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Preface

A differential antenna is an antenna with two terminals connecting a differential
signal source. A single-ended antenna is an antenna with a single terminal
connecting a single-ended signal source. A dipole is such a differential antenna,
while a monopole is such a single-ended antenna. The differential antenna has
no ground plane, but the single-ended antenna has the ground plane.
A differential antenna can also be an antenna having two single-ended ports.

Each single-ended port must connect a single-ended signal source. The two
single-ended signal sources applied on the two single-ended ports should have
the same amplitude but opposite phases. The single-ended counterpart of such
a differential antenna possesses one single-ended port excited by a single-ended
signal source, while the other single-ended port maintains an open-circuit
configuration. Both such differential and single-ended antennas contain ground
planes.
Single-ended antennas show higher gain values and smaller radiator sizes than

differential antennas. Therefore, single-ended antennas have dominated the
design of antennas for wireless systems. However, it must be stressed that the con-
cept of lower gains and bulkier sizes of differential antennas compared to single-
ended counterparts is not always true. It has been demonstrated that differential
microstrip patch antennas can possess comparable or even smaller sizes and
higher gain values than single-ended microstrip patch antennas.
Differential circuits permit higher linearity and lower offset, leaving them more

immune to power supply variations, temperature changes, and substrate noise
than single-ended circuits. Consequently, differential circuits are more popular
than single-ended circuits in integrated circuit design. Differential circuits natu-
rally call for differential antennas, which is particularly essential in the design
of a wireless system-on-chip (SoC) or system-in-package (SiP) device. Differential
antennas perfectly interconnect with differential circuits. No lossy balanced/
unbalanced conversion circuit (balun) is needed. As a result, the receiver noise
performance and transmitter power efficiency are improved. Differential antennas

xv



reduce cross-polarized radiation, remove pattern distortion, and produce
improved axial ratio for circular polarization.
This book presents the theory and practice of differential antennas for the first

time. An effort has been made to give a theoretical treatment of differential anten-
nas while keeping in mind the aspects of practical applications from simple
discrete wire to sophisticated integrated designs in antenna-in-package (AiP) or
antenna-on-chip (AoC) technologies.
Chapter 1 introduces some basic concepts associated with differential antennas

including balanced and unbalanced antennas, even and odd modes, differential
and single-ended circuits, mixed-mode S-parameters, and typical baluns. The
chapter also highlights that there exists the important ratio of 2 : 1 for many dif-
ferential and single-ended structures.
Differential wire antennas such as the dipole antenna and the loop antenna are

the earliest and most basic antennas. Hence, Chapter 2 begins with the dipole
antenna and the loop antenna to analyze differential wire antennas. The chapter
ends with the Yagi-Uda antenna to highlight directional differential wire anten-
nas. In addition, the chapter briefly considers the single-ended counterparts of dif-
ferential dipole, loop, and Yagi-Uda antennas to show the relationship between
differential and single-ended wire antennas.
Chapter 3 deals with the slot antenna. It will be treated as complementary to a

dipole antenna based on Booker’s seminal paper. An emphasis will be given to
extend Booker’s relation for differential complementary slot and dipole to
single-ended counterparts. Then, the self-complementary antennaswill be described
in terms of the Mushiake’s work. Finally, the Yin-Yang antennas will be discussed.
The first microstrip patch antenna was realized by printing a circular conductor

patch on a dielectric substrate with a conductor ground plane and feeding it
through two coaxial cables in 1970. It is interesting to mention that the first micro-
strip patch antenna was also a differential microstrip patch antenna, which is the
topic of Chapter 4. As a practical concept for solving many antenna system pro-
blems, microstrip patch antennas not only gave birth to a new antenna industry
but also enriched antenna theory. It was found for the first time that the ratio
of the impedance of a differential microstrip patch antenna to its single-ended
counterpart is 4 : 1 rather than 2 : 1. This finding has important implications
for impedance matching.
A half-wave microstrip patch antenna operates in the fundamental mode.

A virtual electric wall exists along the center line between the two radiating edges.
Hence, a physical metal wall was proposed to replace the virtual electric wall to
create a quarter-wave microstrip patch antenna or a shorted patch antenna.
Although the shorted patch antenna preserves the advantages of a patch antenna
with a reduced size, it has a major issue of lower H-plane cross-polarization level,
which limits the shorted patch antenna frommany applications. Chapter 5 focuses
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on the differential shorted patch antenna, and their variations, aiming to improve
H-plane cross-polarization level.
Microstrip slot antennas naturally produce bidirectional radiation patterns,

while unidirectional radiation patterns can also be obtained through adding reflec-
tors. Microstrip slot antennas are less sensitive to fabrication tolerances and so can
be manufactured at lower cost. In addition, microstrip slot antennas do not add
weight and size to the system. Hence, they are suitable for applications where
cost, size, and weight are of significance. Most of the reported microstrip slot
antennas are single-ended designs. Chapter 6 presents differential microstrip
slot antennas and compares them with their single-ended counterparts.
The first microstrip grid array antenna was published in 1981. Chapter 7 deals

with the analysis and design of differential microstrip grid array antennas. It
explains the principle of operation through careful examination of the current dis-
tribution and radiation patterns of the microstrip grid array antenna. It compares
the novel with the usual differential excitation technique. It describes the design
procedure and various design techniques.
A printed antenna is an antenna printed on one surface of a dielectric substrate

where no ground plane is printed directly underneath the radiator on the other
surface of the dielectric substrate. There are many types of printed antennas.
Chapter 8 covers quasi-Yagi, fractal, and spiral antennas for end-fire radiation,
multiband, and wideband operations, respectively.
Chapter 9 describes differential antennameasurements with an emphasis on the

balun calibration techniques.
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1

Introduction

1.1 Background

During 1864 and 1867, James Clerk Maxwell established his theory of electro-
magnetism, which predicted that electric and magnetic fields travel through
space as waves moving at the speed of light.1 Between 1886 and 1889, Heinrich
Rudolf Hertz conducted a series of experiments that demonstrated the existence
of electromagnetic waves and validated Maxwell’s theory.2 By the mid-1890s,
the scientific and technical foundation had been laid for Guglielmo Giovanni
Maria Marconi to develop wireless telegraphy systems.3 At the turn of the
20th century, wireless telegraphy began to be used commercially and wireless
telephony was also demonstrated, indicating that the wireless age came.4 Since
then, antennas that made wireless communication possible have opened up
many other possibilities.

1.2 Balanced and Unbalanced Antennas

A dipole antenna commonly consists of two identical conductive elements such
as metal wires or rods. A loop antenna is usually made of a coil of metal wire or
another electrical conductor. A dipole antenna was used as a transmitting
antenna and a loop antenna as a receiving antenna by Hertz for the discovery
of electromagnetic waves. Hence, the dipole and loop antennas are the earliest
antennas. Figure 1.1 shows photos of Hertz’s sphere-loaded dipole and loop
antennas [1].

1 https://en.wikipedia.org/wiki/James_Clerk_Maxwell
2 https://en.wikipedia.org/wiki/Heinrich_Hertz
3 https://en.wikipedia.org/wiki/Guglielmo_Marconi
4 https://en.wikipedia.org/wiki/Reginald_Fessenden
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A monopole antenna normally consists of a straight metal wire or rod, often
mounted perpendicularly over a conductive surface, called a ground plane. The
monopole antenna was invented in 1895 and patented in 1896 by Marconi [2].
He found that the monopole antenna could cover longer distances than the dipole
antenna in his radio transmission experiments. Figure 1.2 shows a photo of the
monopole antenna setup by Marconi himself at Shanghai Jiaotong University
(SJTU) on 8 December 1933.5

Antennas can be balanced or unbalanced. A dipole antenna is balanced for its
structural symmetry about the feed point, while a monopole antenna is unbal-
anced for its structural asymmetry about the feed point. It is noted that the old
terms of balanced and unbalanced antennas cause confusion. For example, if a
dipole antenna is installed parallel to the Earth’s surface, it is indeed balanced.
However, if the dipole antenna is installed vertically to the Earth’s surface, it is
unbalanced because one arm of the dipole antenna is closer to the Earth’s surface
than the other. In addition, if a dipole antenna is fed off-center, the dipole antenna
is obviously unbalanced, but the feeding source is balanced. To avoid confusion,

(a)

(b)

Figure 1.1 Photos of (a) Hertz’s dipole and (b) loop antennas. Sources: (a) Heinrich Hertz/
Public Domain. (b) Rollo Appleyard/Wikimedia Commons/Public domain.

5 https://museum.sjtu.edu.cn/
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the new terms of differential and single-ended antennas are adopted in this book.
The new terminology is based on feeding sources rather than antenna structures.
A differential antenna is an antenna fed with a differential or an equivalently dif-
ferential signal source. A dipole antenna is a differential antenna. A single-ended
antenna is an antenna fed with a single-ended signal source. A monopole antenna
is a single-ended antenna.

1.3 Even and Odd Modes

Three principal types of transmission lines are microstrip, stripline, and coplanar
waveguide (CPW). They arewidely used inmodernwireless systems. A transmission
line pair can be formedwith any of them. Figure 1.3 shows the transmission line pair
in a microstrip structure. We use it as an example to describe the even and odd
modes of propagation.

Figure 1.2 Photo of Marconi and his monopole antenna taken at SJTU on 8 December
1933. Source: Shanghai Jiao Tong University/Wikimedia Commons/Public domain.

(a) (b)

Figure 1.3 Illustration of the transmission line pair in a microstrip structure. (a) Even and
(b) odd modes.
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The even mode is the mode corresponding to both lines having the same poten-
tial V to the ground plane and carrying the identical current in the same direction.
The odd mode is the mode corresponding to both lines having opposite potentials
V and –V, relative to the ground plane and carrying the identical current in the
opposite directions. Figure 1.4 shows a sketch of electric field lines for the two
modes. Note a magnetic wall exists in the even mode whereas an electric wall
exists in the odd mode. The wall separates the whole structure into two identical
half structures.
The even mode has an associated characteristic impedance Z0e, which can be

calculated from the half structure of the even mode. Similarly, the odd mode cor-
responds to a characteristic impedance Z0o, which can be calculated from the half
structure of the odd mode. It should be able to figure out from the field distribu-
tions in Figure 1.4 that Z0e is larger than Z0o.

1.4 Differential and Single-Ended Circuits

A differential circuit deals with the difference between two input signals, while a
single-ended circuit accepts a single input signal. Figure 1.5 shows the schematic
diagrams of differential and single-ended bipolar junction transistor (BJT) ampli-
fiers. We will use them as examples to illustrate the responses of differential and
single-ended circuits to differential and common-mode signals.
Note that both V1 and V2 are two input signals. The differential-mode input

signal is defined as

Vdm =
V 1 −V 2

2
1 1

and the common-mode input signal as

Vcm =
V 1 + V 2

2
1 2

(a) (b)

Figure 1.4 Illustration of the electric field distributions (a) for the even and (b) for the
odd modes.
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Thus, the two input signals V1 and V2 can be expressed as

V 1 = Vcm + Vdm 1 3

and

V 2 = Vcm −Vdm 1 4

Assuming that the common-mode signal is an interference, and the differential-
mode signal is desirable, the single-ended amplifier will amplify both the interfer-
ence and desirable signal, while the differential amplifier has the advantage of
amplifying only the desirable signal and rejecting the interference.

1.5 An Important Ratio

There exists an important ratio between many differential and single-ended
structures. For a differential antenna such as a half-wavelength dipole, it has an
input impedance

Zd = 73 1 + j42 5Ω, 1 5

while for a single-ended antenna such as a quarter-wavelengthmonopole, it has an
input impedance

Zs = 36 5 + j21 3Ω 1 6

Hence, the impedance ratio of the differential dipole to the single-ended mon-
opole is 2 : 1, and so is the size ratio.

(a) (b)

Q2 Q1Q1
V1

Rc

Vo

Vcc

Vo

V1 V2

Rc
Rc

Vcc

Figure 1.5 Schematic diagrams of (a) differential and (b) single-ended BJT amplifiers.
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Let us turn to the differential and single-ended amplifiers as shown in
Figure 1.5. The differential amplifier consists of two transistors and two resistors.
The area is assumed to be Ad. The input resistance Rd is given by

Rd =
2VT

IB
Ω 1 7

where VT is the thermal voltage and IB is the base bias current. The single-ended
amplifier consists of one transistor and one resistor. The area is assumed to be As.
The input resistance Rs is given by

Rs =
VT

IB
Ω 1 8

Hence, the ratio of 2 : 1 is also true for the circuits. In Chapter 4, we will show
that this important ratio is not always correct.

1.6 Mixed-Mode S-Parameters

S-parameters refer to the scattering parameters of a microwave network. Taking
a three-port network as an example, the S-parameters in a matrix form are
expressed as

b1
b2
b3

=

S11 S12 S13
S21 S22 S23
S31 S32 S33

a1
a2
a3

1 9

where the variable ai represents a power wave incident to port i and the
variable bj a power wave reflected from port j. If each port is terminated in
the reference impedance Z0, the S-parameters of the three-port vector network
are defined as

Sij =
bi
aj

1 10

where i and j are from 1 to 3 and aj−1 and aj−2 should be set to zero. S-parameters
are measured with a two-port vector network analyzer.
Mixed-mode S-parameters are used for the characterization of differential struc-

tures [3]. Let us reconfigure the three-port network as one single-ended port (port
1) and one differential port (ports 2 and 3). Assuming that a single-ended signal
exists at the single-ended port, a differential-mode signal, and a common-mode
signal exist at the differential port, we use the nomenclature s, d, and c to represent

6 1 Introduction



the single-ended, differential, and commonmodes, respectively, and we obtain the
mixed-mode S-parameters in a matrix form as

bs1
bd2
bc2

=

Sss11 Ssd12 Ssc12
Sds21 Sdd22 Sdc22
Scs21 Scd22 Scc22

as1
ad2
ac2

1 11

Mixed-mode S-parameters are measured with a four-port vector network
analyzer. They can also be calculated using the single-ended S-parameters
measured by a two-port network analyzer [3], for example,

Sss11 = S11, 1 12

Ssd12 = Sds21 =
1

2
S21 − S31 , 1 13

Ssc12 = Scs21 =
1

2
S21 + S31 , 1 14

Sdd22 =
1
2

S22 − S23 − S32 + S33 , 1 15

Sdc22 =
1
2

S22 + S23 − S32 − S33 , 1 16

Scd22 =
1
2

S22 − S23 + S32 − S33 , 1 17

Scc22 =
1
2

S22 + S23 + S32 + S33 1 18

For a differential antenna, there are two single-ended ports, which can only form
one differential or common-mode port. So, the mixed-mode S-parameters for the
differential antenna are

Sdd11 = S11 − S12 = Sd11 1 19

and

Scc11 = S11 + S12 = Sc11 1 20

For an array with two differential antenna elements, there are four single-ended
ports [4], which can form two differential ports or two common-mode ports. So,
the mixed-mode S-parameters for the array are

Smm =
Sdd Sdc
Scd Scc

=

Sdd11 Sdd12

Sdd21 Sdd22

Sdc11 Sdc12

Sdc21 Sdc22
Scd11 Scd12

Scd21 Scd22

Scc11 Scc12

Scc21 Scc22

1 21
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where

Sdd =
Sdd11 Sdd12
Sdd21 Sdd22

=
1
2

S11 − S13 − S31 + S33 S12 − S14 − S32 + S34
S21 − S23 − S41 + S43 S22 − S24 − S42 + S44

,

1 22

Sdc =
Sdc11 Sdc12
Sdc21 Sdc22

=
1
2

S11 + S13 − S31 − S33 S12 + S14 − S32 − S34
S21 + S23 − S41 − S43 S22 + S24 − S42 − S44

,

1 23

Scd =
Scd11 Scd12
Scd21 Scd22

=
1
2

S11 − S13 + S31 − S33 S12 − S14 + S32 − S34
S21 − S23 + S41 − S43 S22 − S24 + S42 − S44

,

1 24

Scc =
Scc11 Scc12
Scc21 Scc22

=
1
2

S11 + S13 + S31 + S33 S12 + S14 + S32 + S34
S21 + S23 + S41 + S43 S22 + S24 + S42 + S44

1 25

1.7 Balun

A balun is a three-port device, which bridges between the single-ended and
the differential structures. It is succinctly defined by the required (ideal)
S-parameters as

S11 = 0, 1 26

S12 = − S13 = S21 = − S31 1 27

Note that the single-ended input port is matched to the line characteristic imped-
ance (usually 50Ω) and the two single-ended output ports will provide the signals
of equal amplitude and opposite phase. Also note that the two single-ended output
ports are not necessarily matched, may or may not be isolated, and there may be a
different return loss for differential and common mode signals.

A balun can take many forms. Three typ-
ical baluns that will be used in the design
examples of this book are discussed as fol-
lows. Figure 1.6 shows a reactive balun. It
consists of a reactive 3-dB power divider, a
line with the length of l, and another line
with the length of l + λ/2. A third line that
has the length of λ/4 and the characteristic

impedance of 2Z0 acts as an impedance
transformer to provide impedance match-
ing between the input and output lines of

P1
P2

P3

λ /4

λ
4

Figure 1.6 Reactive balun.
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