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Preface
Random Effect and Latent Variable
Model Selection

In recent years, there has been a dramatic increase in the collection of multivariate
and correlated data in a wide variety of fields. For example, it is now standard prac-
tice to routinely collect many response variables on each individual in a study. The
different variables may correspond to repeated measurements over time, to a battery
of surrogates for one or more latent traits, or to multiple types of outcomes having
an unknown dependence structure. Hierarchical models that incorporate subject-
specific parameters are one of the most widely-used tools for analyzing multivariate
and correlated data. Such subject-specific parameters are commonly referred to as
random effects, latent variables or frailties.

There are two modeling frameworks that have been particularly widely used as
hierarchical generalizations of linear regression models. The first is the linear mixed
effects model (Laird and Ware , 1982) and the second is the structural equation
model (Bollen , 1989). Linear mixed effects (LME) models extend linear regres-
sion to incorporate two components, with the first corresponding to fixed effects
describing the impact of predictors on the mean and the second to random effects
characterizing the impact on the covariance. LMEs have also been increasingly used
for function estimation. In implementing LME analyses, model selection problems
are unavoidable. For example, there may be interest in comparing models with and
without a predictor in the fixed and/or random effects component. In addition, there
is typically uncertainty in the subset of predictors to be included in the model, with
the number of candidate predictors large in many applications.

To address problems of this type, it is not appropriate to rely on classical methods
developed for model selection and inferences in non-hierarchical regression models.
For example, the widely used BIC criteria are not valid for random effects models,
and likelihood ratio and score tests face difficulties, since the null hypothesis often
falls on the boundary of the parameter space. The objective of the first part of this
book is to provide an overview of a variety of promising strategies for addressing
model selection problems in LMEs and related modeling frameworks.

In the chapter, “Likelihood Ratio Testing for Zero Variance Components in
Linear Mixed Models,” Ciprian Crainiceanu provides an applications-motivated
overview of recent work on likelihood ratio and restricted likelihood ratio tests for
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testing whether random effects have zero variance. The approaches he describes
represent an important advance over the current standard practice in testing for zero
variance components in hierarchical models. Such approaches include ignoring the
boundary problem and assuming the likelihood ratio test statistic has a chi-square
distribution under the null and relying on asymptotic results showing a mixture of
chi-squares is more appropriate (Stram and Lee, 1994). Crainiceanu shows that as-
ymptotic approximations may be unreliable in many applications, motivating use of
finite sample approaches. He illustrates the ideas through several examples, includ-
ing applications to nonlinear regression modeling.

Score tests provide a widely-used alternative to likelihood ratio tests, and in the
chapter, “Variance Component Testing in Generalized Linear Mixed Models for
Longitudinal/Clustered Data and Other Related Topics,” of this volume Daowen
Zhang and Xihong Lin provide an excellent overview of the recent literature on
score test-based approaches. In addition, Zhang and Lin consider a broader class of
models, which includes GLMMs and generalized additive mixed models (GAMMs).
GAMMs provide an extremely rich framework for semiparametric modeling of lon-
gitudinal data allowing flexible predictor effects through replacing linear terms in a
generalized linear model with unknown non-linear functions, while also including
random effects to account for within-subject dependence and heterogeneity.

The first part of the volume is completed with two companion chapters describ-
ing Bayesian approaches for variable selection in LMEs and GLMMs. The likeli-
hood ratio and score test methods provide an approach for comparing two nested
models with the smaller model having a random effect excluded. However, in many
applications one is faced with a set of p candidate predictors, with uncertainty in
which subsets should be included in the fixed and random effects components of the
model. Clearly, the number of candidate models grows extremely rapidly with p, so
that it often becomes impossible to fit each model in the list. One possibility is to
use a likelihood ratio test within a stepwise selection procedure. However, the final
model selected will depend on the order in which candidate predictors are added or
deleted and it is difficult to adjust for uncertainty in subset selection in performing
inferences and predictions. In non-hierarchical regression models, Bayesian vari-
able selection implemented with stochastic search algorithms has been very widely
used to address this problem. In the chapter, “Bayesian Model Uncertainty in Mixed
Effects Models,” Satkartar Kinney and I describe an approach for LMEs, while in
the chapter, “Bayesian Variable Selection in Generalized Linear Mixed Models,” Bo
Cai and I describe an alternative for GLMMs.

The second part of the book switches gears to focus on structural equation models
(SEMs), which have been very widely used in social science applications for assess-
ing relationships among latent variables, such as poverty or violence, that can only
be measured indirectly through multiple surrogates. SEMs provide a generalization
of factor analysis, which allows for modeling of linear relationships among the la-
tent factors through a linear structural relations (LISREL) model. SEMs are also
quite useful outside of traditional application areas for sparse covariance structure
modeling of high-dimensional multivariate data. However, one of the main issues
in applying SEMs is how to deal with model uncertainty, which commonly arises
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in deciding on the number of factors to include in each component and the rela-
tionships among these factors. In the chapter, “A Unified Approach to Two-Level
Structural Equation Models and Linear Mixed Effects Models,” Peter Bentler and
Jiajuan Liang provide a bridge between the first and second parts of the volume in
linking LMEs and SEMs, while also considering methods for model selection.

In the chapter, “Bayesian Model Comparison of Structural Equation Models,”
Sik-Yum Lee and Xin-Yuan Song provide a general Bayesian approach to com-
parison of SEMs. Typical Bayesian methods for comparing models rely on Bayes
factors. However, Bayes factors have proved quite difficult to estimate accurately in
SEMs. Lee and Song propose a useful and clever solution to this problem using path
sampling. One well-known issue in model selection using Bayes factors is sensitiv-
ity to prior selection. This has motivated a rich literature on default priors. In the
chapter, “Bayesian Model Selection in Factor Analytic Models” Joyee Ghosh and I
build on the approach of Lee and Song, proposing a default prior, and an efficient
approach for posterior computation relying on parameter expansion. In addition, an
importance sampling algorithm is proposed as an alternative to path sampling.

In summary, this volume provides a practically-motivated overview of a variety
of recently proposed approaches for model selection in random effects and latent
variable models. The goal is to make these methods more accessible to practition-
ers, while also stimulating additional research in this important and under-studied
area of statistics. There are a number of topics related to model selection in ran-
dom effects and latent variable models that are in need of new research, with so-
lutions having the potential for substantial applied impact. The first topic is the
development of simple methods to calculate model selection criteria, which modify
AIC and BIC to incorporate a penalty for model complexity that is appropriate for
a hierarchical model. A second topic is the development of efficient methods for
simultaneous model search and posterior computation in SEMs. Often, one has a
high-dimensional set of SEMs that are plausible a priori and consistent with current
scientific or sociologic theories. It is of substantial interest to identify high posterior
probability models and to average across models in making predictions. However,
typical tricks used in other model classes, such as zeroing out coefficients, do not
work in general for SEMs, and efficient alternatives remain to be developed.
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Likelihood Ratio Testing for Zero Variance
Components in Linear Mixed Models

Ciprian M. Crainiceanu

Mixed models are a powerful inferential tool with a wide range of applications in-
cluding longitudinal studies, hierarchical modeling, and smoothing. Mixed models
have become the state of the art for statistical information exchange and correla-
tion modeling. Their popularity has been augmented by the availability of dedicated
software, e.g., the MIXED procedure in SAS, the lme function in R and S+, or the
xtmixed function in STATA.

In this paper, we consider the problem of testing the null hypothesis of a zero
variance component in a linear mixed model (LMM). We focus on the likelihood
ratio test (LRT) and restricted likelihood ratio test (RLRT) statistics for three rea-
sons. First, (R)LRTs are uniformly most powerful for simple null and alternative
hypotheses and have been shown to have good power properties in a variety of theo-
retical and applied frameworks. Second, given their robust properties, (R)LRTs are
the benchmark for statistical testing. Third, (R)LRT can now be used in realistic
data sets and applications due to a better understanding of their null distribution and
improved computational tools.

The paper is organized as follows. Section 1 describes three applications of test-
ing for a zero variance component. Section 2 contains the model and a description of
the testing framework. Section 3 describes standard asymptotic results and provides
a short discussion of their applicability. Section 4 presents finite sample and as-
ymptotic results for linear mixed models (LMMs) with one variance component.
Section 5 introduces two approximations of the finite sample (R)LRT distribu-
tion for testing for zero variance components in LMMs with multiple variance
components. Section 6 presents the corresponding testing results for the ex-
amples introduced in Sect. 1. Section 7 provides the discussion and practical
recommendations.

C.M. Crainiceanu
Department of Biostatistics, Johns Hopkins University
ccrainic@jhsph.edu

D. B. Dunson (ed.) Random Effect and Latent Variable Model Selection, 3
DOI: 10.1007/978-0-387-76721-5, c© Springer Science+Business Media, LLC 2008



4 C.M. Crainiceanu

1 Examples

The three examples in this section illustrate the wide variety of applications of test-
ing for zero variance components in LMMs. This list is far from being exhaustive
but provides a foretaste of what is possible and needed in this framework.

1.1 Loa loa Prevalence in West Africa

Figure 1 displays village locations from one of the several parasitological survey
location in West Africa. In all these villages parasitological sampling was conducted
to assess the prevalence of Loaisis. Here we provide a short summary, but a complete
description of the problem can be found in Crainiceanu et al. (2007). Loaisis, or
eyeworm, is an endemic disease of the wet tropics, caused by Loa loa, a filarial
parasite which is transmitted to humans by the bite of an infected Chrysops fly. In
Fig. 1 the empirical prevalence rates at location x, p̂(x), are indicated as dots coded
according to their size: small p̂(x) < 0.18, medium 0.18 ≤ p̂(x) < 0.20, large
0.20 ≤ p̂(x) < 0.25, and very large p̂(x) > 0.30.

A complete bivariate binomial analysis of this data set can be found in
Crainiceanu et al. (2007). Here, we consider the following simpler univariate
model for the logit prevalence at the spatial location x

logit{ p̂(x)} = α0+α1g(x)+α2s(x)+α3e(x)+α4{e(x)−800}++S(x)+ε(x), (1)
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Fig. 1 Village sampling locations in one subregion from West Africa. The empirical prevalence
rates are indicated as dots coded according to their size: small p̂(x) < 0.18, medium 0.18 ≤
p̂(x) < 0.20, large .20 ≤ p̂(x) < 0.25, very large p̂(x) > 0.30. The estimated mean prevalence
based on model (1) is grey-scale coded according to the legend



Likelihood Ratio Testing for Zero Variance Components in Linear Mixed Models 5

where g(x) is an annual average measure of greenness, s(x) the standard deviation
of greenness, e(x) the elevation in meters, S(x) a spatial component, and ε(x) ∼
Normal(0, σ 2

ε ) are the independent errors. Here a+ is equal to a if a > 0 and 0
otherwise, so that {e(x) − 800}+ represents the elevation at location x truncated
below 800 m. If the spatial component S(x) is modeled as a low rank penalized thin
plate spline then

{

S(x) = xtβ + Z(x)b,
b ∼ Normal(0, σ 2

b IK ),
(2)

where Z(x) is the low rank specific design vector (for details see (Ruppert et al.,
2003; Kammann and Wand, 2003)), b the thin plate spline coefficients describing
the spatial features of S(x), σ 2

b the smoothing parameter controlling the amount of
smoothing, and IK is the identity matrix where K is the number of spatial knots.

In the case of low rank smoothers the set of K knots for the covariates have to
be chosen. One possibility is to use equally spaced knots. Another possibility is to
select the knots and subknots using the space filling design (Nychka and Saltzman,
1998), which is based on the maximal separation principle. This avoids wasting
knots and is likely to lead to better approximations in sparse regions of the data. The
cover.design() function from the R package Fields (Fields Development
Team, 2006) provides software for space filling knot selection.

If the smoothing parameter is estimated by restricted maximum likelihood
(REML), then the model described in (1) and (2) is equivalent to a particular LMM
with one variance component. Figure 1 displays the estimated mean prevalence
at all locations in the map coded according to the legend. In this context testing
whether the nonlinear spatial component of S(x) is necessary to explain the residual
variability after fitting the scientifically available covariates is equivalent to testing

H0 : σ 2
b = 0 vs. HA : σ 2

b > 0 .

From a scientific perspective testing H0 is equivalent to testing whether simpler
models including only covariates could capture the complex stochastic nature of the
spatial data and have good predictive power.

1.2 Onion Density in Australia

Figure 2 contains data on yields (grams/plant) of white Spanish onions in two lo-
cations: Purnong Landing and Virginia, South Australia (Ratkowsky, 1983). The
horizontal axis corresponds to areal density of plants (plants/m2). Detailed analyses
of these data are given by Ruppert et al. (2003) and Crainiceanu (2003). Denote
by (yi , xi , si ) the yield, density of plants and location for the i th observation. Here,
si = 1 corresponds to Purnong Landing and si = 0 corresponds to Virginia. The
solid lines in Fig. 2 correspond to fitting the linear additive model

log(yi ) = β0 + β1si + β2di + εi . (3)
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Fig. 2 Log yield for the onion data plotted against density (circle Purnong Landing; asterisk
Virginia), straight line fit (solid line), binary offset model using a penalized linear spline fit with
K = 15 knots and REML estimation of smoothing parameter (dashed line), discrete by continuous
interaction model (dotted line)

The dashed lines represent the mean fit using a semiparametric binary offset model
(Ruppert et al., 2003)

log(yi ) = β1si + f (di )+ εi , (4)

which contains a parametric component, β1si , and a nonparametric component,
f (di ). The binary variable s vertically offsets the relationship between E[log(y)]
and density according to location. By specifying a linear penalized spline model for
f (di ) the model becomes

log(yi ) = β0 + β1si + β2di +
K
∑

k=1

bk(di − κk)+ + εi ,

where bk are i.i.d. N (0, σ 2
b ) and εi are i.i.d. N (0, σ 2

ε ). Following Ruppert et al.
(2003), we use K = 15 knots chosen at the sample quantiles of density correspond-
ing to frequencies 1/(K + 1), . . . , K/(K + 1).

Testing model (3) corresponding to the solid line fits in Fig. 2 versus model
(4) corresponding to dashed lines in Fig. 2 corresponds to testing H0 : σ 2

b = 0
vs. HA : σ 2

b > 0. For these data and hypothesis testing framework, Crainiceanu
(2003) calculated RLRT = 35.93 with a corresponding p-value< 0.001. The calcu-
lation of the p-value was based on the exact distribution of the RLRT as obtained
by Crainiceanu and Ruppert (2004b). This result is not surprising, given the large
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discrepancies between the two model fits in Fig. 2. In fact, results would not change
even if one used the more conservative (but incorrect in this case) 0.5χ2

0 : 0.5χ2
1

approximation to the null RLRT distribution (Self and Liang, 1987).
It is natural, however, to ask whether the binary offset model accurately repre-

sents the data. To address this question we nest model (4) into the following discrete
by continuous interaction model

E {log(yi )} =
{

fPL(di ) if si = 1;
fVA(di ) if si = 0,

where the subscripts PL and VA denote the Purnong Landing and Virginia loca-
tions, respectively. The basic idea is to model the mean response at one of the loca-
tions, say Purnong Landing, as a nonparametric spline and the deviations from this
function corresponding to the other location, say Virginia, as another nonparametric
spline. The discrete by continuous interaction model is

log(yi ) = β0+β1di +
K
∑

k=1

bk(di −κk)++{γ0+γ1di +
K
∑

k=1

vk(di −κk)+}I (i ∈ PL)+εi

(5)
for Virginia (s = 0), where β0, β1, γ0, and γ1 are fixed unknown parameters, bk are
i.i.d. N (0, σ 2

b ), vk are i.i.d. N (0, σ 2
v ), and I (i ∈ PL) is 1 if the observation i is from

Purnong Landing and 0 otherwise. The model (5) is an LMM with two random
effects variance components, σ 2

b and σ 2
v , and the fit to the data is depicted by the

two dotted curves in Fig. 2. Testing for linear versus nonlinear deviations from the
smooth regression function corresponding to the Purnong Landing location reduces
in this model to testing

H0 : σ 2
v = 0 vs. σ 2

v > 0,

which is equivalent to testing for a zero variance component in an LMM with two
variance components. After discussing the state of the art in statistical testing in this
framework we will revisit this example in Sect. 6.

1.3 Coronary Sinus Potassium

We consider the coronary sinus potassium concentration data measured on 36 dogs
published by Grizzle and Allan (1969) and Wang (1998). The measurements on each
dog were taken every 2 min from 1 to 13 min (seven observations per dog). The 36
dogs come from four treatment groups. Figure 3 displays the data for the nine dogs
in the first treatment group (dotted lines).

If yi j denotes the j th concentration for the i th dog at time ti j = 1 + 2 j then a
reasonable LMM model for the first treatment group is

yi j = β0 + ui + β1ti j + β2t2
i j + εi j , (6)
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Fig. 3 Sinus potassium concentration for nine dogs in the first treatment group (dotted lines)

where ui ∼ N (0, σ 2
u ) are independent dog specific intercepts and εi j ∼ N (0, σ 2

ε )
are independent errors. Figure 3 displays the fit of model (6) as a dashed line. It is
natural to ask the question whether model (6) is enough to capture the complexity
of the population mean function. One way to answer this question is by embedding
model (6) into the following more general model

yi j = β0 + ui + β1ti j + β2t2
i j +

K
∑

i=1

bk(ti j − κk)
2+ + εi j , (7)

where bk ∼ N (0, σ 2
b ) are independent truncated spline coefficients, K the number

of knots and κk , k = 1, . . . , K are the knots. All the other assumptions are the same
as in model (6). Note that model (6) is an LMM with two variance components: one,
σ 2

u , controlling the shrinkage of random intercepts towards their mean and the other
one, σ 2

b , controlling the shrinkage of the population function towards a quadratic
polynomial. Figure 3 displays the fit of this model as a solid line together with 95%
pointwise confidence intervals (shaded area).

Testing the null hypothesis described by model (6) versus the alternative de-
scribed by model (7) is equivalent to testing for

H0 : σ 2
b = 0 vs. σ 2

b > 0.
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Similarly, testing for dog response homogeneity is equivalent to testing

H0 : σ 2
u = 0 vs. σ 2

u > 0.

Both frameworks correspond to testing for a zero variance component in an LMM
with two variance components.

As the last point for this example, note that a naive way to test for H0 : σ 2
b = 0

is to check whether the null fit is contained in the shaded area. This may seem like
a good idea, but leads to incorrect inferences. Indeed, all the confidence intervals
for the mean function based on model (7) contain the fit based on model (6). How-
ever, as we show in Sect. 6, the RLRT indicates strong evidence against the null
hypothesis of a quadratic population curve.

2 Model and Testing Framework

All examples in Sect. 1, and many others, involve testing for a zero variance com-
ponent as the methodological answer to important scientific questions. To formalize
the framework, let us assume that the outcome vector, Y , is modeled as an LMM

⎧

⎨

⎩

Y = Xβ + Z1b1 + · · · + ZS bS + ε,

bs ∼ N (0, σ 2
s I Ks ), s = 1, . . . , S,

ε ∼ N (0, σ 2
ε In).

(8)

Here the random effects bs , s = 1, . . . , S, and the error vector ε are mutually inde-
pendent, Ks denotes the number of columns in Zs , n the sample size, and Iν denotes
the identity matrix with ν columns. This is not the most general form of an LMM,
but it is often used in practice and keeps the presentation simple.

We are interested in testing

H0,s : σ 2
s = 0 vs. HA,s : σ 2

s > 0, (9)

where the hypotheses are indexed by s = 1, . . . , S to emphasize that these are
distinct and not joint hypotheses for all variance components. Note that because
bs ∼ N (0, σ 2

s I Ks ), the null hypothesis is equivalent to bs = 0, indicating that
under the null the component Zs bs of model (8) is zero.

Denote by θ−s all the parameters in model (8) with the exception of σ 2
s . The

RLRT for testing H0,s is then defined as

RLRT = 2supθ−s ,σ 2
s
{log L(θ−s, σ

2
s )} − 2supθ−s

{log L(θ−s, 0)},

where L(θ−s, σ
2
s ) is the restricted likelihood function for model (8). A similar defin-

ition holds for LRT using the likelihood instead of the restricted likelihood function.
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3 Standard Asymptotic Results for LMMs

Testing for zero variance components is not new in mixed models. Using theory
originally developed by Chernoff (1954), Moran (1971), and Self and Liang (1987),
Stram and Lee (1994) proved that the LRT for testing (9) has an asymptotic 0.5χ2

0 :
0.5χ2

1 mixture distribution under the null hypothesis H0,s if data are independent
and identically distributed both under the null and alternative hypothesis. For more
details on standard asymptotic results, see the chapter by Zhang and Lin (2007) in
this book. Thus, it could be surprising that in many applications the null distribution
of the LRT using simulations is far from being a 0.5χ2

0 : 0.5χ2
1 mixture.

There are several reasons for these inconsistencies. First, the Laird and Ware
(1982) model used by Stram and Lee (1994) allows the partition of the outcome
vector Y into independent subvectors. This could be revealed by close inspection
of this model, which is typically described in terms of the subject-level vector Y i
and not in terms of the data vector Y . The independence assumption is violated, for
example, when representing nonparametric smoothing as a particular LMM. Sec-
ond, even when the outcome vector can be partitioned into independent subvectors,
the number of subvectors may not be sufficient to ensure an accurate asymptotic
approximation. Third, subvectors may not be identically distributed due to unbal-
anced designs or missing data. In the case of an LMM with one variance component
(S = 1) Crainiceanu and Ruppert (2004b) and Crainiceanu et al. (2005) have de-
rived the finite sample and asymptotic distribution of the LRTs showing that, under
general conditions, the null distribution for testing H0,s is typically different from
0.5χ2

0 : 0.5χ2
1 . In the following section, we provide a summary of these results and

discuss the implications for applied statistical inference.

4 Finite Sample and Asymptotic Results for General Design
LMMs with One Variance Component

Consider the particular case of model (8) with Gaussian outcome vector and one
variance component

⎧

⎨

⎩

Y = Xβ + Z1b1 + ε,

b1 ∼ N (0, σ 2
1 I K1 ),

ε ∼ N (0, σ 2
ε In),

(10)

where b1 and ε as mutually independent.
As model (10) has only one variance component, σ 2

1 , the exact null distribution
of the RLRT for testing H0,1 : σ 2

1 = 0 versus HA,1 : σ 2
1 > 0 is Crainiceanu and

Ruppert (2004b)

RLRTn
d= sup
λ≥0

⎧

⎨

⎩

(n − p) log
[

1 + Nn(λ)

Dn(λ)

]

−
K1
∑

l=1

log(1 + λµl,n)

⎫

⎬

⎭

, (11)
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where “ d=” denotes equality in distribution, p is the number of columns in X ,

Nn(λ) =
K1
∑

l=1

λµl,n

1 + λµl,n
w2

l , Dn(λ) =
K1
∑

l=1

w2
l

1 + λµl,n
+

n−p
∑

l=K1+1

w2
l ,

wl , l = 1, . . . , n − p, are independent N (0, 1), and µl,n, l = 1, . . . , K1, are the
eigenvalues of the K1 × K1 matrix Z1

′(In − X(X ′X)−1 X ′)Z1. The asymptotic
distribution of the LRT was also derived by Crainiceanu and Ruppert (2004b) and
depends essentially on the asymptotic geometry of the eigenvalues µl,n . This dis-
tribution may or may not be equal to the 0.5χ2

0 : 0.5χ2
1 mixture, depending on the

asymptotic behavior of these eigenvalues. A similar result for LRT can be found in
Crainiceanu and Ruppert (2004b).

There are several reasons for preferring the distribution in (11) over the 0.5χ2
0 :

0.5χ2
1 of Stram and Lee (1994). First, this is the finite sample distribution of the

RLRT. Second, the 0.5χ2
0 : 0.5χ2

1 asymptotic distribution can be inaccurate when
the number of independent sub-vectors of Y is small to moderate or when designs
are unbalanced. Typically, the 0.5χ2

0 : 0.5χ2
1 provides a conservative approxima-

tion of the finite sample distribution with considerable associated losses in power.
Third, calculating the distribution in (11) is very fast. Indeed, the distribution in
(11) depends only on the eigenvalues µl,n of a K1 × K1 matrix, which need to be
computed only once. Simulation effectively reduces to simulation of (K1 + 1) χ2

variables and a grid search over λ. This simulation does not depend on the sample
size, n, and is fast (5,000 simulations per second with a 2.66 GHz CPU and 1 Mbyte
random access memory). Fourth, when assumptions in Stram and Lee (1994) hold
the distribution in (11) converges weakly to the asymptotic 0.5χ2

0 : 0.5χ2
1 .

5 Linear Mixed Models with Multiple Variance Components

The results in Crainiceanu and Ruppert (2004b) have solved the problem for mixed
models with Gaussian outcomes and one variance component. However, in many
practical applications there are multiple variance components controlling shrinkage.
Two such examples are the onion density and the coronary sinus potassium models
in Sects. 1.2 and 1.3, respectively.

The methodology developed by Crainiceanu and Ruppert (2004b) could be used
to derive the null distribution for the more general case discussed in this paper.
While the result is theoretically interesting, this distribution is obtained by maximiz-
ing a stochastic process over the variance components of model (8), which makes
the implementation computationally equivalent to the parametric bootstrap. For this
reason, Crainiceanu (2003) and Crainiceanu and Ruppert (2004a) suggest using the
parametric bootstrap in this context. One could debate the elegance of this approach,
but the parametric bootstrap is a practical and robust alternative to the 0.5χ2

0 : 0.5χ2
1

approximation.
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One problem with the parametric bootstrap is that, in many applications, evalu-
ating the likelihood is computationally expensive and it may not be reasonable to
perform thousands of simulations. To illustrate this problem, consider the following
simple longitudinal model:

Yi j = ui + f (xi j )+ εi j , (12)

where ui∼N (0, σ 2
u ) are random independent subject specific intercepts,

εi j∼N (0, σ 2
ε ) are independent errors, i = 1, . . . , I , j = 1, . . . , J , I is the

number of subjects and J is the number of observations per subject. Here f (.)
is an unspecified population mean function. If the function f (.) is modeled as a
linear penalized spline, then testing for linearity of f (.) against a nonparametric
alternative is equivalent to testing

H0 : σ 2
b = 0 vs. HA : σ 2

b > 0, (13)

where σ 2
b is a variance component controlling the degree of smoothness of f (.).

Computation times both for LRT and RLRT were very long even for small sample
sizes. For example, for six subjects and 50 observations per subject, computation
time for 10,000 simulations was 4.5 h for R and 1 h for SAS on a server (Intel Xeon
3 GHz CPU). Additionally, run time increased steeply with both I and J for R. For
R significant reduction of computation times could be achieved by interfacing it with
C or FORTRAN. SAS is faster with its default convergence criterion, but we found
numerical imprecisions, especially when estimating the probability mass at zero.
These problems were mitigated when the convergence criterion was more stringent,
but was accompanied by an increasing proportion of unsuccessful model fits. For
more details see the extensive simulation study in Greven et al. (2008). Needless to
say that in more complex models with larger sample sizes the computational burden
is even more serious, especially when running several tests or performing simulation
studies.

Therefore, for many applications there is a need for fast and accurate approxima-
tions of the null finite sample distribution of the RLRT for testing H0,s . We describe
two such approximations. The first approximation was introduced by Greven et al.
(2008), is practically instantaneous, and avoids bootstrap. The second approxima-
tion was introduced by Crainiceanu (2003) and Crainiceanu and Ruppert (2004a)
and uses a simple parametric approximation that reduces the necessary number of
bootstrap samples. In extensive simulation studies, Greven et al. (2008) show that
both methods outperform the 0.5χ2

0 : 0.5χ2
1 approximation and the parametric

bootstrap. The approximation used by standard software is the 0.5χ2
0 : 0.5χ2

1
approximation. The necessary regularity conditions for this approximation to be
asymptotically valid are independence under null and alternative hypothesis, large
number of subvectors, and balanced designs. When these conditions are met both
approximated distributions discussed in the following converge weakly to 0.5χ2

0 :
0.5χ2

1 distribution. However, when conditions are not met, both approximate distri-
butions agree with each other, are different from the 0.5χ2

0 : 0.5χ2
1 distribution, and

better fit the finite sample distribution of the RLRT.


