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Figure 1.1 MycoRed stakeholders. The size of the

circle indicates the relative importance of the user

group. The relative distance of the circle to the user

group indicates the relative strength of the

communication with that group, with shorter lines

indicating stronger communications than longer

ones.
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Figure 2.2 Scanning electron micrograph of conidia

for Aspergillus flavus (left panels a and b) and

Aspergillus parasiticus (right panels c and d).

Figure 2.3 Spore morphology characters used in the

identification of Fusarium species. Drawings are

idealized and not necessarily to the same scale. (a–d)

Macroconidial shapes. (a) Typical Fusarium

macroconidium. Apical cell on left, basal cell on right.
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macroconidium, e.g., F. avenaceum. (c)

Macroconidium with dorsoventral curvature, e.g., F.

equiseti. (d) Macroconidium with the dorsal side
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(e–h) Macroconidial apical cell shapes. (e) Blunt, e.g.,

F. culmorum. (f) Papillate, e.g., F. sambucinum. (g)

Hooked, e.g., F. lateritium. (h) Tapering, e.g., F.

equiseti. (i–l) Macroconidial basal cell shapes. (i) Foot

shaped, e.g., F. crookwellense. (j) Elongated foot

shape, e.g., F. longipes. (k) Distinctly notched, e.g., F.

avenaceum. (l) Barely notched, e.g., F. solani. (m–t)

Microconidial spore shapes. (m) Oval. (n) Two-celled

oval. (o) Three-celled oval. (p) Reniform. (q) Obovoid

with a truncate base. (r) Pyriform. (s) Napiform. (t)



Globose. (u–x) Phialide morphology. (u)

Monophialides, e.g., F. solani. (v) Monophialides, e.g.,

F. oxysporum. (w) Polyphialides, e.g., F.

polyphialidicum. (x) Polyphialdes, e.g., F. semitectum.

(y–z) Microconidial chains. (y) Short chains, e.g., F.

nygamai. (z) Long chains, e.g., F. verticillioides. From

Leslie and Summerell (2006); used with permission.

Chapter 5

Figure 5.1 Effects of maize hybrid and planting date

on populations of thrips in maize ears, 21 days after

pollination (top). Fumonisin B1 concentrations in

maize kernels after harvest (middle). Percentage of
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Planting dates were late March, late April, or late

May. Data from Parsons and Munkvold (2010).

Figure 5.2 European corn borer (ECB) incidence and

severity, fumonisin concentrations, and grain yields

from three crop management programs compared in

field trials at three locations over 2 years in

northwest Italy. Treatment 1: May planting, 80,000

plants/ha, 400 kg nitrogen fertilization/ha, no

insecticide; Treatment 2: late March to early April

planting, 80,000 plants/ha, 400 kg nitrogen

fertilization/ha, no insecticide; Treatment 3: late

March to early April planting, 65,000 plants/ha, 200

kg nitrogen fertilization/ha, no insecticide; Treatment

4: late March to early April planting, 65,000

plants/ha, 200 kg nitrogen fertilization/ha, insecticide

treated for control of ECB. Data from Blandino et al.

(2009a).



Figure 5.3 Variation in deoxynivalenol concentration

attributable to year, maize hybrid, and previous crop

in grain from commercial fields in Ontario, Canada,

from 1993 to 1999. *indicates statistically significant

effects (p ≤ 0.05). Data from Hooker and Schaafsma

(2005).
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used to assess the efficacy of aflatoxin intervention

studies [modified from Turner et al., 2012]. This set
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diseased kernels (FDK) values of Western European,
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lines from the Szeged breeding program. Data are

means across four environments and 2 years.

Figure 13.3 Regression between Fusarium damaged

kernels (FDK) and deoxynivalenol (DON)

contamination, 2006, n = 139. Data represent means
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Figure 16.1 Fusarium-diseased kernels values from

a susceptibility window test in 1992. Inoculation of

fungicide-treated plots followed 2 days after

fungicide treatment and 10 days later. Fungicide
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Figure 16.2 Comparison of nozzle types on fungicide
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available for public use via the Internet

(www.wheatscab.psu.edu). The user interface
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would not occur below the conditions indicated by

the arrow (∼14.5% moisture content = 0.70 aw).

Figure 18.2 Comparison of profiles for (a) growth

(mm/day) and (b) deoxynivalenol (μg/g) production by

Fusarium graminearum on wheat grain (after Magan

et al., 2006).

Figure 18.3 Profiles for (a) relative growth rates

(mm/day) and (b) ochratoxin A (μg/g) production by

Penicillium verrucosum on wheat grain. The lines are

isopleths at which similar amounts of growth or

ochratoxin A production occur (after Cairns-Fuller

et al., 2005).

Figure 18.4 The relationship between temperature

and moisture content of grain and the length of time

for which the grain can be stored.

Figure 18.5 Ranges for deoxynivalenol (DON) and

ochratoxin A (OTA) contamination and the zone of
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Figure 22.1 (a) Global risk of deoxynivalenol

contamination in wheat. The prediction is based on

monthly data for mean temperature and rain

occurring near heading. (b) Global risk of fumonisin

contamination in maize. The prediction is based on
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occurring near silk emergence. (c) Global risk of

aflatoxin B1 contamination in maize. The prediction is

based on the aridity index during heading and ear

ripening.
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