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Preface

This volume of Lecture Notes in Mechanical Engineering contains selected papers pre-
sented at the 14th International Conference on Computational Heat and Mass Transfer
(ICCHMT2023), held in Düsseldorf, Germany on September 4–8, 2023. The confer-
ence was organized by the Düsseldorf University of Applied Sciences (Hochschule
Düsseldorf), in cooperation with the University of Calgary (Canada), École Nor-
male Supérieure Paris-Saclay (France), Cracow University of Technology (Poland) and
Soongsil University (South Korea).

The International Conference on Computational Heat andMass Transfer (ICCHMT)
conference series has been held regularly since 1999 and has established itself as a
reference event in the field of heat and mass transfer. The conferences provide a platform
for scientists and engineers to meet regularly and discuss new ideas and developments in
the field of computational methods and their applications, as well as a good opportunity
for young scientists and engineers to explore the art of computational methods and
future perspectives. The conference series focuses on the research, development and
application of computational methods in all areas of flow, heat and mass transfer, but
without excluding experimental and theoretical approaches, especially as a means of
validation and inspiration. The previous 13 conferences in this series have been held in
various countries around the world, including Brazil, Canada, China, Cyprus, France,
Italy, Korea, Poland and Turkey.

To the current, 14th conference, held from September 4-8, 2023, in Düsseldorf,
Germany, a total of 304 abstracts from 47 countries were submitted, and a total of 239 of
them were accepted for presentation at the conference. The full papers were submitted
subsequent to the conference, and after a thorough peer-review process, 134 papers,
written by authors from 36 countries, were accepted for publication in the proceedings.
This first volume of the proceedings includes 67 of them.

We would like to take this opportunity to thank all committee members, session
chairs as well as the invited external reviewers for their support and for their efforts
and expertise in contribution to reviewing the papers. We also thank very much to the
keynote speakers: Prof. Dr. Carol Eastwick (University of Nottingham, UK), Prof. Dr.
Giancarlo Iaccarino (StanfordUniversity, USA), Prof. Dr. AndreasKempf (University of
Duisburg-Essen, Germany), Prof. Dr. Sylvie Lorente (Villanova University, USA), Prof.
Dr. QiuwangWang (Xi’an Jiaotong University, P. R. China), Prof. Dr. Jan Taler (Cracow
University of Technology) for sharing their esteemed knowledge and experience at the
conference. We highly appreciate the partnership with Springer and our sponsors for
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their support. Our special thanks naturally goes to the authors and participants for their
valuable contributions.

April 2024 Ali Cemal Benim
Rachid Bennacer

Abdulmajeed A. Mohamad
Paweł Ocłoń
Sang-Ho Suh

Jan Taler
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P. Ocłoń Cracow University of Technology, Poland
H. Pabiou INSA Lyon, France
M. Pathak IIT Patna, India
M. R. Rajkumar Rajiv Gandhi Institute of Technology, Kottayam,

India
B. Schöneberg CFX Berlin, Germany
J. Smolka Silesian University of Technology, Gliwice,

Poland
S.-H. Suh Soongsil University, Seoul, Korea
D. Taler Cracow University of Technology, Poland
J. Taler Cracow University of Technology, Poland
S. Tavakkol Karlsruhe Institute of Technology, Germany
R. Zahoor University of Ljubljana, Slovenia
F. Zhang Karlsruhe Institute of Technology, Germany

Invited External Reviewers

R. Agarwal University of Calgary, Canada
M. Ajmi National Engineering School Monastir, Algeria
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Numerical Modeling of an Air Gap Membrane
Distillation Regenerator for Liquid Desiccant

Air-Conditioning Applications

Yu Gao and Lin Lu(B)

Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic
University, 11 Yuk Choi Road, Kowloon, Hong Kong, China

rowan.gao@connect.polyu.hk, vivien.lu@polyu.edu.hk

Abstract. Liquid desiccant cooling is a promising alternative to vapor compres-
sion cycle due to its lower electricity consumption. Regeneration process is the
principal source of the overall energy consumption which aims to concentrate
the diluted desiccant. Conventional direct/indirect regenerators use flowing air to
remove the moisture and yield a relatively low thermal efficiency. Based on this,
this paper presents a liquid desiccant regenerator which uses air gap membrane
distillation to simultaneously concentrate the weak desiccant and produce potable
water. A heat and mass transfer model is developed and validated to explore the
regenerator performance under various operation conditions as well as the effects
of heat transfer enhancement. The simulation results show that the regeneration
rate and thermal efficiency increase remarkably with the rise in both the tempera-
ture and flow rate of the desiccant. Decreasing both the temperature and flow rate
of the coolant can obtain an obvious increase in the regeneration rate but slight
fall in the thermal efficiency. In addition, it is found that the convection inside the
desiccant channel plays a dominant role in the overall heat transfer performance.
By contrast, enhancing condensation heat transfer on the cooling plate surface
has a negligible influence on the regenerator performance. This study provides
a guideline for the design and optimization of the air gap membrane distillation
based liquid desiccant regenerator.

Keywords: Liquid desiccant regeneration · Air gap membrane distillation ·
Numerical modeling · Performance analysis

1 Introduction

Nowadays air-conditioning is responsible for a significant proportion of electricity use
and carbon emissions associated with buildings especially in hot and humid regions. In
addition to temperature control, air humidity is no doubt another concern that relates
directly to occupiers’ thermal comfort and health. Liquid desiccant cooling (LDC) tech-
nology has emerged as a cost-effective alternative to vapor compression method widely
used at present due to its feature of independently handling sensible and latent heat loads
and using low-grade thermal energy [1]. Regeneration is the major source of energy use
in a LDC system, and therefore, developing highly efficient technologies to concentrate
liquid desiccant has great significance in energy savings and carbon neutrality.
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Themost common regenerators are based on thermal evaporation. The working prin-
ciple is that air blows through regenerators where it comes into direct contact with liquid
desiccant and then eliminate the water vapor from the desiccant. To overcome the issue
of liquid droplets carryover, some researchers have applied semi-permeable membranes
to separate regeneration air from liquid desiccant so that heat and mass exchange can
happen without the direct contact between two working streams [2]. However, the per-
formance of all the regenerators above is highly limited to outdoor air conditions and the
another concern is the considerable energy losses [3]. Based on this, membrane distil-
lation (MD) has been successfully applied to concentrate liquid desiccant accompanied
with fresh water production [4]. Duong et al. [5] experimentally evaluated the regenera-
tion capacity of direct contact membrane distillation (DCMD) for various brine solution.
Lefers et al. [6] conducted a pilot-scale experiment to demonstrate the feasibility of using
vacuum membrane distillation (VMD) to regenerate calcium chloride and magnesium
chloride aqueous solution. Liu et al. [7] investigated the fouling in DCMD for lithium
chloride (LiCl) solution regeneration. Zhou et al. [8] studied the regeneration perfor-
mance of hollow fiber membrane-based VMD with LiCl solution. Air gap membrane
distillation (AGMD) is also a potential MD technique for liquid desiccant regeneration
due to its low heat losses, whereas, the relevant research is lacking.

This paper proposes a novel liquid desiccant cooling system in which an AGMD
based regenerator is employed to concentrate the liquid desiccant from the dehumidifier
and product fresh water at the same time. The main objective of this study is to assess the
regeneration performance of the AGMD regenerator with flat-sheet membrane. Further-
more, this study is also aimed at seeking for the methods for performance improvement.
Based on a developed heat and transfer model, the numerical analysis is carried out to
investigate the effects of involved operation variables and enhancement factors for heat
transfer. The modeling results are expected to promote the practical application of air
gap membrane distillation in liquid desiccant regeneration.

2 Model Development

Figure 1 (a) shows the schematic diagram of the liquid desiccant cooling system with
air gap membrane distillation regenerator. The diluted liquid desiccant exiting the dehu-
midifier is heated before flowing into the AGMD regenerator. Driven by the temperature
between the desiccant and coolant, the water vapor removed from the desiccant is con-
densed and then is collected at the bottom, thereby concentrating the desiccant. Figure 1
(b) illustrates the working principle of the AGMD regenerator. The AGMD regeneration
process consists of the following steps:

• Movement of thewatermolecules from the bulk desiccant feed towards themembrane
surface

• Water evaporation at the feed-membrane interface
• Migration of water vapor molecules through the membrane and air gap
• Water condensation on the surface of the condensing plate
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Fig. 1. The schematic diagram of (a) the liquid desiccant cooling system with air gap membrane
distillation regenerator; and (b) the air gap membrane distillation regeneration process

Due to the presence of thermal resistance, the water evaporates at a temperature
higher than that of the feed bulk and subsequently the vapor condenses at a temperature
lower than that of the coolant bulk. This phenomenon is recognized as temperature polar-
ization effect that is generally described by temperature polarization coefficient (TPC).
Similarly, there exists a concentration gradient near the membrane surface, thereby
reducing the vapor pressure on the interface between the desiccant and the membrane.
This phenomenon is known as concentration polarization effect which can be neglected
in treating highly saline water compared to temperature polarization effect [9]. The heat
and mass transfer model as well as performance assessment indices will be established
in the following sub-sections.

2.1 Heat and Mass Transfer Model

First of all, the following assumptions are made to simplify the modeling [10]:

• The membrane is straight and solid;
• Concentration polarization in the feed channel is negligible;
• The AGMD module works in steady state;
• The air in the air gap is stagnant and thus no convection heat transfer happens;
• Only water vapor is transported through membrane pores;
• Pressure drop and heat losses in the AGMD are negligible;

The governing equations of mass and energy conversation for hot feed and coolant
is expressed as (hot feed flows in x direction):

dmf

dx
= −WJ (1)

d(mfX )

dx
= 0 (2)
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dhf
dx

= −Wαf(Tf − Tfm)

mf
(3)

dhc
dx

= −Wαc
(
Tpc − Tc

)

mc
(4)

wheremf andmc are the mass flow rates of hot feed and coolant. X represents the weight
concentration of hot feed, J is the water flux through membrane and W is the width of
membrane. αf and αc are the heat transfer coefficients within the hot feed and coolant
channels respectively. The temperature distribution is shown in Fig. 1 (b).

For common commercial semi-permeable membrane, the Knudsen-Molecular tran-
sition diffusion dominates the mass transport process and the mass transfer across the
can be expressed as [11]:

Jw = D(Pfm − Pcf) (5)

D =
[
3τδm

2εr

√
πRT

8Mw
+ PaRT

(
τδm + δag

)

εPatmDMw

]−1

(6)

where δm and δag are themembrane and air gap thicknesses. τ represents the tortuosity of
membrane pores, r is the radius of the membrane pore, ε is membrane porosity, andMw
is the molecular weight of water. Pa and Patm are the dry air pressure and atmospheric
pressure respectively.

The heat flux from feed bulk to membrane surface by convection can be expressed
as:

q = αf(Tf − Tfm) (7)

The heat flux through membrane and air gap by conduction and vaporization can be
expressed as:

q = km
δm

(Tfm − Tma)+Jw�hvap (8)

q = ka
δag

(Tma − Tcf)+Jw�hvap (9)

The heat flux through condensate film can be expressed as:

q = αcon
(
Tcf − Tfp

)
(10)

The heat flux through condensing plate can be expressed as:

q = kcp
δcp

(
Tfp − Tpc

)
(11)

The heat flux through condensing plate can be expressed as:

q = αc
(
Tpc − Tc

)
(12)

where �hvap is the enthalpy of vaporization of water, δcp is the condensing plate thick-
ness, andαcon is the condensation heat transfer coefficient. km, kag and kcp are the thermal
conductivities of membrane, air and cooling plate respectively.



Numerical Modeling of an Air Gap Membrane Distillation Regenerator 7

2.2 Performance Evaluation

To evaluate the water removal capacity of AGMD regenerator, the regeneration rate is
defined as:

RR =
∫ L

0
JWdx (13)

where L is the membrane length.The thermal efficiency of AGMD regenerator can be
expressed as:

TE = RR× �hvap
RR× �hvap + Qloss

(14)

where Qloss represents the heat loss to the coolant by conduction.
The temperature polarization coefficient is expressed as:

TPC = Tfm−Tcf
Tf−Tc

(15)

3 Results and Discussion

Based on the above heat and mass transfer theory, a numerical model with differential
equations is established in MATLAB and the equation group is solved by infinite dif-
ference method. The PTFE membrane used in this study has a pore size of 0.45μm, a
thickness of 150μm as well as a porosity of 80% [12]. LiCl solution is adopted as the
liquid desiccant. It should be noted that the rest of operation parameters are kept constant
when one variable is investigated in parametric analysis unless otherwise specified. The
AGMD module geometry dimension and the reference values of operation parameters
are summarized in Table 1.

Table 1. AGMD module geometry dimension and reference values of operation parameters.

AGMD module geometry dimension Reference values of operation parameters

Channel length L (mm) 500 Solution flow rate mf (kg/s) 0.02

Channel width W (mm) 300 Coolant flow rate mc (kg/s) 0.02

Channel depth D (mm) 3 Solution inlet temperature T f,in (°C) 60

Air layer thickness δag (mm) 1 Coolant inlet temperature Tc,in (°C) 20

Condensing plate thickness δcp (mm) 0.5 Feed inlet concentration X in (wt%) 20
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3.1 Effects of Operation Temperatures

Temperatures of feed and coolant are associated with vapor pressures, thereby playing
an important role in regenerator performance. Figure 2 shows the effects of operation
temperatures on the regenerator performance. It can be seen that increasing the feed
temperature can lead to a dramatic rise in both of the regeneration rate and the thermal
efficiency. However, the temperature polarization effect is also found to be intensified.
By contrast, reducing coolant temperature has a similar influence on the regeneration
rate but results in an obvious decrease in the thermal efficiency. At the same time, a
slight mitigation of the temperature polarization effect can be observed.
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Fig. 2. Effects of operation temperatures on the regenerator performance

3.2 Effects of Flow Rates

The effects of desiccant and coolant flow rates on the regenerator performance are
presented in Fig. 3. It can be seen from Fig. 3 (a) that both the regeneration rate and the
thermal efficiency rise with the increase of the desiccant flow rate. Figure 3 (b) shows
that increasing the coolant flow rate can also lead to a growth in the regeneration rate
but whose impact is not as noticeable as increasing the desiccant flow rate. For example,
increasing the desiccant flow rate from 0.015 kg/s to 0.035 kg/s causes 33.3% rise in
the regeneration rate, while increasing the coolant flow rate by the same amount only
achieves an 8.8% growth. In addition, increasing the coolant flow rate is observed to
have a negligible effect in the thermal efficiency. It is worth noting that increasing both
of the flow rates can effectively mitigate the temperature polarization effect.
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Fig. 3. Effects of flow rates on the regenerator performance

3.3 Effects of Enhancement Factors for Heat Transfer

Enhancing the heat transfer from the desiccant to the coolant can significantly reduce
the temperature polarization effect and thus improve the regeneration performance. This
subsection is aimed at revealing the effects of enhancement factors for heat transfer
in various stages. Given that heat conduction is dominated by thickness and thermal
properties of materials, only the convection in the desiccant/coolant channels and on the
condensing plate surface is discussed.

As can be seen in Fig. 4, enhancing the heat convection inside the desiccant channel
exerts a positive influence on the regeneration rate, the thermal efficiency as well as
the temperature polarization coefficient. By comparison, enhancing the heat convection
inside the coolant channelmakes aminor contribution to the regeneration rate but leads to
a slight reduction in the thermal efficiency. Besides, enhancing the heat convection inside
both of the channels has a similar effect on the temperature polarization coefficient.With
regard to enhancing the condensation heat transfer over the condensing plate, it has a
negligible effect on the regeneration performance. The answer for this can be found from
the distribution of thermal resistance as demonstrated in Fig. 5. The falling film only
accounts for less than 0.2% of the total thermal resistance, indicating that enhancing the
condensation heat transfer makes little sense to the overall regeneration performance.


