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Preface 

Outline 

This cutting-edge transdisciplinary textbook comprises nineteen chapters, which 
cover the history and development of carbon nanostructures, synthesis and char-
acterization techniques, and unique physicochemical properties of GQDs. It focuses 
on various applications such as agriculture, healthcare, environmental, anti-microbial 
and antibacterial, and other miscellaneous and multi-functional applications of 
GQDs. Furthermore, the density functional theory (DFT) is employed to calculate 
the tunable energy gap and dipole moment to explain the fluorescence phenomenon 
of GQDs. It also discusses the mathematical modeling and simulation in GQD and 
their nanocomposites concerning the biomedical and environmental domains. Since 
almost every analytical approach is covered in this book, it is an invaluable resource to 
graduates and postgraduates, engineers, research scholars, material scientists, engi-
neers, and technologists from industry, who work in related fields (material science, 
chemistry, physics, nanoscience and nanotechnology, and biomedical and environ-
mental) are expected to read and utilize it. Furthermore, this book helps readers solve 
basic and practical difficulties in graphene-based materials and devices for modern 
innovations. 

The authors sincerely thank the contributions of leading graphene researchers 
from industry, academia, government, and private research institutes all over the 
world. 

Usefulness of the Book to the Readers 

A great opportunity lies in the future development of novel GQD-based nanomaterial 
products which are now being employed in a variety of fields, including electronics, 
biomedicine, environmental remediation, and agriculture. As the title indicates, the 
objective of this book is to provide a fairly comprehensive overview of the recent

v



vi Preface

achievements in the field of GQDs. Materials with enticing properties at very low 
amounts of chemicals are required by modern technologies. We can expect bene-
ficial qualities at extremely low amounts of GQD-based nanomaterials due to the 
high aspect ratio. Furthermore, many experts have consented to share their extensive 
experience and knowledge in the field of GQD-based nanomaterials and applications. 
This book is divided into different sections based on the findings of professionals 
in specific disciplines. This technical book’s nature may make it a valuable refer-
ence or textbook for a wide range of scientists, industrial practitioners, graduate and 
undergraduate students, and other professionals working in the fields of nanoscience 
and engineering, materials science, surface science, bioengineering, and chemical 
engineering. We proposed a single volume with nineteen chapters to provide a clear 
understanding of GQD’s fundamentals and fascinating attributes to the readers. 

Important Features of the Book 

It is a handbook that explores the many unique characteristics of GQDs, as well as 
their potential and advanced applications. This molecular-scale material is versatile, 
with outstanding electronic, mechanical, electrical, cytotoxicity, biocompatibility, 
and thermal properties with applications in a variety of disciplines. Interestingly, 
chemists, physicists, and engineers are all interested in developing GQD functional 
materials. Though many excellent books have already been written on various aspects 
of GQDs, however, to our knowledge, there is no single book that consolidates 
information across all aspects of GQDs, engineering, and biomedical applications in 
a very detailed manner, spanning the entire gamut of up-to-date literature citations, 
current market, and patents. Therefore, we narrated all the considerable progress 
made in the experimental and theoretical research of several properties of GQDs and 
their composites in recent years. In summary, this book aims to provide an in-depth 
investigation of the present state of the art in GQDs, composites, hybrid structures, 
and other related topics. 

Chennai, India 
Coimbatore, India 
Coimbatore, India 
Kottayam, India 

N. Manjubaashini 
T. Daniel Thangadurai 

D. Nataraj 
Sabu Thomas
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Chapter 1 
History and Development of Carbon 
Materials 

1.1 Overview 

From primeval times, people have been aware of carbon, and one of the first forms 
of carbon that they used was charcoal. Charcoal was first used by ancient societies 
for drawing, but they also later learned that it could be used in metallurgy to remove 
metals from ores. C60 is the name given to the molecule composed of 60 carbon 
atoms arranged in a sphere, or buckyball, by Richard Smalley, Robert Curl, and 
Harold Kroto. This finding created new opportunities for materials made of carbon 
with special qualities [1]. Graphite started to be used more frequently in the sixteenth 
century. Graphite, originally believed to be a type of lead, was used in writing instru-
ments (pencils) because of its lubricating qualities. Since ancient times, people have 
valued diamonds as another type of carbon for their durability and brilliance. Over 
time, the understanding of the structure of diamonds and how they relate to carbon 
changed. An important turning point was reached in 1985 with the discovery of 
fullerenes [2]. 

Graphene is a revolutionary material with applications in electronics, energy 
storage, and other fields due to its exceptional mechanical strength, thermal prop-
erties, and electrical conductivity. During the second half of the twentieth century, 
carbon fiber composites became more and more popular in the aerospace industry. 
These materials are used in high-performance sports equipment, spacecraft, and 
aircraft because of their excellent strength-to-weight ratios, which come from carbon 
fibers embedded in a matrix [3]. The use of activated carbon in purification proce-
dures is not new. It is useful for various industrial applications, air purification, and 
water treatment due to its large surface area and adsorption capacity. Energy storage 
technologies have advanced due to the widespread use of carbon materials, such 
as graphite and different types of carbon nanomaterials, in batteries and superca-
pacitors. Applications for carbon materials in medicine include drug delivery and 
imaging systems, as well as carbon nanoparticles [4].
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In the late twentieth century, carbon allotropes became a popular research topic 
and eventually took center stage in nanoscience across nearly all domains. The carbon 
era and nanotechnology/nanoscience have benefited from the enrichment of carbon 
allotropes from well-known diamond and graphite to carbon nanomaterials in recent 
decades [5]. Carbon nanomaterials’ light weight, excellent thermal and electrical 
conductivity, high strength, and high stability led to the development of nanoscience 
in the fields of electronics, optoelectronics, medicine, mechanical engineering, cata-
lysts, and energy. The challenges posed by silicon-based electronic devices were over-
come by the use of carbon nanomaterials in electronics to comply with Moor’s Law 
[6]. Carbon nanomaterials are perfect for conducting skeletons for electrochemical 
materials because of their high conductivity and stability. Carbon nanotubes (CNTs) 
are cylindrical structures with extraordinary electrical, thermal, and mechanical prop-
erties that were discovered in 1991 by Sumio Iijima. Since then, CNTs have been 
used in a variety of industries, such as electronics, materials science, and nanotech-
nology [7]. A single layer of carbon atoms arranged in a hexagonal lattice, known 
as graphene, was isolated in 2004 by Andre Geim and Konstantin Novoselov. 

1.2 Introduction 

With an atomic number of six, carbon is found in Group IV of the periodic table. The 
three allotropic forms of carbon are graphite, diamond, and fullerene, in that order. 
Carbon-based materials have many uses because they can be chemically combined 
with other carbon-based materials and form strong covalent bonds with a wide range 
of elements [8]. As a result, they have extraordinary properties like high strength, high 
density, and high hardness. Because of their exceptional qualities, carbon materials 
are a great option for many applications involving advanced technology [9]. 

It is challenging to gain or lose electrons to form fully occupied or unoccupied 
orbitals in chemical reactions due to its peculiar electronic structure. Modifying 
carbon hybrids with different sp3, sp2, and sp1 hybridizations or adding additional 
foreign atoms can change the desired characteristics [10]. The diverse orbital config-
urations of C hybridization, such as sp1, sp2, and sp3, may offer an ideal environment 
for the discovery and development of novel C materials. For instance, the sp3 config-
uration, in which each C atom is tetrahedrally surrounded by four neighboring C 
atoms with a 109.5° directed bond, confers a strong σ bond to an adjacent atom [11, 
12]. Regarding the three-fold coordinated sp2 configuration, three of the four valence 
electrons form σ bonds in plane-style sp2 orbitals that are directed trigonally [13]. 
The sp2 atom’s fourth electron is located in a pπ orbital, which is perpendicular to 
the σ bonding plane. With a π orbital on one or more neighboring atoms, this π 
orbital forms a weaker π bond [14].
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1.3 Evolution of Carbon 

Almost all organic materials are made of carbon networks; carbon is one of the 
elements that is most abundant on earth. We use carbon daily in many products, 
such as newspapers, pencils, refrigerators, and activated carbon. Among the non-
metal elements that are most prevalent on Earth, carbon is essential to our day-to-
day existence [15]. With 0D (fullerenes), 1D (carbon nanotubes), 2D (graphene), 
and 3D (graphite/diamond) structures, carbon is a very diverse family of materials 
[16] (Figs. 1.1 and 1.2). Carbon is derived from biomass, heavy oils and residues, 
thermosetting and thermoplastic polymers, coal tar, and polymer [17]. The historical 
evolution of carbon materials is listed below. 

• Charcoal may have been the first carbon material to be used in a practical sense.
• Carbon was discovered in burned ashes dating back to the prehistoric era.
• During the Neolithic era, carbon was also used to adorn ceramic paintings.
• Graphite, the first carbon allotrope, was discovered and used for mold marking 

and casting in the sixteenth century [16].
• Diamond was originally found in India approximately 3,000 years ago. When 

the diamond was burned by Nobel laureate Antoine Lavoisier in 1772, it was 
discovered to be composed of carbon.

• The discovery of fullerenes was made in 1985 by Kroto et al., who were awarded 
the 1996 Nobel Prize in Chemistry [18].

• The scientific era of graphene is the twenty-first century.
• 2011 saw the synthesis of aluminum, steel, and iron from carbon.
• Carbon electrodes are used for silicon production.
• Lithium-ion batteries are made of graphite, carbon fibers, and carbon nanotubes.
• The highly oriented pyrolytic graphite (HOPG) was synthesized in 2004 by Geim 

and Novoselov, and graphene has garnered significant attention.

Fig. 1.1 Various structures of carbon allotropes
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Fig. 1.2 Different forms of carbon

• In the 1970s and 1980s, carbon nanotubes were also produced through chemical 
vapor deposition (CVD) with structural characterization.

• At approximately 1800, the introduction of carbon materials as battery electrodes 
was performed [19].

• Large-sized carbon rods, known as graphite electrodes due to their crystalline 
graphite structure, were produced industrially by heat treatment at temperatures 
as high as 3000 ºC and have been used as electrodes for iron refining since 1878.

• Before 1960, the basic science and technology of classic carbons, artificial graphite 
blocks, carbon blacks, and activated carbons were developed.

• In 1964, the formation of optically anisotropic spheres in pitches, mesophase 
spheres, and their coalescence sparked several fundamental studies on the struc-
ture of the spheres, their growth and coalescence mechanism, and the forma-
tion of bulk mesophase. These studies also produced new carbon products, 
such as needle-like cokes, which were crucial raw materials for high-power 
graphite electrodes, high-performing carbon fibers based on mesophase pitches, 
and mesocarbon microbeads for various applications.

• The invention of carbon fibers from poly(acrylonitrile), pyrolytic carbons by 
CVD process, and glass-like carbons from thermosetting resins, all of which were 
entirely different from the carbon materials used before 1960, can be considered 
the beginning of the era of new carbons.

• Before 1960, four distinct carbon materials were identified as having practical uses 
in a range of industries. These materials included natural diamonds, carbon blacks 
for ink and rubber reinforcement, artificial graphite blocks for steel refining, and 
activated carbons for water purification.
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• Three carbon materials were developed in 1960: glass-like carbons, pyrolytic 
carbons, and carbon fibers. These materials differed greatly from classic carbons 
in terms of both their properties and methods of production.

• The discovery of carbon materials’ good biocompatibility circa 1970 paved the 
way for the creation of several prostheses, including tooth roots and heart valves.

• It was discovered that adding a small amount of carbon fibers to cement paste 
produced noticeable reinforcement in concrete around 1985.

• Another era for carbon materials began in 1985 with the discovery of buckmin-
sterfullerene C60, a carbon cage with 60 carbon atoms. This was followed by the 
discovery of other carbon cages, including C70, C86, and so on.

• The first report of a cage (cluster) made of 60 carbon atoms, or C60 (buckmin-
sterfullerene), was made in 1985. The soot was produced by laser irradiation on 
a graphite block, and the structure of the block was made up of 20 hexagons with 
12 pentagons of carbon atoms.

• Carbon nanotubes were first reported in 1991, and, subsequently, single-wall 
carbon nanotubes were discovered.

• Following the discovery of single-wall carbon nanotubes in 1991, reports of multi-
walled carbon nanotubes were made.

• In 2004, there was a report of a single hexagonal carbon layer. The discovery 
of these new carbons, or nanocarbons, spurred interest in nanoscale science and 
technology and advanced the field’s scientific advancement.

• The preparation of a single, 2D sheet of carbon atoms, called graphene, was first 
reported in 2004.

• The discovery stage of carbon dots occurred between 2004 and 2006; the initial 
developing stage occurred between 2007 and 2011; the explosively developing 
stage occurred between 2011 and 2021; and the well-developed stage of carbon 
dots lasted until the present day [20]. 

1.4 Structure of Carbon Materials 

A hexagonal carbon layer is the basic building block of the structure of carbon-
based materials in the graphite family. Graphite crystal, hexagonal graphite with 
ABAB stacking regularity, and rhombohedral graphite with ABCABC stacking 
regularity are all produced by regular stacking of these layers [21]. Because it is 
simple to compare rhombohedral and hexagonal graphite, rhombohedral graphite 
is frequently expressed in a hexagonal system. As a result, two unit cells in each 
system are connected with equivalent points,thick lines denote rhombohedral unit 
cells, while double lines denote hexagonal unit cells (Fig. 1.3). The hexagonal struc-
ture of graphite shows P63/mmc space group with their interplanar spacing has 0 0 
0, 2/3 1/3 0, 0 0 1/2 and 1/3 2/3 1/2 planes with the lattice parameters as a0 = 0.2462 
and c0 = 0.6708 nm. Likewise, the rhombohedral graphite structure shows an R3m 
space group, with the lattice parameters of a0 = 0.3635 nm, α = 39.49º [22].
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Fig. 1.3 Structures of graphite derivatives: a hexagonal structure and b rhombohedral structure. 
Reprinted with permission from © Handbook of Advanced Ceramics (2013) 

1.4.1 Structures of One-Dimension (1D) Carbon 

Based on sp2 hybridization, carbon nanotubes are 1D allotropes of carbon with 
a cylindrical nanostructure. There are three common types of carbon nanotubes: 
single-wall (SWCNT), double-wall (DWCNT), and multi-wall (MWCNT) [23]. 
Two or more concentric SWCNTs make up the DWCNTs and MWCNTs. SWCNT, 
DWCNT, and MWCNT typically have diameters of 0.6–2.5, 1–3, and 2–100 nm, 
respectively. There are two types of carbon nanotubes: armchair and zigzag [24]. 

1.4.2 Structures of Two-Dimension (2D) Carbon 

It was discovered that the fundamental component of many carbon-based materials, 
such as graphite, carbon nanotubes, and fullerene, is graphene, a common 2D carbon 
material. Graphene, with a lattice constant of approximately 2.46 Å and a space group 
of P63/mmc, is a hexagonal planar structure created by sp2 hybridization [25]. The 
inner graphene also contained lattice defects with five or seven rings, which caused 
the graphene sheets to curl. A zero bandgap and tapered symmetry of the conducting 
and valent bands at six Dirac points (K point) point to a semimetal character [26]. 
Since the effective rest mass is zero around the Dirac points and the energy of electrons 
is linear with the wave vector, graphene’s Fermi velocity is getting closer to that of 
light. Pure graphene’s average electron-free path is submicrometric, comparable to 
trajectory transport, indicating a great deal of promise for fast devices [27].
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1.4.3 Structure of Three-Dimension (3D) Carbon 

Among the most prevalent 3D carbon allotropes are diamond and graphite. They 
have been studied for a very long time [28]. New 3D carbon structures have emerged 
recently, such as T-carbon, glassy carbon, cubic carbon, and amorphous diamond. 
By inserting a carbon tetrahedron into the locations of the diamond atoms, a cubic 
crystalline carbon with the space group of Fd3m, or T-carbon, is produced [29]. Large 
specific surface area, a substantial pore structure, and a comparatively high adsorption 
capacity characterize active carbon (AC) [30]. AC contains oxygen, hydrogen, and 
other elements in addition to carbon. The cost of AC is less than that of expanded 
graphite, graphene aerogel tubes, and other 3D carbon materials. AC is frequently 
used in the separation of mixtures and purification of liquids [31]. 

1.4.4 Crystal Structure of Graphite 

There are two crystalline forms of carbon: graphite and diamond. It was demonstrated 
that each carbon atom in a diamond is covalently bonded to four other carbon atoms 
arranged tetrahedrally in an early application of X-ray diffraction. The bond between 
carbon atoms is 1.54 Å. Because it would take the breaking of numerous strong bonds 
to rupture this isotropy structure, a diamond’s extreme hardness is a direct result of 
its configuration. Because diamond turns into graphite so quickly at atmospheric 
pressure and temperatures above 1500 °C, it is useless. Naturally, diamond has a 
wide range of significant applications in mild to low temperatures [32]. 

A large variety of low-cost precursors can be used to prepare a wide range of 
materials at relatively low cost; porous carbons have indeed garnered a lot of attention. 
Because of their diverse porous structure, resistance to basic and acidic environments, 
low cost, easy accessibility, good recycling characteristics, low density, and most 
importantly the ability to introduce different functionalities through a wide range of 
activation, functionalization, and carbonization methods, porous high-surface-area 
carbons are typically good catalyst supports [33]. Materials made of porous carbon 
are categorized as microporous (with pore sizes less than 2 nm), mesoporous (with 
pore sizes from 2 to 50 nm), and macroporous (with pore sizes greater than 50 nm) 
based on their pore diameters [34]. 

1.5 Fullerenes 

As the pentagons are introduced into the layer, as in the case of corannulene, the 
bonding nature of fullerenes differs slightly from that of graphite based on the sp2 

hybridization of carbon atoms [35]. From the smallest closed shell of C60 to giant 
fullerenes, the repetition of these curved layers can produce a variety of closed shells
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with different sizes. By maintaining closed-shell morphology, the addition of extra 
hexagons among pentagons in C60 results in giant fullerenes [36]. Because all other 
carbon materials are not dissolved into any organic solvent, the majority of fullerenes 
behave like molecules and can be dissolved into an organic solvent, giving rise to 
a distinctive color. Thanks to developments in surface science, clusters have been 
studied, starting with chains of carbon atoms and moving on to rings of carbon atoms 
up to 15 atoms in size [37]. 

1.6 Diamond 

Diamond is the metastable cubic form of carbon crystal. Three-dimensional exten-
sions of purely covalent chemical bonds make up the sp3-hybridized carbons that 
make up diamonds. Because a diamond contains no p electrons, it is extremely hard 
and electrically insulating. A long-range periodic and regular repetition of the CeC 
bond is necessary to form a diamond crystal [38]. The purest form of crystalline 
carbon is diamond. Tetrahedral bonds hold a number of its carbons together. The 
carbon atoms that make up each tetrahedral unit are bonded to four other carbon 
atoms, which are subsequently joined to other carbons. As a result, the carbon atoms 
are arranged in three dimensions in an allotrope of carbon [39]. 

The glitter and shine of diamonds are a result of intense heat and pressure that 
occurs far below the surface of the Earth. The crystal structure of a diamond is known 
as an FCC lattice or face-centered cubic. Every carbon atom is connected to four 
other carbon atoms in a typical tetrahedron, or triangle prism [40]. Because of their 
cubic shape and extremely symmetrical atom arrangement, diamond crystals can 
take on a wide range of shapes that are known as crystal nature. The most common 
crystal form is the diamond form or eight-sided octahedron. Additionally, cubes, 
dodecahedra, and combinations of these shapes can be seen in diamond crystals 
[41]. Instead of having perfectly smooth faces, real diamond crystals have raised or 
indented triangular growths called “trigons” on them. Diamonds will split precisely 
along these lines rather than breaking in a jagged way because they have flawless 
cleavage in four directions. The diamond crystal has fewer chemical bonds in the 
plane of its octahedral face than in other orientations, which is why the cleavage lines 
are visible [42]. 

1.7 Structure of Activated Carbon 

A raw form of graphite with a highly porous structure and different-sized pores is 
called activated carbon. Its surface area is significantly increased by the numerous 
molecular cracks and crevices that it possesses. The internal surface area of activated 
carbon can reach up to 1500 m2/g. This makes it possible for activated carbon to 
perform the process of adsorption, which is the process by which molecules of a gas
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or liquid are held in place by the interior or exterior surface of a solid [43]. Activated 
carbon’s structure is essentially similar to that of pure graphite. Carbon–carbon bonds 
bind the hexagonal layers of the activated carbon molecules together.

• Activated charcoal has found application in medicine and adsorption—in 1773.
• Using the adsorption of gases on the surface of charcoal, it was possible to 

recognize the adsorptive power of charcoal—in 1773.
• Applying charcoal to different aqueous solutions for decolorization. This is the 

first time charcoal has been used in a liquid phase—in 1785.
• One can use charcoal made from animal tissue to remove color from an aqueous 

solution—in 1793.
• Sugar companies employed charcoal derived from wood to remove the color from 

sugar syrup—in 1794.
• Proven application of charcoal for decolorization of sugarbeet liquor—in 1805.
• First activated carbon was made by heating blood with potash and combining 

physical and chemical activation. Compared to bone char, it is 50 times more 
effective—in 1822.

• Made char by heating a mixture of flour, tar, and magnesium carbonate—in 1856.
• Made carbon ready to filter portable water—in 1862.
• Made activated carbon out of coconut shells and researched gas adsorption—in 

1865.
• Activated carbon was prepared using phosphate heating and waste from paper 

mills—in 1868.
• Two processes were used to develop commercial activated carbon: (i) using metal 

chlorides before carbonization, and (ii) selectively oxidizing charcoal at a high 
temperature using carbon dioxide—in 1900.

• Using the Ostrejko method, activated carbon was first manufactured industrially 
and sold under the brand name—in 1911.

• A study found that heating Epoint with zinc chloride increased its decolorizing 
capacity—in 1913.

• Investigating the sorption phenomenon on activated carbon through the applica-
tion of the capillary condensation method—in 1931 [44]. 

1.8 Applications of Carbon-Based Materials 

Carbon-based materials have drawn interest due to their important contribution to 
the field of materials science (Fig. 1.4). These materials include carbon nanotubes 
(CNTs) with one or more walls, carbon nanofibres (CNF), fullerenes, carbon dots, 
and graphene and its derivatives (graphene oxide, reduced graphene oxide, and func-
tionalized graphene nanosheets), in addition to the more recent generation of carbon 
materials such as graphene and its derivatives. High surface area, low cost, chemical 
stability, ultrahigh optical, thermal, and mechanical properties, remarkable electrical 
conductivity, and highly developed and tunable porosity are just a few of their many 
impressive qualities [45]. Water purification, catalysis, oxygen reduction reactions,
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Fig. 1.4 Discrete applications of carbon-based materials

clean energy conversion and storage, polymer reinforcement, solar steam generation, 
biomedical engineering, advanced information encryption, and CO2 capture are just 
a few of the processes that have found them appealing due to these qualities [46]. 

• Metal processing—artificial graphite blocks
• Electrical and electronic devices—polycrystalline graphite blocks
• Nuclear applications—Polycrystalline graphite [47]
• Molecular sieving carbons [48]
• Mesoporous carbons for car canisters [49]
• Porous carbons for electric double-layer capacitors and hybrid capacitors
• Carbon materials for energy storage—Rechargeable batteries [50]
• Electrochemical capacitors and pseudocapacitance [51]
• Storage of hydrogen and methane gas [52]
• Carbon materials for environment remediation [53]
• Carbon materials for sorption of viscous fluids [54]
• Sorption of biomedical fluids [55].
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Chapter 2 
Roadmap: From Carbon to Graphene 
Quantum Dots 

2.1 Achievements of Carbon-Based Materials 

Two Nobel Prizes for fullerenes and graphene and two Kavli Prizes in Nanoscience 
to M Dresselhaus and S Iijima for work on carbon nanotubes have resulted from 
recent research on carbon materials [1]. The majority of materials that have piqued 
the interest of carbon science researchers thus far are constructed using the benzene 
ring, a hexagon that is sp2 bonded, as the main building block [2]. Graphene is 
produced by combining an infinite number of benzene rings in a two-dimensional 
(2D) fashion [3]. 

2.2 Graphite 

There are only three forms of carbon that occur naturally: diamond, amorphous 
carbon, and graphite. The structure and atom bonding within each of the three 
naturally occurring allotropes distinguish them from one another: graphite has a 
honeycomb lattice structure, amorphous carbon lacks a crystalline structure, and 
diamond has a diamond lattice crystalline structure. Although carbon can take on 
many different forms, graphite is the most stable form under normal circumstances 
and is of the highest grade [4]. As a result, it is frequently used in thermochemistry 
as the reference state to define the heat formation of carbon-based compounds. It 
occurs naturally in three different forms: lump or vein, amorphous, and crystalline 
flake graphite. Depending on the form, it can be used for a variety of purposes. As 
was mentioned earlier, the structure of graphite is planar and layered, with carbon 
atoms arranged in a hexagonal lattice to form each layer [5]. The carbon atoms in 
these bonds, or covalent bonds as they are more formally called, are only 0.142 nm 
apart, and they are incredibly strong. Strong sp2 hybridized bonds hold the carbon 
atoms together in a single, 2D layer of atoms. In graphite, there is a 0.335 nm gap
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