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Preface

This book includes a selection of articles from the First International Conference on
Smart Medical, IoT & Artificial Intelligence – ICSMAI’24, held in Saidia, Morocco,
from April 18 to 20, 2024.

This first edition aims to bring together students, researchers, and experts in the field
of Smart Medical, IoT, and artificial intelligence to share their latest research findings,
exchange ideas, and discuss challenges and opportunities in the field.

The Program Committee of ICSMAI’24 was composed of a multidisciplinary group
of experts and those who are intimately concerned with, artificial intelligence, Internet
of Things, Smart Medical, Information & communication technologies and security.
They have had the responsibility for evaluating, in a ‘blind-review’ process, the papers
received for each of the main themes proposed for the conference.

The main topics covered are:
Smart Healthcare/Smart Technologies/Smart Industry; AI, Machine Learning

and Deep Learning; Parallel/concurrent/distributed algorithms and programming;
Neuromorphic Systems; Distributed database, embedded and operating systems;
Cloud/Fog/Edge Computing; Distributed ledgers and blockchain technologies; Inter-
net of Things - IoT, 5G, URLLC; Robotics, Electrical and Electronics Engineering;
Mobile,wireless, ad-hoc and sensor networks; Low-PowerWide-AreaNetworks;Virtual
and augmented reality; Graph and Image Processing; Static and dynamic analysis and
testing; Collaborative intelligent systems; Information/Network Security and privacy;
Web of Things and Semantic Interoperability; Game Theory, mechanisms/hardware
design; Computer Vision; Ethics and Cybercrime; Cryptocurrencies, Biometric, Cryp-
tography, Authentication and Access Control; Fuzzy/Agents/Multi-agent Systems; Nat-
ural Language Processing; Data Analysis and Big Data; High Performance Computing;
Scientific Calculation, Environment and Renewable Energy; Numerical modelling; AI-
Optimized Medical Supply Chain in Smart Transportation; Emerging Technologies in
Smart Medical Supply Transportation.

The book is aimed at all those dealing with Smart Medical, Internet of Things &
artificial intelligence issues, including practitioners, researchers, and teachers as well as
undergraduate, graduate, master’s and doctorate students.

ICSMAI’24 received contributions from 14 countries around the world. The papers
accepted for presentation and discussion at the conference are published bySpringer (this
book) and will be submitted for consideration in the Web of Science, Google Scholar,
among others. Extended versions of selected best papers will be published in relevant
journals, including WoS and Scopus indexed journals.

We acknowledge all those who contributed to the staging of ICSMAI’24 (authors,
committees, and sponsors); their involvement and support was very much appreciated.

April 2024 Mohammed Serrhini
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Abstract. Forests are essential to our planet’s well-being, playing a vital role in
climate regulation, biodiversity preservation, and soil protection, thus serving as
a cornerstone of our global ecosystem. The threat posed by forest fires highlights
the critical need for early detection systems, which are indispensable tools in safe-
guarding ecosystems, livelihoods, and communities from devastating destruction.
In combating forest fires, a range of techniques is employed for efficient early
detection. Notably, the combination of drones with artificial intelligence, particu-
larly deep learning, holds significant promise in this regard. Image segmentation
emerges as a versatile method, involving the partitioning of images into multi-
ple segments to simplify representation, and it leverages deep learning for fire
detection, continuous monitoring of high-risk areas, and precise damage assess-
ment. This study provides a comprehensive examination of recent advancements
in semantic segmentation based on deep learning, with a specific focus on Mask
R-CNN (Mask Region Convolutional Neural Network) and YOLO (You Only
Look Once) v5, v7, and v8 variants. The emphasis is placed on their relevance in
forest fire monitoring, utilizing drones equipped with high-resolution cameras.

Keywords: Forest fires · Deep Learning · Segmentation · UAV (Drone) · Mask
R-CNN · YOLO

1 Introduction

Forests play a crucial role in maintaining the ecological balance of our planet, providing
oxygen, sheltering precious biodiversity, and regulating the climate. However, these
ecosystems are constantly threatened by wildfires, which can cause irreparable damage
in a short amount of time. Early detection of forest fires is crucial to limit their spread
and reduce the ecological and economic losses associated with them [1].

Unfortunately, the issue of wildfires has become increasingly pressing over time,
due in part to climate change and deforestation. Rapid detection has therefore become
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an absolute priority. This is where technological advancements, such as the use of
drones equipped with sophisticated sensors, come into play [2]. Paired with computer
vision techniques, particularly those based on Deep Learning, these drones can provide
real-time monitoring and early detection of forest fires over vast expanses, which was
previously difficult to achieve with traditional methods [3].

Several techniques are employed for forest fire detection, including analysis of
infrared images, satellite monitoring, and the use of sensor networks deployed on the
ground.However, the use of drones offers significant advantages, including higher spatial
resolution and the ability to cover hard-to-reach areas. By combining these capabilities
with Deep Learning algorithms, drones can identify fire signals with increased accuracy,
thereby enabling swift intervention by firefighting teams [4].

Regarding image segmentation, a key technique in fire detection, Deep Learning
offers promising possibilities. By using Convolutional Neural Networks (CNNs), it is
possible to efficiently segment images to isolate fire and smoke areas, even in reduced
visibility conditions. This capability allows for continuousmonitoring of forest fires, thus
facilitating decision-making for authorities and improving emergency management. In
summary, the integration of Deep Learning into forest fire detection and supervision
paves the way for more effective strategies in preventing and combating these natural
disasters [5].

In this study, we broaden our research scope after exploring image classification and
object detection in two previous works [4, 6]. We now focus on semantic segmentation,
delving into a comparison of the most prevalent Deep Learning models for this task. Our
aim is to assess their potential for wildfire detection and supervision using drones.

2 Backgrounds

2.1 Deep Learning

Deep learning is a subset of artificial intelligence focused on learning multi-level data
representations. In computer vision, it enables machines to understand visual content
in images or videos, mimicking human visual perception. Thanks to deep learning,
computer vision has made tremendous strides in recent years, particularly in object
recognition, pattern detection, and image segmentation [3]. This advancement has rev-
olutionized image processing capabilities for various applications, including forest fire
monitoring. With this combination, it’s now possible to quickly classify images as con-
taining or lacking forest fires, accurately detect objects such as fire or smoke in forest
environments, and efficiently segment areas affected by fires for better natural disaster
management.

2.2 Image Segmentation

Segmentation, a fundamental technique in computer vision, divides images into mean-
ingful regions for analysis, offering fine granularity by identifying objects, boundaries,
and structures. It finds diverse applications, frommedical imaging for diagnosing condi-
tions to autonomous driving for obstacle detection, augmented reality, video surveillance,
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facial recognition, and robotics [7]. Moreover, segmentation proves invaluable for for-
est fire detection and monitoring, providing insights into fire size, affected areas, and
differentiating fire types [8].

Segmentation techniques for forest fire monitoring include instant, semantic, and
Panoptic segmentation. Instant segmentation enables real-time monitoring for swift
response to fire outbreaks, ideal for early detection using drone imagery. Semantic seg-
mentation identifies fire-affected areas, aiding decision-making for response strategies.
Panoptic segmentation provides comprehensive image representation, crucial for under-
standing fire dynamics. The choice of technique depends on specific criteria; for our
research focusing on fire extent, semantic segmentation is preferred (Fig. 1).

Fig. 1. Examples of Instant Segmentation and Semantic Segmentation.

2.3 Drones for Forest Fire Surveillance

Adrone, also known as an Unmanned Aerial Vehicle (UAV), is an aircraft operated with-
out a human pilot onboard. Drones have gained significant attention for their versatility
and applications across various industries, including forest fire detection and monitor-
ing. Utilizing drones for these purposes offers several advantages, such as their ability
to access remote or hazardous areas, providing real-time aerial footage for enhanced
situational awareness, and covering large geographical areas quickly and efficiently.
However, there are constraints associated with drone usage, notably limited battery life
and onboard resources [6]. These limitations necessitate careful planning of flight paths,
payload management, and resource optimization to maximize the effectiveness of drone
operations in forest fire management scenarios.

3 Related Work

In their research, Bulatov et al. [9] utilized instance segmentation to monitor and analyze
the spatial and temporal distribution of deadwood, a significant factor linked to forest
fire occurrences. Their study highlights the considerable promise of achieving precise
instance segmentation within the RGB and elevation domains, even with constraints
on training data availability. Employing a high-performing Mask R-CNN model, the
team effectively mapped standing and fallen deadwood instances across German forests.
The outcomes of their investigation were particularly noteworthy, demonstrating an
impressive overall accuracy rate of 92.4%.
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Tran et al. [10] utilized images from a forest fire in Andong, South Korea, in April
2020. They employed a two-stage deep learning approach at the patch level. The first
network, based on UNet++, operated at patch-level 1. Its output predictions served as
input for a second network, using UNet architecture, to refine results based on posi-
tional information. Their method’s performance was evaluated against state-of-the-art
algorithms, including a comparative analysis of loss functions. However, the approach
requires training dual patch-level models in various conditions for optimal performance
and transitioning to an online platform for practicality and reduced processing time.

Zhao et al. [11] proposed an innovative saliency detection algorithm geared towards
swiftly pinpointing and segmenting core fire areas in aerial images. Their approach
addresses the issue of feature loss caused by direct resizing, rendering it well-suited for
tasks like data augmentation and the creation of the ‘UAV_Fire’ dataset, which serves
as a standard repository of fire images captured by drones. Additionally, they intro-
duced ‘Fire_Net,’ a 15-layer deep convolutional neural network (DCNN) architecture,
designed to function as both a self-learning fire feature extractor and classifier. Through
rigorous evaluation of various architectures and critical parameters (e.g., dropout ratio,
batch size) of the DCNNmodel concerning its validation accuracy, their proposed design
outperformed previous methods, achieving an impressive overall accuracy of 98%. Fur-
thermore, ‘Fire_Net’ exhibited a remarkable average processing speed of 41.5 ms per
image, enabling real-time wildfire monitoring and inspection.

4 Proposed Method

Our proposed method (Fig. 2) consists of the following six steps: Data Collection, Pre-
processing, Deep Learning Model, Object Detection, In-Box Segmentation, and Output
Data and Evaluation.

Fig. 2. Approach to Experimental Research Methodology.

4.1 Data Collection

The primary phase of our proposed method involves assembling a dataset of images
depicting instances of forest fires. This dataset comprises a total of 4236 labeled images. It
includes photographs taken from ground-level cameras as well as aerial drones, offering
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both intricate real-time portrayals from ground cameras and broader perspectives from
drones to monitor the fire’s scope. We also incorporated publicly accessible datasets to
enhance the dataset’s authenticity. Our rigorous approach ensures a comprehensive range
of images, encompassing diverse fire types, intensities, and environmental settings. The
labeling process was streamlined using the Darwin training data platform, known for
its effectiveness in creating AI solutions [12]. Team members efficiently distributed the
dataset to optimize workflow and resolve tasks swiftly.

4.2 Preprocessing

Our approach encompasses preprocessing and augmenting the gathered datasets. Pre-
processing entails resizing images to dimensions of 640× 640 and converting them into
JPG format, crucial for effective image segmentation. Augmentation introduces distor-
tions such as rotations and flips to diversify the dataset and improve system resilience.
The combination of resizing and augmenting data enhances the likelihood of successful
segmentation outcomes [13].

4.3 Deep Learning Models

Our examination of deep learningmodels for segmentation encompasses twokey classes:
YOLO and Mask R-CNN.

YOLO, particularly versions v5, v7, and v8, has significantly advanced computer
vision, initially devised for object detection but now integrating image segmentation
capabilities [14]. This integration marks a crucial milestone, seamlessly combining
object detection with segmentation, enabling unified extraction of object information
and precise contour delineation. These advancements offer immense potential, from
bolstering automated surveillance to enabling advanced environmental analysis.

Similarly, Mask R-CNN, introduced in 2017 by He et al., represents a historic break-
through by merging object detection with semantic segmentation. Unlike YOLO, Mask
R-CNN operates with a two-stage architecture, evolving from Faster R-CNN. It intro-
duces a segmentation branch to precisely identify and delineate detected objects, rev-
olutionizing applications such as multi-instance object detection and contextual under-
standing [15]. As a backbone, we will utilize ResNet50, a convolutional neural network
renowned for its depth and efficiency, which has been validated as an effective choice
in prior studies [16].

4.4 Object Detection

The first step in segmentation is object detection, a pivotal stage in identifying and
delineating specific entities within an image, such as fires. Object detection focuses on
locating and classifying these objects of interest, enabling the system to proficiently
recognize and outline them amidst intricate visual backgrounds. This capability serves
as the cornerstone for subsequent segmentation tasks, facilitating deeper analysis and
comprehension of the image content.
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4.5 In-Box Segmentation

The second step in segmentation is the In-Box segmentation, which involves refining the
initial object detection by precisely delineating the boundaries of detected objects within
their respective bounding boxes. This process enhances the accuracy and granularity of
segmentation, enabling a more detailed understanding of the objects’ spatial extent and
characteristics within the image. Through advanced algorithms and techniques, such
as pixel-wise classification and boundary refinement, the In-Box segmentation further
refines the segmentation process, laying the groundwork for comprehensive analysis and
interpretation of the image content.

4.6 Output Data and Evaluation

The final stage of the process involves “Output Data and Evaluation”, where the seg-
mented results undergo comprehensive processing and evaluation using a range of met-
rics. Central to this evaluation are key metrics such as the F1-Score, mAP@0.5, and
mAP@0.95, which serve to gauge the accuracy and efficacy of the segmentation models.

The F1-Score stands as a pivotal metric, striking a balance between precision and
recall, thereby offering a holistic assessment of the model’s performance [17]. It is
calculated using the formula:

F1score = 2 ∗ Precision ∗ Recall

Precision + Recall
(1)

Complementing this, mAP@0.5 and mAP@0.95 metrics quantify the mean Average
Precision across varying Intersection over Union (IoU) thresholds, providing valuable
insights into the model’s capacity for precise object localization [18]. Mean Average
Precision (mAP) is calculated as:

mAP = 1

N

∑N

i=1
APi (2)

where APi is the Average Precision of class i and N is the number of classes.
To deepen the evaluation, it’s imperative to consider the inference speed, evaluating

the model’s efficiency in real-time applications. This consideration ensures that the
model can deliver timely and responsive performance in practical scenarios, which is
crucial for its real-world utility.

By subjecting the segmentation models to rigorous evaluation utilizing these met-
rics, their capabilities can be thoroughly scrutinized, thereby facilitating further refine-
ment and optimization aimed at enhancing their performance [18]. Additionally, the
Intersection over Union (IoU) is calculated as:

IoU = (Area of Overlap)

(Area of Union)
(3)
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5 Results and Discussions

5.1 Hardware Characteristics

The footage capturing the simulated fires at the university campuswas obtained through a
combination of a DJI Mavic Air drone and the mobile phone cameras of team members.
For model training, TensorFlow v2.13.0 [19] was utilized, which is an open-source
software library for data analysis andmachine learning. The training took place on a high-
performance computing (HPC) system equipped with powerful hardware, including 2×
Intel Gold 6148 (2.4 GHz/20 cores) CPUs and 2× NVIDIA Tesla V100 graphics cards,
each boasting 32GB of RAM. These hardware specifications were essential to provide
the necessary computational power for effective model training.

5.2 Experimental Results

In Table 1 and Fig. 3, we present the results obtained for various metrics, including
accuracy, precision, recall, Intersection over Union, mAP at confidence thresholds of
0.5 and 0.95, as well as the inference time for each model. To maximize effectiveness,
we trained all of themodels for seventy epochs. The initial observation to highlight is that
all the models under examination demonstrated the capability to be trained for forest
fire segmentation. However, there was variability in the number of epochs required
for convergence. Notably, the YOLO models exhibited swifter training and achieved
convergence in fewer than ten epochs.

While segmentation speed is crucial for real-time drone processing, our focus here
is on the mAP@0.95 metric. We aim to utilize segmentation not just for fire detection
but also for assessing post-fire damage and aiding reforestation efforts. Drones must
operate at high altitudes to survey large areas effectively, requiring segmentation with
near-perfect precision to accurately depict burnt areas and tree counts.

The Mask R-CNN model excels in terms of image segmentation performance. It
achieves an mAP@0.5 of 97.93% and an mAP@0.95 of 97.53% for object detection
“Fire”, along with an mAP@0.5 of 97.91% and an mAP@0.95 of 96.42% for fire seg-
mentation, accompanied by an impressive F1 score of 99.01%. Mask R-CNN stands out
as the top-performing model among all the models examined. However, it also demands
thehighest computational resources, requiring approximately 0.028 s per frame for object
detection and around 0.0046 s per frame for the segmentation operation. This translates
to an overall processing time of 0.0346 s per frame for the entire image analysis pipeline.

All variations of the YOLO model demonstrated slightly inferior performance com-
pared to the Mask R-CNN model, yet offered significantly improved inference times.
These findings remain compelling, particularly those attributed to the YOLOv8 model,
which achieved an F1 score of approximately 98.3%. The model attained a mAP@0.95
of 96.28% and 89.61% for object detection and segmentation, respectively. YOLOv8’s
performance is noteworthy, especially given its swift overall inference time of 3.8 ms
per image, rendering it an optimal choice for real-time detection tasks.

In most of the models analyzed, the object detection phase consistently shows longer
processing times compared to the segmentation stage, which aims to delineate the fire’s
outline within the specified area. Remarkably, segmentation time remains relatively
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stable across various models. Significant improvements in both performance and speed
within the object detection phase, especially with the YOLOv8 model, have been noted.
Figure 4 presents several instances of forest fire image segmentation performed by the
YOLOv8 model.

Table 1. Achieved results for the implemented models.

DEEP
LEARNING
MODEL

STAGE IoU mAP@0.5 mAP@0.95 Inference Precision Recall F1-Score

% % % s/Image % % %

MASK
R-CNN

BOXING 91.02 97.93 97.53 ~0.0280 99.13 98.89 99.01

SEGMENTATION 92.14 97.91 96.42 ~0.0046

YOLOv5 BOXING 88.94 95.43 92.04 ~0.0051 98.18 97.95 98.06

SEGMENTATION 89.02 95.25 84.20 ~0.0039

YOLOv7 BOXING 89.17 95.10 95.96 ~0.0027 98.35 98.17 98.26

SEGMENTATION 89.14 94.90 85.00 ~0.0037

YOLOv8 BOXING 89.36 96.50 96.28 ~0.0011 98.47 98.22 98.34

SEGMENTATION 90.54 96.37 89.61 ~0.0027

Fig. 3. Achieved mAP@0.5 over epochs on validation set for the implemented models.
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Fig. 4. Segmentation of forest fires: Illustrative examples with YOLOv8.

6 Conclusion

The utilization of drones in conjunction with deep learning techniques proves to be a
cost-effective method for accurately and swiftly detecting forest fires in real-time. Image
segmentation models based on deep learning play a critical role not only in fire detection
but also in conducting thorough environmental analyses. This sophisticated technolog-
ical approach aids in ecosystem monitoring, thereby contributing to the preservation
of nature and facilitating the assessment of damage caused by wildfires. In this study,
recent advancements in deep learning-based semantic segmentation,with a specific focus
on models such as Mask R-CNN and YOLO versions 5, 7, and 8, are examined. The
main focus lies in assessing their applicability for monitoring forest fires using drones
equipped with RGB cameras. All themodels demonstrate promising performance across
various metrics, establishing themselves as valuable tools for the semantic segmentation
of forest fire images. While Mask R-CNN showcases exceptional image segmentation
performance, achieving an impressive F1 score exceeding 99%, alongwith anmAP@0.5
of nearly 97.5% for the “Fire” object detection step and 98% for segmentation within the
bounding boxes, YOLOmodels exhibit commendable performance alongwith outstand-
ing inference speeds, making them ideal choices for real-time detection tasks. Notably,
YOLOv8 demonstrates an impressive overall inference time of just 3.8 ms per image.

Moving forward, we plan to develop a comprehensive framework for the detec-
tion and monitoring of forest fires. This framework will capitalize on the collabora-
tion between IoT sensor networks, drone networks, and state-of-the-art deep learning
algorithms.
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Abstract. In light of significant demographic shifts worldwide, elderly fall detec-
tion is an ongoing, vital area of research. Deep learning, known for its effective-
ness in healthcare applications, is challenged by limited accessibility to substantial
datasets, especially in the case of fall detection. Moreover, training deep learning
models is both time-consuming and costly. To address these issues, in this paper,we
implemented a sample size technique called N×Subsampling and utilized transfer
learning with MobileNetV2. Our study leveraged the public URFD database, and
the obtained experimental results demonstrated a notable achievement: an accu-
racy range of 94.74% to 98.94%, using only a 15% training subset consisting of
732 images of activities of daily living and 369 images of fall scenarios.

Keywords: Fall detection · Transfer learning · Sample size

1 Introduction

In recent decades, the elderly population has continued to increase significantly. Accord-
ing to the World Health Organization (WHO), the number of seniors aged 60 and over
was 1 billion in 2019 [20]. This statistic is expected to rise to 1.4 billion by 2024 and
reach 2.1 billion by 2050. In France, the National Institute of Statistics and Economic
Studies (INSEE) estimates that the primary growth in the French population concerns
elderly individuals [11]. This growth explicitly affects seniors aged 75 and over; by
2040, the proportion of seniors is projected to exceed a quarter of the total population.

Aging is generally characterized by a gradual and irreversible decline in the physi-
cal functions of the human body [10]. The frailty resulting from this universal natural
phenomenon exposes seniors to a higher risk of domestic accidents, including falls [5].
In other words, the combination of aging and frailty increases the risk of falling. Indeed,
falls constitute a major public health problem and a significant source of injury-related
deaths for the elderly [19, 27]. Globally, it is estimated that one in three individuals aged
over 65 experiences at least one fall per year [8, 18]. In France, this issue has dramatic
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human and economic consequences [1, 24]: i) nearly one-third of individuals over 65
and half of those over 80 experience falls each year, ii) these falls result in approximately
9,000 deaths per year in individuals over 65, iii) falls have a significant cost for society,
estimated at 2 billion euros per year, with 1.5 billion attributed to health insurance.

To address this demographic challenge, scientific researchers are committed to align-
ing with societal needs through the development of innovative solutions. These solutions
rely on technological advances to ensure a safe aging process. Various types of artifi-
cial intelligence have proven to be valuable tools for developing effective fall detection
approaches [12, 25]. These models outperform traditional methods based on predefined
thresholds [21], as they minimize detection errors and adapt to various contexts and
situations, thus providing better precision, adaptability, and generality.

Developing fall detection approaches basedondeep learningpresents numerous chal-
lenges for researchers. One of the major challenges lies in the need for large datasets for
training and the associated high costs [2]. However, in specific domains, the number of
publicly accessible samples is very limited [4]. In the context of fall detection, datasets
witness a shortage of voluminous data and a limitation of real-world samples [5, 13].
Additionally, creating such a high-quality database involves high costs and considerable
time investment, exposing volunteers to an increased risk of injury. Hence, transfer learn-
ing is a promising solution for overcoming obstacles related to the lack of voluminous
data [26].

The originality of this study lies in evaluating the sample size and applying transfer
learning to develop an efficient fall detection system. Our approach involves several
key steps. First, the N×Subsampling technique [3] is employed to partition the training
dataset. Then, these subsamples are used in the fine-tuning training of the model based
on MobileNetV2 [23], with modifications made to the classification layers. By combin-
ing transfer learning and determining the sample size, our approach demonstrates high
performance in fall detection, even with small fractions of the dataset, especially in the
context of limited, specific fall data.

This paper is organized into five sections. Section 2 presents previous studies related
to our research on transfer learning for human fall detection. Section 3 provides the
background context for our study. Section 4 details the experimentation conducted and
then presents and analyzes the obtained results. Finally, Sect. 5 concludes the paper with
future work.

2 Related Work

Researchers dedicate efforts to all phases of the fall detection process, including relevant
feature selection, data preprocessing, and other steps, aiming to optimize system perfor-
mance and ensure high-quality detection [6, 7]. The fall detection sector is confronted
with a significant challenge due to the limited availability of training data. To address
this gap, the scientific community has opted for transfer learning. Several studies have
demonstrated the effectiveness of transfer learning in the context of fall detection.

McCall et al. [17] conducted a study focused on fall detection and prediction, lever-
aging transfer learning and the transformer model. Initially, the latter was trained on
the extensive MPOSE dataset, consisting of 15429 samples of 20 actions performed by
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100 subjects. These data samples comprised sequences of 2D poses involving walking,
jogging, running, and kicking. This initial pre-training phase allows the model to acquire
valuable representations of features related to human poses and actions. For the fine-
tuning process, the weights of the integration and transformer encoder layers are frozen,
leaving only the two last adjustable MLP layers. The output network architecture was
also adapted by modifying the number of outputs from 20 to 2 (fall/non-fall or high/low
fall risk). For this purpose, the CAUCAFall dataset was used, with a distribution of 70%
for training, 10% for validation, and 30% for testing. The experimental results of the
small transformer with transfer learning revealed the best performance, reaching 97.95%
± 0.87% for fall detection.

Lobanova et al. [15] applied the AlexNet model, enhanced by the use of transfer
learning, to address the issue of fall detection. They modified the last fully connected
layer, replacing it with a new one with an output size of two (Fall/No Fall). The weights
of this layer were adjusted during training. The fine-tuning process and validation were
conducted using the Le2i dataset, comprising 191 videos representing daily activities
and simulated falls by 9 volunteers. The experimental results demonstrated an accuracy
of 96% for fall detection from images.

Sadreazami et al. [22] introduced an approach based on a deep neural net-work,
using VGG16, for fall detection by leveraging radar data and transfer learning. Radar
data were transformed into spectrograms using the squared magnitude of the short-term
Fourier transform. These data, collected from radars, include 121 fall scenarios and
85 non-fall activities, simulated by five subjects in a cluttered room. The experimental
results revealed that the model, resulting from fine-tuning the last convolutional block
in conjunction with the classification part (including maximum pooling layers, spatial
global average pooling, and the output layer), achieved a significant accuracy of 95.64%
with a 3-block cross-validation.

Yhdego et al. [28] proposed a fall detection method using transfer learning and
Support Vector Machines (SVM). They converted 3D acceleration data and amplitude
into RGB images through continuous wavelet transform to make them compatible with
the AlexNet architecture. The last three layers of AlexNet were then fine-tuned for
classification. Utilizing the public URFD database with 80% for training and 20% for
testing, their approach achieved an accuracy of 96.43%.

Lobanova et al. [16] presented a fall detection method using bioradar data and trans-
fer learning. They evaluated different combinations of bioradars to determine the opti-
mal configuration. For this purpose, they created a database simulated by 8 volunteers,
comprising 400 records for each bioradar (200 fall records and 200 non-fall records).
Their approach involves pre-trained convolutional neural networks (CNNs) likeAlexNet,
which process bioradar signals converted into scalograms. During the fine-tuning step,
the network’s last layer is adjusted to produce a two-value output corresponding to falls
and non-falls. The experimental results using the leave-one-out method and hold-out
validation revealed an accuracy rate of 92% for two bioradars, 98% for three bioradars,
and 99% for four bioradars.

Research in the literature has demonstrated the effectiveness of transfer learning
in achieving highly accurate results better suited to real-world needs in fall detection.
However, to the best of our knowledge, no study has explored the impact of sample size


