilon
I 𝜄 iota Φ 𝜙 phi
K 𝜅 kappa X 𝜒 chi
Λ 𝜆 lambda Ψ 𝜓 psi
M 𝜇 mu Ω 𝜔 omega

Expansions of Basic Functions

1
1 ± x

= 1 ∓ x + x2 ± x3 + · · ·

e±x = 1 ± x + 1
2!

x2 ± 1
3!

x3 + · · ·

ln(1 ± x) = ±x − 1
2

x2 ± 1
3

x3 − 1
4

x4 …

sin x = x − 1
3!

x3 + 1
5!

x5 …

cos x = 1 − 1
2!

x2 + 1
4!

x4 …

tan x = x + 1
3

x3 + 1
15

x5 + · · ·

tanh x = x − 1
3

x3 + 2
15

x5 + · · ·
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Out of Intense Complexities, Intense Simplicities Emerge
– Winston Churchill
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Part I

Thermodynamic Approach to Meso-Heterogeneous Systems





3

1

Macro, Meso, Micro

This chapter includes:

● Definition of “mesoscale”
● Definition of “meso-thermodynamics”
● Typical objects of meso-thermodynamics
● Probing mesoscales by scattering techniques

1.1 Thinner than a Hair

One can roughly consider a length scale less than 10 μm (10,000 nm) and larger than 1 nm as
mesoscopic. This is a huge range. The upper boundary is about 10 times smaller than the thickness
of a human hair (Figure 1.1), and, usually, one needs a microscope, optical or electronic, to see
objects smaller than that.

Below one micron, one enters a sub-micron world. A size between 1 and 100 nm can also be
defined as nanoscopic. It should be noted that any classification is conditional and circumstantial:
sometimes “thinner-than-a-hair” objects can be treated macroscopically, while some macroscopic
objects, like polymer solutions or complex fluids, may require a mesoscopic approach.

A natural atomistic length scale is 1 Å = 0.1 nm. This is (approximately) the size of a hydrogen
atom and the length of a carbon–carbon covalent bond. Whatever happens at the atomistic scale
will be dominated by the material’s intramolecular structure and by the details of the intermolecu-
lar interactions. Phenomena at the atomistic scale cannot be treated by thermodynamics. Yet, how
could one describe a single polymer molecule which consists of millions of carbon–carbon bonds?
Is this a thermodynamic system?

The principal question arises: is traditional (macro-scale) thermodynamics sufficient enough
to describe mesoscale systems? Can one apply, without restriction, the laws and equations of
classical thermodynamics to calculate the chemical reaction equilibria and design a micro-reactor,
which is only 100 nm thick, or to describe a transition between the alternative structures of a
protein molecule? What would be the definition of a “phase” in such systems? All biological cells
are natural micro-reactors. Can we still use the concepts of chemical potential, osmotic pressure,
surface tension, etc. for such objects? A microchip can contain only hundreds of atoms. What is the
limiting size for which thermodynamics is still applicable? In a micro-porous medium, not only
does the surface energy dominate over the bulk energy, but also the surface itself may be poorly
defined. Is there still room for thermodynamics, beyond the trivial mass and energy balances?

Mesoscopic Thermodynamics for Scientists and Engineers, First Edition. Mikhail A. Anisimov and Thomas J. Longo.
© 2024 John Wiley & Sons, Inc. Published 2024 by John Wiley & Sons, Inc.



4 1 Macro, Meso, Micro

Figure 1.1 Electron microscopy image of
polystyrene particles (3.4 μm diameter) on a
human hair (Courtesy of Spherotech, Inc.).
The hair (with a thickness of about 100 μm)
can still be considered as a macroscopic
object in most applications, while the
polystyrene particles are mesoscopic.

1.2 Where Does the Size Matter?

Classical thermodynamics is essentially macroscopic. To define thermodynamic states and ther-
modynamic properties, one needs systems with a huge number of individual particles, such as
atoms or molecules [1, 2]. Statistical mechanics defines thermodynamic states and properties only
in the so-called “thermodynamic limit”, where the total volume (Vt) and the number of particles
(N) must tend to infinity, while the molecular number density of the substance, 𝜌 = N∕Vt, remains
finite. Even a cubic millimeter of liquid water (1 mg) contains 3 × 1019 molecules. It is sufficient
to regard such a small droplet of water as a macroscopic body and neglect the surface effects in
considering its bulk properties. If the characteristic size of the object is 𝓁, the surface energy is
proportional to 𝓁2, while the bulk energy is proportional to 𝓁3. This is why one can measure the
temperature of steam condensation as well as the vapor pressure in a small tube, and use these data
in the design of an upscale distillation column, taller than 100 m.

Macroscopic thermodynamics eliminates the size of the system by reducing the extensive
thermodynamic properties (which depend on size) by the number of particles, the number of
kilograms, or the volume. Equations of thermodynamics usually operate with intensive properties,
such as density, concentration, molar or specific volume, etc., which do not depend on the size. The
actual length scale is restored only in the final stage of engineering design. The equations of state
implicitly depend on atomistic length scales, the molecular size, and the range of intermolecular
interactions. However, since these microscopic characteristics are integrated over a huge number of
molecules, the parameters of common equations of state (EOS) are independent of the length scale.

There are at least three categories of popular objects in which macro-scale size-independent ther-
modynamics may breakdown:

1. Soft condensed-matter materials, such as complex fluids (polymer solutions and melts,
micro-emulsions, gels, and liquid crystals) [3–15]. Most food and cosmetics are soft matter [16].
Humans (like other living organisms) are “soft-matter machines.” All soft-matter materi-
als, even being themselves macroscopic, have some kind of mesoscopic structure which is
characterized by the existence of one or more mesoscales.

2. Systems that are essentially finite (practically speaking, sub-micron or nano-size) in one or more
dimensions [17–19]. Examples include nanoparticles (if the particle is considered as a sepa-
rate system), pores, films and layers, fibers, and threads. Meso-heterogeneous interfaces with
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a thickness from 1 nm to microns also belong to this category. Sometimes such systems can
be truly microscopic in a certain dimension, and they should thus be treated as two- or even
one-dimensional objects. Here, the size really matters!

3. Systems in a near-critical state (i.e. in the vicinity of a critical point or a second-order
phase-transition) [20–28]. Such systems are mesoscopically inhomogeneous as a result of
strong thermal fluctuations. The mesoscopic length scale associated with these fluctuations is
known as the “correlation length.”

1.3 What Is Meso-Thermodynamics?

Each of these categories has been a subject of extensive experimental and theoretical investiga-
tions for the last 50 or more years. Thermodynamics of adsorption [29], wetting transitions [30],
micro-phase separation in polymers [31], gelation [32, 33], and phase equilibria in confined flu-
ids [34, 35] are just a few examples. Computer simulations of mesoscale systems become increas-
ingly informative (see, for example, Refs. [36–41]). The existence and dominant role of mesoscale
inhomogeneities is a common feature of all the systems mentioned above.

Mesoscopic thermodynamics (or in short, “meso-thermodynamics”) can be defined as a
semi-phenomenological approach to systems and phenomena in which a length, intermediate
between the atomic scale and the macroscopic scale, emerges and where such a length explicitly
affects the thermodynamic properties [42]. This science is still thermodynamics, as its objects are
still governed by statistical mechanics but, in contrast to “macro-thermodynamics,” it explicitly
contains a mesoscopic length scale associated either with the structure of materials or with
the actual finite size. Many ideas and concepts of mesoscopic thermodynamics were developed
and explored in colloid and interface science long ago [42–44]. However, only more recently, a
high degree of universality (and thus “simplicity”), originating from the very existence of the
mesoscopic length scale, has been fully recognized.

Meso-thermodynamics also includes thermal fluctuations – spontaneous deviations from aver-
age (equilibrium) properties, assigned by thermodynamics. Fluctuations emerge in the apparent
“violation” of the second law of thermodynamics. A famous astrophysicist Sir Arthur Eddington
wrote: “… if your theory is found to be against the second law of thermodynamics I can offer you
no hope…” [45]. However, the existence of fluctuations just demonstrates the statistical meaning
of the second law. In fact, the statement of Sir Eddington is unconditionally correct only in the
thermodynamic limit (for an infinite number of molecules).

Representation of a micro-heterogeneous system as an “ensemble” of small open systems was
introduced and elaborated by Hill [46, 47]. This approach is important for small systems, where
the surface energy plays a significant role and for the analysis of computer simulations that usually
involve a relatively small number of molecules. In this book, we provide a different approach to
unify the description of mesoscopic phenomena. This approach is based on the concept of a “local”
coordinate-dependent free energy, known as the “Landau–Ginzburg functional” [1, 2], allowing
for the unified treatment of “apparently” physically different mesoscopic heterogeneous systems,
whose properties depend on an appropriate mesoscopic length scale.

The approach to introduce a mesoscale in thermodynamic properties goes back to van der
Waals [48] and is sometimes referred to as “quasi-thermodynamics,” “local thermodynamics,” or
“point-thermodynamics” [49]. This approach was generalized by Landau and Lifshitz [1, 2, 50]
and was later elaborated for fluid interfaces by Cahn and Hilliard [51] and by Rowlinson and
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(a) (b)

Figure 1.2 Two founders of mesoscopic thermodynamics: Johannes Diderik van der Waals (a) and Lev
Davydovich Landau (b), see more information in the footnote. Source: Unknown author/Wikimedia
Commons/Public Domain.

Widom [49]. Arguably, van der Waals and Landau (see Figure 1.2) may be viewed as the fathers of
this branch of thermodynamics.1

A theory elaborating toward the microscopic description of condensed-matter systems is referred
to as “density functional theory” (DFT) [52]. Unlike the microscopic description provided by
DFT, the approach adopted in this book is semi-phenomenological, addressing the microscopic
complexity through a few mesoscopic parameters (e.g. the correlation length). In short, the
motto of this book is “finding simplicity in complexity.” Typical models of meso-thermodynamics
are coarse-grained models that do not have to account for every detail on the atomistic scale.
Instead, such models emphasize universality. For example, the behavior of polymer solutions is
basically determined not by a particular structure of the monomer units but by the fact that the
polymer molecule is often a long, flexible curve in three-dimensional space. Another example
is the near-critical state. The origin of critical-point universality lies in long-range correlations
that involve a large number of molecules, so that the details of direct intermolecular interactions
become unimportant.

In many cases, more than one mesoscale determines the properties of meso-heterogeneous sys-
tems. One of the mesoscales could be an instrumental scale, such as the wavelength of radiation,
or the actual finite-size scale, such as the radius of a droplet. Another one could be inherent to the
meso-heterogeneous structure, such as the size of a polymer molecule or the correlation length
of density fluctuations. A competition of these mesoscales, which may produce new phenomena
and modify the thermodynamic properties, can also be treated within the universal framework of
meso-thermodynamics [42].

1 Van der Waals (1827–1923) was a Dutch physicist who won a Nobel Prize in 1910 for his work on equations of
state for fluids. Landau (1908–1968) was a Soviet physicist who won a Nobel Prize in 1962 for his pioneering
theoretical works on condensed matter, in particular, for the classical theory of phase transitions.


