
Carlo Dindorf
Eva Bartaguiz
Freya Gassmann
Michael Fröhlich   Editors

Artificial 
Intelligence 
in Sports, 
Movement, and 
Health



Artificial Intelligence in Sports, Movement, 
and Health



Carlo Dindorf · Eva Bartaguiz · Freya Gassmann · 
Michael Fröhlich 
Editors 

Artificial Intelligence 
in Sports, Movement, 
and Health



Editors 
Carlo Dindorf 
Department of Sports Science 
University of Kaiserslautern-Landau 
Kaiserslautern, Rheinland-Pfalz, Germany 

Freya Gassmann 
Methods of Empirical Social Research 
University of Kaiserslautern-Landau 
Kaiserslautern, Rheinland-Pfalz, Germany 

Eva Bartaguiz 
Department of Sports Science 
University of Kaiserslautern-Landau 
Kaiserslautern, Rheinland-Pfalz, Germany 

Michael Fröhlich 
Department of Sports Science 
University of Kaiserslautern-Landau 
Kaiserslautern, Rheinland-Pfalz, Germany 

ISBN 978-3-031-67255-2 ISBN 978-3-031-67256-9 (eBook) 
https://doi.org/10.1007/978-3-031-67256-9 

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature 
Switzerland AG 2024 

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether 
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse 
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and 
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar 
or dissimilar methodology now known or hereafter developed. 
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use. 
The publisher, the authors and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or 
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any 
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations. 

This Springer imprint is published by the registered company Springer Nature Switzerland AG 
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland 

If disposing of this product, please recycle the paper.

https://doi.org/10.1007/978-3-031-67256-9


Editorial 

Artificial Intelligence (AI) is driving revolutionary advancements and is transforming 
the landscape in sports, movement, and health. Rapid advancements are continuously 
reshaping these domains. As we embark on this journey, we recognize that while 
this book offers a snapshot of significant AI applications, the evolving nature of 
technology ensures that new breakthroughs will continually emerge beyond what 
we currently grasp. With this book, we aim to empower readers with knowledge and 
enhance the understanding of the transformative potential of AI in sports, movement, 
and health. 

To begin our exploration, we delve into the broader realm of Digital Transfor-
mations: AI’s Role in Sports Science. We commence with Lenhard (Chap. 1), who 
investigates the profound impact of AI on sports science. His work delves into its role 
in digitization and mathematization while also pondering the philosophical implica-
tions inherent in this transformation. Furthermore, Lenhard unravels the effects AI 
has on scientific practices within the field. Next, Latzel and Glauner (Chap. 2) shed 
light on the future of academic writing empowered by AI. Their inquiry explores 
how AI is reshaping research and writing across various disciplines, focusing on 
sports science. Our discourse concludes with Menges (Chap. 3), who examines the 
application of AI in endurance sports. She showcases how AI-driven technologies 
are revolutionizing training and how AI assists coaches and athletes in decision-
making processes beyond training, encompassing elements such as race selection 
and strategy formulation. 

AI has the power to enhance medical and health-related aspects in sports contexts, 
which we want to focus on in the part AI in Medical and Health Aspects of Sports. 
It is important to note that the focus of this part is not on general applications in the 
healthcare sector, which encompasses a myriad of other works. Instead, within the 
scope of this book, the focus is on movement-related health aspects, which signifi-
cantly intersect with sports science. Kemmler (Chap. 4) starts the part by exploring 
cutting-edge fall prevention strategies and how AI-based fall technology revolution-
izes fall prevention for older adults. Find out how sensor-based AI concepts enhance 
safety and effectiveness in training, even in unsupervised settings. This is followed by
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Owen, Owen, and Evan’s (Chap. 5) chapter, showcasing the future of injury preven-
tion through the lens of AI technology. It is presented how AI not only enhances 
prediction accuracy but also enriches our comprehension of the multifaceted factors 
influencing sports-related injuries. Afterward, we want to have a look at doping in 
sports, a persistent issue that involves the misuse of prohibited substances to boost 
performance. In this context, the paper of Rahman and Maass (Chap. 6) explores the 
use of generative modeling to create synthetic blood sample data, aiming to enhance 
anti-doping analysis. A method is proposed not only for data augmentation but also 
to address ethical concerns regarding athletes’ biological data. 

After examining medical and health implications of AI, our attention turns to 
the realm of Human-Computer Interaction (HCI). Speicher and Berndt (Chap. 7) 
illuminate HCI’s crucial role, offering insights into how AI influences athletic perfor-
mance, injury management, and healthcare. They advocate for integrating human-
centered design principles to elevate user engagement and outcomes in the evolving 
field. Subsequently, Gillmann (Chap. 8) describes the significance of comprehending 
and visually representing uncertainty in sporting data. She provides an overview of 
how uncertainty-aware visualization can contribute to enhancing the reliability and 
decision-making process of Machine Learning (ML) predictions in sports. 

Transitioning, the discourse shifts towards Motion Capture and Feedback 
Systems. Stetter and Stein (Chap. 9) focus on the applications of ML for biome-
chanical analysis of human movements and the associated challenges. They show 
how the three major ML paradigms supervised, unsupervised, and reinforcement 
learning are used in biomechanics and how ML can support the understanding of 
human movements. Baldinger, Lippmann, and Senner (Chap. 10) give an overview 
of current technologies and applications focusing on markerless motion capture tech-
nologies. Furthermore, they complement this with findings from their studies on the 
validity of the technologies and conclude the main challenges for future research. 

Through Practical Examples of Machine Learning and Predictive Analytics, 
the final part showcases how AI is reshaping the future of sports and unlocking new 
realms of performance optimization and strategic insights. Vives, Lázaro, Guzmán, 
Crespo, and Martínez-Gallego (Chap. 11) explore the recent evolution of ML tech-
niques and their potential impact on tennis performance analysis, including a practical 
example showcasing predictive modeling results, leveraging new technologies like 
Hawk-Eye and tracking systems. The discussion then transitions to another perspec-
tive on tennis by Randrianasolo (Chap. 12), which focuses on how sports predictions 
can be revolutionized with convolutional neural networks. This is exemplified by 
forecasting outcomes without the need for extensive historical data, as demonstrated 
with Men Euro 2020 and Women US Open 2021. 

Smyth, Feely, Berndsen, Caulfield, and Lawlor (Chap. 13) explore how ML 
can enhance recreational marathon running through personalized training insights 
and race support by mobile devices and wearable sensors. Barbon Junior, Moura, 
and da Silva Torres (Chap. 14) continue delving into the potential of data-driven 
methodologies in soccer analysis, outlining a systematic pipeline for automating 
data collection, transformation, and analysis, offering insights into player interac-
tions and performance optimization through AI. Finally, McAuley, Baker, Johnston,



Editorial vii

and Kelly (Chap. 15) offer an overview of contemporary research utilizing AI to inter-
pret large datasets in talent identification and development processes within youth 
sport contexts, outlining the potential of AI to enhance recruitment strategies and 
highlighting key strengths, weaknesses, opportunities, and threats in this evolving 
field. 

In light of the diverse contributions presented in this book, we have amassed a 
rich collection of insights, practical applications, and perspectives poised to trans-
form the realms of sports, movement, and health. However, as we stand at this 
juncture of exploration and innovation, it is crucial to acknowledge that our under-
standing is merely a snapshot of the immense potential AI holds for these domains. 
The evolving nature of technology ensures that new breakthroughs will continually 
emerge, pushing the boundaries of what we currently grasp. 

As we reflect on the book’s content, it becomes evident that the research 
approaches and practical implementations showcased within these pages mark just 
the beginning. The real-world impact of AI on sports, movement, and health is yet 
to unfold fully. The true test lies not only in the ingenuity of AI-driven solutions but 
also in their integration into everyday practices and established knowledge. The gap 
between theory, science, and practical application must be bridged to realize the full 
potential of these technologies. 

We hope to have given our readers a first insight into the large field of AI in sports, 
movement, and health. Let us remain curious and attentive to how the future of AI 
technology will develop in the sectors and to what extent the research approaches 
described will be put into practice. 

July 2024 Carlo Dindorf 
Eva Bartaguiz 

Freya Gassmann 
Michael Fröhlich
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Part I 
Digital Transformations: Artificial 
Intelligences Role in Sports Science



Chapter 1 
Situating Sports Science 
in the Movement of Digitization 

Johannes Lenhard 

Abstract This chapter reflects upon how Artificial Intelligence (AI) in sports science 
is situated in the broader movement of digitization, which in turn takes a special 
place in mathematization. It addresses the question: If a field is getting into AI, what 
impact will this potentially have from a philosophical point of view? It argues that 
epistemic opacity is part-and-parcel of digitization and, all the more, of AI. This 
makes prediction an even more important criterion for scientific success, whereas 
the capability for explanation is seriously diminished. Finally, the chapter explores 
how the use of software leads to a new social organization of science. 

Keywords Sport Science · Simulation Modeling · Epistemology ·
Mathematization · Digitization 

1.1 Introduction 

Today, digitization is predominantly discussed in terms of Artificial Intelligence 
(AI). This chapter will take a step back and reflect upon how AI in sports science is 
situated in the broader movement of digitization, which in turn takes a special place 
in mathematization. This chapter does not aim at providing an overview of current 
or future applications of AI in sports science. Other contributions to this book do this 
in a competent manner. Nor will it act as a philosophical naysayer—asking whether 
AI is “new dawn or false hope” is topical in the literature (for sports science, see 
Bartlett, 2006). Rather, the text that follows explores the question: If a field—sports 
science or any other—is getting into AI, what impact will this potentially have? 

The label AI is older than recent Machine Learning (ML) methods. When the 
label was coined in 1956 at a meeting in Dartmouth, it should mainly avoid any 
association with the then popular term of cybernetics, as John McCarthy, one of the 
meeting organizers, reminded later (1988). In the 1950s, poponents of AI believed

J. Lenhard (B) 
Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau (RPTU), Kaiserslautern, 
Germany 
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4 J. Lenhard

that following explicit rules is the key to intelligence. And since the digital computer 
is a machine that can process such rules with ease and speed, AI was expected 
to overtake human intelligence in foreseeable time. It was a hard-won lesson that 
AI did not meet these expectations. Even chess computers, although the game is 
completely defined by formal rules, had somewhat limited success. When Deep 
Blue finally won against Kasparov, the long-term world champion, this was based 
not on a deeper analysis of moves, but on the large database of existing games fed 
into the machine. Attempts to master language, like generating a translation, proved 
to be a nut too hard to crack, mainly because language use persistently escaped a 
fully formalized grammar. To make a long story short, the optimism reversed and 
led to the “AI winter” of the 1980s. Actually, one can discern a first (late 1970s) 
and a second AI winter (late 1980s to early 1990s); for highly accessible accounts 
see Crevier (1993) or the entry “History of artificial intelligence” in Wikipedia. The 
field of AI re-oriented itself. A leading strand in the 1990s took acting in the world 
as the leading criterion that characterized intelligent behavior—fetching a cup of 
coffee without spilling it, rather than playing chess. This robotic turn produced new 
accounts of what characterizes intelligence, in connection with new visions of what 
AI is––or ought to become, see Pfeifer and Scheier (2001), or Brooks (2002), among 
others. 

However, while the robotic turn amounts to a modest niche for AI, the recent hype 
is more expansive and has been called the second wave of AI, rising for more than 
a decade now. The first wave of symbolic AI was oriented at symbolic rules—the 
philosopher Haugeland (1985) labeled this approach as “good old-fashioned AI” 
—GOFAI. Based on this term, Smith (2019) makes a thoughtful distinction between 
first wave (GOFAI) and second wave (connectionist, neural network) AI. Alien to 
the logical-symbolic standpoint, and almost contradictory to it, the current second 
wave is fueled by statistical approaches, with Deep Neural Networks as the paradigm 
example. Now, knowledge about rules does not count as essential. On the contrary, 
gaps in such knowledge, even gaping craters, are compensated for by statistical 
analyses of extensive datasets. In short, one can connect the second wave of AI to a 
data turn. 

A series of popular and astonishing success stories supports the second wave. Very 
likely, every reader knows how ML jumped from chess to Go with ease (showing the 
power of neural networks). Image classification made a big splash and most recently, 
Large Language Models (LLMs) exhibit proficiency in translating texts that was not 
anticipated by AI nor linguistic experts. Moreover, LLMs like ChatGPT (by the US 
company OpenAI), or other generative networks even increase the frenzy because 
many people find uses for a machine that generates text and, additionally, interfaces 
to these machines are readily available to all internet users (which does not mean 
that they come free of cost). 

All these examples have in common that the rules (for classification, for language) 
are not explicitly modeled, but implicitly defined. What makes a bird look like a 
blackbird is what the images labeled with blackbird have in common—in contrast 
to what the images labeled differently (the non-blackbirds) have “in common”. The 
same applies to language. The rules of grammar are by and large skipped. Instead, the
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machine produces sentences that are similar to sentences in the database (of course, 
the notion of similarity is far from trivial). A human translator would proceed very 
differently, or more precisely, would describe what he or she does very differently: 
translate words, know the grammar, consider phrasing etc. The ML method just 
assumes that existing translations somehow entail all this knowledge. 

In short, ML makes statistical evaluation of large datasets feasible and, if one has 
enough data, ML arrives at surprisingly good results. Recent experience with LLMs 
like ChatGPT makes the case. The universal key then is data from the domain of 
interest, not knowledge in the sense of having a good model of what happens in this 
domain. 

But wait a moment. The universality of AI (working with Deep Neural Networks) 
arises from the flexibility of these networks. Mathematically speaking, learning for 
these networks means to adjust a function that matches input–output behavior. With 
expensive computing equipment, such as employed by LLMs, literally billions of 
parameters are adjusted. To do this in a meaningful way, extremely large amounts 
of data are needed, like the 14 million hand-annotated images on ImageNet, or the 
vast libraries of text compiled by OpenAI (in a completely non-open way). Thus, the 
data turn in AI is not only a revelation of how rich implicit knowledge contained in 
data might be, at the same time, data present a new bottleneck. 

Availability and quality of data replace knowledge about rules as the bottleneck. 
The question is, which fields have adequate data available? There is no formal rule of 
how many one needs. Optimism reigns and speaking about “exciting possibilities” has 
become topical for many publications (see, for instance, Torgler, 2020). However, it is 
not straightforward to distinguish enthusiastic promises from scientific achievements. 
For instance, Perl noted that in actual practice sufficiently many data are almost never 
available (Perl 2009, 33). 

To the extent that data are the key (other than complicated theories), and that tools 
for analysis are accessible through software packages, the AI movement is attractive 
for science and commerce alike. Sports science is a case in point. For instance, 
Dindorf et al. (2023) warn that scientific research should hurry up to not lag behind 
commercial application. It is a widespread belief that AI in sports science is driven by 
commercial application at least as much as by (scientific) modeling. Overviews like 
that of Chmait and Westerbeek (2021) take  Moneyball (Lewis, 2003) as the starting 
point for AI in sports science because it provides a striking and impactful example 
of how to create data and (commercially) use them. 

The following text has three parts. Section 1.2 locates AI in the context of digi-
tization and in the broader history of mathematization. It starts with the famous 
book-of-nature verdict by Galileo and suggests that ML indicates a profound turn 
in mathematization. Section 1.3 concentrates on epistemology and argues that epis-
temic opacity is part-and-parcel of digitization and, all the more, of AI. This makes 
prediction an even more important criterion for scientific success, whereas the capa-
bility for explanation is seriously diminished. The final Sect. 1.4 explores how the 
use of software leads to a new social organization of science.
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1.2 Mathematization—Digitization—Artificial Intelligence 

First a paragraph about terminology. The terminology is complicated by the overlap of 
different traditions. AI is dealing with tasks that would count as based on intelligence 
if achieved by a human, like playing chess, finding the route back home, recognizing 
a face, or writing an essay. As was mentioned in the introduction, AI started with 
manipulating logical rules. The recent successes of AI by and large came from Deep 
Learning, i.e., from the use of multilayered Artificial Neural Networks (ANNs). At 
the same time, ML is a label that normally comprises not only these methods, but also 
Random Forests, among others. Thus, both AI and ML sometimes claim ownership 
for Deep Neural Networks. In the following, we ignore these complications and 
assume that AI refers to a set of methods that typically involve the use of multi-layer 
ANNs. 

These can exhibit extremely versatile input–output behavior, depending on the 
setting of their parameters. Mathematically, such networks approximate an unknown 
function—think of image classification that is a map from the set of images into a 
set of labels—with the help of very many adjustable parameters. Current LLMs, 
for instance, work with billions of such parameters. They are true Behemoths of 
approximation that are said to “learn” because the parameter adjustment is a process 
that is guided by a set of training data. The machinery of approximation iteratively 
finds parameter settings that match these data better and better and in this sense the 
model learns from the data. 

A most important observation is that AI does not simply help to solve problems, 
but rather influences how problems are formulated. Simply deploying computers to 
solve existing problems would fail, because the problems are usually not in the right 
form to be tackled by a computer. Thus, the intention of using AI influences how 
researchers perceive and formulate problems. Researchers aim at posing problems 
in a way that makes them amenable to AI. 

This point is not particular to AI, rather applies to using computer methods in 
general. In fact, it generalizes beyond the computer to all sorts of instrumentation. It 
has been part of scientific activity all the time, or better—and even more general— 
part of how humans act. They use instruments and these instruments shape the way 
they see the world and identify solvable problems. A saying of unknown origin 
captures the point: “If the only tool you have is a hammer, it is tempting to treat 
everything as if it were a nail.” (The entry “Law of the instrument” on Wikipedia 
presents a brief selection of possible origins of this saying.) The computer and, most 
recently, Deep Learning, is scientific instrumentation that exerts such influence in a 
particularly strong way. 

If one discerns the objects that populate the world from the instruments that one 
uses to investigate these objects, then the case of AI comprises (at least) two layers. 
Computers are instruments to find out something about how mathematical or formal 
structures behave. But at the same time, one can see mathematical structures as 
instruments to find out something about how objects in the world behave. Thus,
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there are two layers, or two embeddings—AI as part of digitization and digitization 
as part of mathematization. 

A most famous starting point for reasoning about mathematization is Galileo’s 
verdict that the book of nature is written in mathematical symbols. From the 
seventeenth century on, there was a forceful movement in modern science towards 
mathematization, i.e. conceiving of nature in mathematical ways (Mahoney, 1998). 
Galileo’s viewpoint rests on the metaphysical assumption that the world is as it is, 
and that one can find out some of the facts with the help of mathematical methods 
(and maybe in no other way). Importantly, the world is like a book, everything about 
nature is written there. That means, scientists are deciphering the book, not writing it. 
And since mathematical knowledge is the most certain knowledge, the great promise 
of mathematization is that certainty and truth go hand in hand. 

This promise was daring from the start, because it is more grounded in philosoph-
ical belief than in actual power. Mathematical methods require a formal framework, 
usually involving highly idealizing modeling assumptions, whereas in practical appli-
cations many factors contribute and interact. Admittedly, there are prime examples of 
idealizations that work, first of all astronomy and the movement of planets. Newton’s 
achievements maybe created the greatest success story in science, when he showed 
how laws of mechanics and gravitation plus a new mathematical method (calculus) 
could derive the elliptical orbits of the planets in full match with observational data. 
From then on, mathematization was deeply entrenched in the development of science. 
Still today, mathematical methods count as a pivotal indicator of something being 
scientific. Much has changed since the seventeenth century. A most obvious point is 
that computers redefined the arsenal of mathematical instruments. 

Let us concentrate on simulation as a major area of computer instrumentation. 
Basically, we follow the main thesis in Lenhard (2019) that “computer and simulation 
modelingreally do form a new type of mathematical modeling.” (2) Four features 
of simulation modeling together make it a novel type, namely an explorative and 
iterative type of modeling. 

Experimenting. Simulation experiments build a particular class of experiments. 
Usually, experiments are described as seeking an answer from nature. Although the 
question an experiment poses may require extensive theoretical design, like a gigantic 
tunnel full of high-tech equipment under the lake Geneva (CERN), there remains an 
important sense in which experiments are not determined by theory, even if they are 
theory-laden. In the example: does the CERN particle collider register traces of the 
Higgs particle or not? Simulation experiments are different because they evaluate the 
model behavior that results from the assumptions (and the implementation) already 
made. In a way, they question the model-plus-computation part, not nature. Although 
they differ from ordinary experiments, these computer-experiments still deserve to 
be counted as experiments because they seek an answer to a question by observing a 
designed process of open ending. For instance, running a weather model ten times and 
counting how often it rains in Kaiserslautern, in this way determining the so-called 
probability of rain. 

The exploratory variant of experimentation is particularly relevant for simulation 
modeling. Here, the focus is on the process of building a model. Often, the model is
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not only motivated by some theoretical consideration, but by how it behaves. Deep 
Learning is an excellent example. The ANN is controlled by parameter adjustments, 
but the values of these parameters usually do not have a meaning. Their value cannot 
be determined out of theoretical considerations. They are adjusted over the course 
of repeated experiments that explore the model behavior. “Model assumptions with 
effects that are hard or even impossible to survey can be tested, varied, and modified 
by applying iterative experimental procedures. Modeling and experimenting agree to 
engage in an exploratory cooperation. Such cooperation regularly employs artificial 
elements” (Lenhard, 2019, 133). 

Artificial elements. The parameterizations in Deep Learning are a prime example, 
but artificial elements are significant for almost all computational methods. Let me 
replace a full argumentation with an example. If a model is expressed in the language 
of continuous mathematics, it must be discretized before a computer can evaluate 
it. There are various approaches to discretization, all need to be designed so that 
the dynamics of the discrete model closely matches the dynamics of the original 
continuous model. “When controlling the performance of discrete models (i.e., for 
instrumentalist—though unavoidable—reasons), artificial components are included. 
Experiments are necessary to adapt the dynamics of a simulation model, because 
one cannot judge whether these artificial elements are adequate without such exper-
imental loops. This grants simulation modeling an instrumental aspect that blurs the 
representation relation and hence weakens the explanatory power” (ibid., 133). 

Plasticity. “This denotes the high level of adaptability in a simulation model’s 
dynamics. The structural core of such a model is often no more than a schema 
that requires—and allows—further specification before simulating particular patterns 
and phenomena” (ibid., 134). Again, Deep Learning is a prime example. The neural 
network usually is almost completely generic. Whether it can be used for image clas-
sification or language generation essentially depends on the data and the parameter 
assignments over the course of learning, i.e., iterated exploratory experimentation. 
Both structure and specification are necessary to determine the dynamic properties 
of a model. 

Epistemic opacity. “This arises because models are becoming more complex in 
several respects. The course of dynamic events encompasses an enormous number 
of steps, so that the overall result cannot be derived from the structure. Instead, 
it emerges from model assumptions and the parameter assignments chosen during 
runtime. Additionally, important properties of the dynamics result from the specifica-
tions and adaptations made while developing the model. This reveals a fundamental 
difference compared to the traditional concept of mathematical modeling and its 
concern with epistemic transparency” (ibid., 134). The expectation was that formal 
modeling makes graspable what happens in the model and, because the model is 
about the world, what happens in the world. In essence, this is the promise of reading 
the book of nature. With simulation modeling, and more generally computer-based 
modeling, the essential feature of the model is its flexibility. The new promise is that, 
with suitable adaptation machinery, the model can be made to match observed data 
and phenomena. And exactly the adaptation machinery creates opacity.
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These characteristics are not independent of each other, but support and rein-
force each other. Therefore, they are not just a group of features, but form a distinct 
type. Simulation modeling is carried out in an explorative and iterative manner, in a 
process that partly uses and partly compensates for the above-mentioned components 
(opacity). 

Computing instrumentation and the concept of modeling affect each other. One 
direction seems obvious. Mathematical models support the design and development 
of computers in various ways. But the other direction is at least as important: by using 
computers as an instrument, mathematical modelling is channeled. First and fore-
most, this channeling represents an epistemological shift. Traditionally, mathematical 
modeling has been performed by human subjects actively modeling to gain insight, 
control, or whatever. The channelling effect comes about because an additional tech-
nological level is added: the modelling must find a balance, namely to compensate for 
those (extra) transformations that are caused by the use of the computer - that is, as 
a rule, to neutralize them to a certain extent through further, additional constructions 
within the model. 

The ANNs used in Deep Learning have served as examples throughout the anal-
ysis. Lenhard (2019) discusses more and different examples in the same framework. 
What are typical features of ANNs? They are a special type of model because they are 
constructed almost independently from the sort of phenomenon they are supposed 
to capture. They have a very generic model structure. A simple observation is that 
these networks are often displayed, but all pictures look essentially the same. In fact, 
the structure does not represent the target phenomena. Therefore, one can call ANNs 
structurally underdetermined. At the same time, they contain an extremely large 
number of parameters whose adjustment makes the overall behavior so versatile that 
it can approximate an almost arbitrary function. In other words, the model behavior 
depends completely on the specification (of parameters). This is in strong contrast to 
the traditional idea of model construction where the structure is supposed to capture 
the phenomena and parameters are for fine-tuning. 

From a formal and abstract standpoint, iteration is the typical action connected 
with ANNs. Their construction is often meaningless, in the sense that elements in 
the construction do not have an interpretation in terms of the target domain—no 
champion of Go was necessary to build the network that—when trained over and 
over by playing games against itself—later beat the world champion reliably. All 
the more does parameter adjustment matter. And this happens iteratively, i.e. in each 
learning step each parameter is adjusted—and learning steps are themselves iterated. 
From a hardware point of view, such procedure requires to execute large masses of 
simple iterations. 

Finally, ANNs stand for a turn in mathematization. Now, mathematization is not 
about the book of nature. It is not a tool for representing the world. Instead, mathe-
matics is used as a tool to construct and control the gigantic approximation machines 
that ANNs are. Jost (2017) argues that mathematization now is concerned with the 
mathematization of tools. How can such inward-looking turn result in something 
that is successful in real-world tasks like image classification or language generation?
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Basically, these successes are grounded in a fundamentally instrumentalist approach, 
namely a statistical treatment of patterns—irrespective of what these patterns mean. 

1.3 Epistemology: Opacity and Understanding 

Black box modeling deals solely with input–output behavior, whereas its counter-
part, white box modeling, is concerned also with the inner workings of the model. 
Obviously, a black box model cannot explain why the modeled system behaves as 
it behaves. For this reason, it is a widely shared goal to replace opaque models that 
have a black box character by white box, transparent models. A good example is Perl 
(1997) who diagnoses that modeling is targeting systems of increasing complexity 
and that this complexity prohibits the sort of analysis possible with white box models. 
Perl expresses the hope that approaches like neural networks might open up a new 
way for understanding complex systems (Perl, 1997, 302). 

About 25 years ago, the opinion was widely shared that new computational 
methods might bring new ways of understanding complex systems. However, the 
quick evolution of ANNs brought predictive successes that come together with utterly 
opaque models. One can still insist on the goal of making these models transparent 
to an extent that allows one to explain their prediction. Not very astonishingly, and 
in response to the successes of ANNs, there is a recent call to develop “Explainable 
AI” (XAI). However, opacity is part-and-parcel of simulation in general (Humphreys, 
2004; Lenhard, 2019) and of Deep Learning in particular—as has been argued above. 
Up to now, XAI remains an open field for research whose success (or failure) can 
only be judged in the future. 

If one is accepting that opacity is an unwanted, but unavoidable condition for 
using AI, how does the promise of AI (and digitization in more general) look like? 
From a historical and philosophical perspective, prediction challenges the search for 
an explanation. This tension has been a constant companion to the entire discussion 
about explanation since the beginning of modernity—or actually even longer: ever 
since mathematics played any role whatsoever in considerations of epistemology and 
practice. A basic viewpoint is that the ability to predict shows something important. 
In some way, whatever is able to give good predictions has got something right about 
the world, or about that fraction of the world under investigation. And this something 
is the fundament and the true source of the predictive capability. 

Remarkably, the new methods seem to turn this upside down: Prediction happens 
on the basis of a method, or a generic model, whose representational properties are 
in question or even inaccessible. Is understanding still possible? Understanding is a 
central but somewhat vague and multifaceted notion in epistemology. A couple of 
decades ago, understanding sometimes was taken to be antonymous to explanation. 
There is a vast literature in philosophy of science dealing with explanation, whereas 
understanding is covered considerably less. Books like the one by de Regt et al. 
(2009) indicate a change—understanding now is on the agenda in philosophy of 
science.
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In a way, simulation models can provide understanding at a certain standard. 
Scientists might conduct iterated simulation experiments and create visualizations 
and in this way sound out how how the input–output dynamics looks like. In doing 
so they can orient themselves in the model—even if parts of the dynamics are not 
transparent to them. Of course, this kind of familiarity with the model does not 
meet the high epistemic demands that are normally placed on mathematical models 
(cf. Russell’s (1905) concept of knowledge by acquaintance). However, this lower 
standard is still sufficient if the aim is a controlled intervention. In other words, 
simulation models might remain epistemically opaque, but still provide means to 
control the dynamics. 

A typical example is the possible breakdown of the meridional overturning circu-
lation MOC, i.e. the Gulf Stream. Researchers investigate how the MOC behaves 
under varying conditions (in the simulation model), like temperature increase. Their 
goal is to understand how robust it is. But understanding here means the opposite of 
Feynman’s case. Whereas he wanted to know behavior without calculation, getting 
a picture of the MOC is based on large amounts of calculations. Similarly, structural 
engineering has changed its face with computational modeling. Daring constructions 
can be admired that could not have been planned without calculating their structural 
stability via computer models. Engineers understand how such constructions behave, 
but in a very pragmatic sense that does not presuppose epistemic transparency. 

Of course, one could question whether the pragmatic notion should be called 
understanding at all. We hence face two options: First, does simulation eliminate 
understanding in the practices of sciences and engineering, or second, do simulation 
practices replace a strong notion of understanding by a weaker, pragmatic notion? 
If one accepts that the complexity of simulation models makes epistemic opacity 
unavoidable, whereas at the same time, these models still are good for interventions 
and predictions, then the question is: Will this co-existence lead to a new conception 
or re-definition of scientific understanding? Devising an answer to this question still 
is a task for philosophy of science. 

Thus, the argumentation leads to a twofold claim. First, that simulations can facil-
itate acquaintance with, and orientation in, model behavior even when the model 
dynamics itself remain (partially) opaque. And secondly, simulations change math-
ematical modeling in an important way: Theory-based understanding and epistemic 
transparency recede into the background, while a kind of pragmatic understanding 
comes to the fore that is oriented towards intervention and prediction rather than 
theoretical explanation. 

1.4 Software and How Expertise is Organized 

If researchers want to use simulations or other computational methods, especially 
ML, they have to have available appropriate infrastructure. Everybody immediately 
thinks of a computer terminal, rightly so. However, in this context infrastructure 
is far more comprehensive. As a concept, infrastructure is so interesting because it



12 J. Lenhard

captures, or allows to capture, how modern societies, technology, and regulation are 
interconnected, see Edwards (2002). Having it available is demanding, in terms of 
costly technology, and actually using it also demanding, in terms of what sort of 
questions should be asked in which ways. 

One of these infrastructure elements is data. The strength of ANNs unfolds when 
they statistically identify correlations. The prominent successes have a twofold root. 
Firstly, ANNs can work through amounts of data that were considered unfeasible not 
long ago. This data-digestive ability rests on a combined achievement of hardware, 
such as the use of graphical processing units, and software. Secondly, the sensitivity of 
ANNs to delicate traces of correlations is of use only when there are really many data 
available. Else all the parameters and optimization procedures remain idle, or worse, 
lead to spurious signals. This makes ANNs data-hungry. Therefore, researchers 
are strongly motivated to formulate questions about areas where massive data are 
available or can be produced. In an apt analysis, Perl (2009) had pointed out that 
ANN methods in sport science suffer from the fact that they need more data than 
are available. For a statement that computer methods will lead to data-centered 4th 
paradigm science, see Hey et al. (2009). It is surely not coincidental that this book 
comes out of Microsoft, a major company involved in data business. 

A second element is the networked character of the entire research workflow. Data 
such as comprehensive image inventories from the internet are usually not stored 
locally. One can argue that Google or other companies build gigantic computing 
centers that duplicate and store the entire internet. But this only strengthens the case, 
because ordinary researchers must connect to these data storages. Moreover, parts 
of the actual computation are often outsourced, too. When learning and adjusting 
the parameters, researchers typically work with a software suite such as Tensor-
Flow (Abadi et al., 2015) that runs on a platform maintained by Google. Thus, 
the exploratory—iterative mode of modeling—specifying the parameters in iterated 
learning steps—has been adopted by a new networked and centralized infrastructure. 
Although it is centralized, it is readily available (or those parts of it are that some 
company thinks in its interest to make available). Moreover, the exploratory part 
is automated; it consists in adjusting the parameters almost entirely independently 
from the modelers, thus contributing to opacity. 

Software should be distinguished from computing as a third element of the infras-
tructure. Classically, creating software that adequately operationalizes research ques-
tions is a key component of scientific expertise. In the 1980s and 1990s, the motto 
was that computing expertise should become part of particular fields, like sports 
science, because a division between software developer and user would no longer 
work (Lames et al., 1997, p. 30) In one sense, this motto has been fulfilled. Today, 
everyone is working with computers. However, in an important sense, something very 
different happened. Software packages became available that made it easy, or at least 
doable, for many users to do computational science without being experts in actually 
developing the software. This division of labor amounts to a fundamental shift in 
how expertise is socially organized. For example, Johnson and Lenhard describe in 
Chap. 4 of (2024) how quantum chemical simulations are employed by researchers 
who are specialists in such software, but not in quantum chemical theory. Software
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and the way in which its uses are organized are a new research topic shared by history, 
sociology and philosophy of science, see for instance Haigh (2013), Hocquet and 
Wieber (2021), Johnson and Lenhard (2024). 

In AI, a highly visible feature of social organization is that there is a host of 
competitions set up to achieve a given predictive task to the best degree or with 
the lowest failure rate (as on the platform Kaggle). Such competitions attract atten-
tion from various groups and have established an arena independent of academia 
(notwithstanding the fact that typical participants have had contact with universities). 
When data and software are provided on the internet, participants can act indepen-
dently from resources provided by a university or other academic institution. These 
competitions function as a market from which big companies recruit scientists and 
programmers. 

Importantly, the methodology together with the infrastructure create a new situ-
ation when it comes to policy and regulation. The quality of predictions depends 
on the quality of the (training) data. Because the quality of data is (still) ill defined, 
main actors take the quantity of data as a proxy. Today, data such as those that 
Tesla collects while developing its automated car count as a commercial treasure 
(not to mention Facebook and other actors in the field). Whereas the collected data 
are proprietary, government interventions such as regulating when a car has to apply 
its brakes depend on access to these data. And therefore, practice is heading for a 
conflict as far as regulatory measures—or better, their justifiability—is concerned. 

Finally, a short wrap-up concerning the point raised at the beginning of this 
chapter: If a field is getting into AI, what effects will that potentially have? Overall, 
digitization brings about new research instruments. The wide distribution and uptake 
is depending on a comprehensive infrastructure that makes the use of software 
possible also for non-experts and also directs new research toward fields and questions 
that lend themselves to these new instruments. Concretely, since data are a potential 
bottleneck, creativity is required from the researchers to address questions for which 
they have available or can produce sufficient amounts of data. Philosophically, simu-
lation and AI methods come with epistemic opacity. They yield predictions, but tend 
to be unpromising regarding explanations. 
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Chapter 2 
Artificial Intelligence in Sport Scientific 
Creation and Writing Process 

Richard Latzel and Patrick Glauner 

Abstract This chapter examines the transformative role of Artificial Intelligence 
(AI) tools in enhancing academic research and writing, with a focus on their appli-
cation within sports science. It highlights the integration of technologies such 
as ChatGPT, Grammarly, and other generative AI tools into the academic land-
scape, demonstrating their impact on improving learning environments, promoting 
academic integrity, and streamlining administrative tasks. Through a detailed explo-
ration of AI’s contributions to literature research, data management, analysis, visual-
ization, and writing support, the chapter delves into the efficiencies and depths these 
tools bring to academic work. It also addresses the limitations and challenges of AI 
integration, emphasizing the crucial balance between technological advancements 
and the indispensable value of human expertise in scholarly research. This discussion 
underscores AI’s potential to facilitate innovation in academic writing and research, 
marking a significant shift towards more efficient, insightful, and comprehensive 
scholarly work if applied properly. 

Keywords ChatGPT · AI · Scholarly Work 

Declaration of the Use of Artificial Intelligence Tools in This Book Chapter 

In the development of this book chapter, we selectively utilized Artificial Intelligence 
(AI) tools, primarily to support and enhance the writing process. This declaration 
outlines the extent and manner of AI tool integration within our work, emphasizing 
our approach to leveraging technology while ensuring the integrity and originality 
of our scholarly contribution. 

1. Literature Research: We incorporated AI tools, specifically ResearchRabbit and 
Elicit, to assist in the initial stages of literature research. These platforms facil-
itated the identification of relevant studies and provided insights that informed 
our understanding of the topic. It is important to note that while these tools
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were helpful, they complemented a broader manual research effort, ensuring a 
comprehensive and nuanced review of existing literature. 

2. Writing Assistance: The primary application of AI in the creation of this chapter 
was in the realm of writing support. Tools like ScholarAI and ChatGPT were 
used to enhance the clarity, grammar, and coherence of our text. These AI-
driven aids offered suggestions for language improvement, helping us refine 
our argumentation and presentation. However, the critical evaluation of these 
suggestions and the final writing decisions were made by us, the authors, to 
maintain the academic integrity and intellectual rigor of our work. 

3. Originality and Integrity: Despite the availability of AI-based plagiarism detec-
tion tools, we chose to ensure the originality of our content through manual veri-
fication and adherence to best practices in scholarly writing. This approach was 
guided by our commitment to academic ethics and the production of work that 
is both authentic and contributes meaningfully to the field. 

By detailing the use of AI tools in the composition of this chapter, we aim to trans-
parently acknowledge the role of technology in facilitating our academic writing 
process. The integration of AI was done with careful consideration, ensuring that it 
served to augment our capabilities as researchers and writers, rather than diminish 
the scholarly value of our contribution. The insights, interpretations, and conclusions 
presented in this chapter are the result of our professional judgment and expertise, 
underscored by a judicious application of AI for specific, supportive tasks in the 
writing process. 

2.1 Introduction 

The integration of Artificial Intelligence (AI) tools like ChatGPT, Grammarly, and 
other generative AI models into academic writing and educational platforms has 
been the subject of various studies, highlighting both their advantages and poten-
tial drawbacks. These tools have been shown to potentially enhance the learning 
environment by providing personalized tutoring, automating essay grading, facili-
tating translation, and creating interactive learning environments. AI tools have also 
been acknowledged for their role in promoting academic integrity through plagia-
rism detectors and assisting in administrative tasks like grading and feedback provi-
sion. This technological advancement has notably reduced the paperwork and work-
load for instructors, allowing them more time to dedicate to instruction and content 
dissemination (Duymaz & Tekin, 2023; Escalante et al., 2023). 

This chapter explores the benefits and limitations of AI tools for academic research 
and writing, providing insights into their practical application in sports science and 
other academic fields. It includes a brief overview of AI tools’ basic functionality 
before delving into their potential benefits in academic literature research, data 
analysis and management, and academic writing.



2 Artificial Intelligence in Sport Scientific Creation and Writing Process 17

2.2 Overview of Artificial Intelligence 

AI aims to automate human decision-making. AI has become one of the most transfor-
mative technologies of our time, reshaping industries, augmenting human capabil-
ities, and pushing the boundaries of what machines can do. Typical tasks include 
learning, reasoning, problem-solving, perception, and language understanding 
(Russell & Norvig, 2021). 

Historical sketch 

The journey of AI began in the mid-twentieth century, with the term “artificial 
intelligence” being coined in 1955 by John McCarthy and others in a proposal for 
the Dartmouth Conference for the following year (McCarthy et al., 1955). This 
period marked the optimistic beginnings of AI, with researchers setting ambitious 
goals for machines to mimic human intelligence. Early AI research largely focused 
on symbolic approaches, attempting to encode human knowledge into machines. 
However, the complexity of human cognition proved to be a formidable chal-
lenge, leading to the realization that achieving true AI would require more than 
just programming explicit rules. 

Machine Learning 

The rise of Machine Learning (ML) in the latter part of the twentieth century marked 
a significant shift in the AI landscape. ML is a subset of AI that focuses on developing 
algorithms that enable computers to learn from and make predictions or decisions 
based on data. This approach diverged from the rule-based methods, offering a new 
pathway to achieving AI through data-driven learning (Bishop, 2006). The field of 
ML can broadly be divided into three so-called “pillars”:

• Supervised learning: learn to predict a label y, i.e. a class (classification) or quantity 
(regression), from input data X.

• Unsupervised learning: find hidden relationships, such as clusters or lower 
dimensional representations, in the input data X.

• Reinforcement learning: learn which action to take in which state to achieve the 
best outcome. 

Deep Learning 

Deep Learning involves (Artificial) Neural Networks with many layers (hence 
“deep”) that learn representations of data with multiple levels of abstraction. This 
approach has enabled significant advances in computer vision, natural language 
processing, and other areas requiring complex feature extraction in recent years 
(Bishop & Bishop, 2024). 

Natural Language Processing 

Natural Language Processing (NLP) is a domain of AI focused on the interaction 
between computers and humans using natural language. The goal of NLP is to enable
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computers to understand, interpret, and generate human languages. Techniques in 
NLP have evolved from rule-based systems to ML and sophisticated Deep Learning 
models, significantly improving the ability of machines to process and understand 
human language. 

Large Language Models and prompt engineering 

Large Language Models (LLMs), such as ChatGPT, represent the cutting edge of 
NLP. These models are trained on vast text datasets, learning to predict the next token 
in a sequence given the preceding tokens. This training enables them to generate 
coherent and contextually relevant text, translate languages, answer questions, and 
even write code. Prompt engineering has emerged as a crucial skill in leveraging 
LLMs, involving designing inputs (prompts) that guide these models to produce 
the desired output. It requires an understanding of the model’s capabilities and 
limitations, creativity, and strategic thinking. 

2.3 Role of Artificial Intelligence-Supported Tools 
in Literature Research 

In the evolving landscape of academic research, Artificial Intelligence (AI) tools have 
emerged as pivotal instruments, reshaping the way research and analysis of data is 
conducted and findings are compiled. Some of the key advantages AI tools can offer 
in academic research are (Chubb et al., 2022; Pinzolits, 2023): 

1. Efficiency and Time Management: AI tools, when used in the right way, 
can markedly reduce the time researchers spend on literature reviews and data 
analysis. They can quickly sift through extensive databases to identify relevant 
research papers, abstracts, and even specific sections within papers that address 
particular research questions. This capability allows researchers to focus more 
on analysis and less on the time-consuming process of finding information. 

2. Comprehensive Literature Analysis: With access to vast databases of peer-
reviewed articles, AI tools enable researchers to conduct thorough literature 
reviews. Some tools offer literature mapping features that help identify related 
research, references, and recommended readings, ensuring that researchers have 
a comprehensive understanding of their topic. 

3. Detailed Research Insights: Beyond just identifying relevant papers, AI tools 
can analyze the full text of research documents. This deep dive into the content 
provides detailed insights into methodologies, results, and discussions, which are 
crucial for understanding the nuances of each study. Some tools can extract and 
summarize information from multiple research papers at once and might even 
aid in the development of a well-informed hypothesis and research design.


