LUBRICANTS FROM RENEWABLE **FEEDSTOCKS**

Edited by Subhalaxmi Pradhan Lalit Prasad Chandu Madankar S. N. Naik

Lubricants from Renewable Feedstocks

Scrivener Publishing

100 Cummings Center, Suite 541J Beverly, MA 01915-6106

Publishers at Scrivener Martin Scrivener (martin@scrivenerpublishing.com) Phillip Carmical (pcarmical@scrivenerpublishing.com)

Lubricants from Renewable Feedstocks

Edited by Subhalaxmi Pradhan Lalit Prasad Chandu Madankar and S.N. Naik

This edition first published 2024 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA © 2024 Scrivener Publishing LLC

For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

ISBN 978-139417-253-5

Cover image: Sugar Cane Field: Kennerth Kullman | Dreamstime.com Cover images: Biofuel: 350jb | Dreamstime.com Cover design by Kris Hackerott

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

Printed in the USA

10 9 8 7 6 5 4 3 2 1

Contents

Pr	Preface x					
1	Pro	spectu	s of Renewable Resources for Lubricant Production	1		
	Sur	Suruchi Damle and Chandu S. Madankar				
		Abbre	eviations	1		
	1.1	Intro	duction	2		
	1.2	Histo	ry	5		
	1.3	Backg	ground of Biolubricants	5		
	1.4	Class	ification of Lubricants	7		
		1.4.1	Types of Base Oil Used	7		
			1.4.1.1 Synthetic Oils	7		
			1.4.1.2 Mineral Oil	7		
			1.4.1.3 Natural Oils	7		
		1.4.2	Physical State of Lubricant	7		
	1.5 Functions of a Good Lubricant					
	1.6	Renev	wable Sources for Biolubricant Manufacture	9		
		1.6.1	Jatropha Oil	9		
		1.6.2	Karanja Oil	9		
		1.6.3	Palm Oil	10		
		1.6.4	Rapeseed Oil	10		
		1.6.5	Castor Oil	10		
		1.6.6	Sunflower Oil	11		
		1.6.7	Soyabean Oil	11		
		1.6.8	Canola Oil	11		
		1.6.9	Coconut Oil	12		
	1.7	Physi	cochemical Properties of Bioderived Lubricants	12		
		1.7.1	Viscosity	12		
		1.7.2	Viscosity Index	13		
		1.7.3	Flash Point	13		
		1.7.4	Pour Point	13		
		1.7.5	Oxidation Stability	14		

vi Contents

1.8	Chemical Modification of Vegetable Oils for Manufacturing				
	Biobas	sed Lubricants	15		
	1.8.1	Esterification/Transesterification	15		
	1.8.2	Partial/Selective Hydrogenation	16		
	1.8.3	Epoxidation	17		
	1.8.4	Estolide Formation/Oligomerization	17		
	1.8.5	Hydroformylation	18		
	1.8.6	Friedel Craft Alkylation	18		
	1.8.7	Ene-Reaction	19		
	1.8.8	Radical Addition Reaction	19		
	1.8.9	Acyloxylation	19		
	1.8.10	Metathesis	19		
	1.8.11	Advanced Raw Materials and Catalysts for			
		Biolubricant Manufacture	20		
		1.8.11.1 Sesquiterpenes as Renewable Raw			
		Materials for Base Oils	20		
		1.8.11.2 Iso-Stearic Acids	20		
		1.8.11.3 Enzymatic Catalyzed Biolubricants	20		
		1.8.11.4 Perfluoropolyalkylethers	21		
		1.8.11.5 Fatty Acid Isomerization Catalysts	21		
1.9	Chara	cteristics of Biobased Lubricants	21		
	1.9.1	Carbon Chain Length	22		
	1.9.2	Types of Fatty Acids	22		
	1.9.3	Polarity	23		
1.10	Additi	ives	24		
	1.10.1	Antioxidants	24		
	1.10.2	Detergents and Dispersants	25		
	1.10.3	Viscosity Modifiers	25		
	1.10.4	Nanoparticles	25		
	1.10.5	Pour Point Depressants	25		
	1.10.6	Corrosion Inhibitors	26		
	1.10.7	Extreme Pressure Additives and Anti-Wear Additives	26		
1.11	Biolut	pricant Applications	26		
1.12	Biode	gradability and Ecotoxicity of Biolubricants	27		
1.13	New T	Eechnology Developed for Manufacture of			
	Biolut	pricants Based on Renewable Resources	27		
	1.13.1	Waste Oil/Fats	27		
	1.13.2	Microalgae	28		
	1.13.3	Fish Oil	28		
	1.13.4	Genetically Modified Oils	28		
	1.13.5	Synthetic Esters	29		

	1.14	Merit	s and Demerits	29
	1.15	Scope	and Challenges	30
	1.16	Concl	lusion	31
		Refere	ences	32
2	Extr	action	of Ester-Based Biolubricants from Vegetable Oils	39
	Anu	pama S	Sharma, Subhalaxmi Pradhan, Pinki Chakraborty	
	and	Lalit P	Prasad	
	2.1	Introc	luction	40
	2.2	Prosp	ects of Vegetable Oils in Context of Lubricant	42
	2.3	Edible	e Oils as Biolubricant	42
	2.4	None	dible Oils as Biolubricant	44
	2.5	Physic	cochemical Properties of Oils to Act as Lubricant	45
		2.5.1	Viscosity	45
		2.5.2	Viscosity Index	46
		2.5.3	Flash Point and Fire Point	46
		2.5.4	Cloud Point and Pour Point	46
		2.5.5	Oxidation Stability	47
	2.6	Produ	action Methodologies Involved in	
		Ester-	Based Lubricants	47
		2.6.1	Base Catalyzed for Transesterification	48
		2.6.2	Acid-Catalyzed Transesterification	49
		2.6.3	Enzyme-Catalyzed Transesterification	49
	2.7	Chem	ical Modification and Biodegradability of Vegetable Oils	50
		2.7.1	Transesterification	50
		2.7.2	Hydrogenation	51
		2.7.3	Epoxidation	51
	2.8	Chara	acterization Techniques of Ester-Based Lubricants	51
	2.9	Challe	enges and Shortcomings of Vegetable Oils as Biolubricants	52
	2.10	Factor	rs Affecting Biobased Lubricants	53
		2.10.1	Free Fatty Acid Content in Vegetable Oil	53
		2.10.2	Types of Alcohols	54
		2.10.3	Types of Catalysts and Their Concentrations	54
		2.10.4	Reaction Temperature and Rate of Reaction	54
		2.10.5	Alcohol to Oil Ratio	55
	2.11	Hydro	olytic Stability and Low-Temperature Properties—	
		Role o	of Additives or Nanomaterials in Improvement of	
		these	Properties	55
	2.12	Econo	omic and Environmental Acceptability of Ester-Based	
		Lubri	cants	56

	2.13 Current Research and Development for Minimizing				
		the Cl	hallenges		57
	2.14	Concl	usion		58
		Refere	ences		58
3	Bioł	oased E	Epoxide L	ubricants	67
	Aka	sh Kun	nar, Radh	a Gupta, Manish Rawat and Sahil Kohli	
	3.1	Introc	luction		67
	3.2	Broad	l Categori	zation of Lubricants	70
		3.2.1	Lubricat	ing Oils or Liquid Lubricants	70
			3.2.1.1	Animal and Vegetable Oils	71
			3.2.1.2	Mineral or Petroleum-Based Oils	71
			3.2.1.3	Blended Oils	71
		3.2.2	Semisoli	id Lubricants or Greases	71
		3.2.3	Solid Lu	bricants	72
	3.3	Bioba	sed Lubri	cants	73
		3.3.1	Advanta	Iges	74
			3.3.1.1	Low Toxicity	74
			3.3.1.2	Spill Remediation	74
			3.3.1.3	Superior Lubricity	74
			3.3.1.4	Renewable and Farmer Friendly	75
		3.3.2	Disadva	ntages	75
			3.3.2.1	Oxidative Instability	75
			3.3.2.2	High Pour Point	75
			3.3.2.3	Price	76
			3.3.2.4	Difficult to Recycle	76
	3.4	Bioba	sed Epox	ide Lubricants	76
	3.5	Modification and Application of Biobased Epoxy Lubricant			78
		3.5.1	Biobase	d Epoxide-Diamine Coatings	78
		3.5.2	Bio Oil a	s well as Biochar Loadings Over Epoxy Material	78
		3.5.3	Lubrica	nts Derived from Castor Oil's Fatty Acids with	
			a Biobas	ed Origin	79
		3.5.4	Nanoco	mposites Toughened with Acrylated Epoxidize	d
			Castor (Dil and Diglycidyl Ether of Bisphenol A	80
		3.5.5	Passion	Fruit as well as Moringa Oils and Their	
			Epoxy-E	Based New Hydraulic Biolubricants	80
		3.5.6	Biolubri	cants Originated from Enhanced Oxidation	
			Stability	of Waste Cooking Oil and Low-Temperature	
			Properti	es: (2015)	81
		3.5.7	Preparat	tion and Tribological Studies of Green	
			Lubrica	nt Epoxidized Palm Stearin Methyl Ester	82

		3.5.8	Preparation of Biolubricant Derived from Epoxy	
			Canola Oil using Sulfated Ti-SBA-15 Catalyst	83
	3.6	Physi	ochemical Characteristics of the	
		Epoxi	ide-Based Lubricants	83
		3.6.1	Chemical Composition	84
		3.6.2	Viscosity	84
		3.6.3	Drop Point	84
		3.6.4	Load-Carrying Capacity	84
		3.6.5	Water Resistance	84
		3.6.6	Corrosion Protection	85
		3.6.7	Adhesion	85
		3.6.8	Oxidation Stability	85
		3.6.9	Standard for Validation	85
	3.7	Envir	onmental Acceptability and Economic Importance	85
		3.7.1	Environmental Acceptability	86
			3.7.1.1 Renewable and Sustainable	86
			3.7.1.2 Biodegradable	86
			3.7.1.3 Lower Toxicity	86
		3.7.2	Economic Importance	86
			3.7.2.1 Energy Efficiency	86
			3.7.2.2 Reduced Maintenance and Downtime	86
			3.7.2.3 Market Opportunities	87
	3.8	Futur	e Prospects	87
	3.9	Conc	lusion	88
		Refer	ences	88
4	Biol	based H	Hydrogenated Lubricants	93
	Har	shita S	hakya, Lalit Prasad, Subhalaxmi Pradhan,	
	Poo	ja Agai	rwal and Diwakar Chauhan	
	4.1	Intro	duction	94
	4.2	Differ	ent Types of Oil and Fats	95
		4.2.1	Saturated Fats	95
		4.2.2	Unsaturated Fats	96
		4.2.3	Trans Fats	97
	4.3	Proce	ssing Techniques for Oils and Fats	97
	4.4	Micro	oalgae Oils: Some Considerations as Lubricants	98
	4.5	Hydro	ogenated and Hydrogenation Lubricants	98
		4.5.1	Hydrogenation of Alkene	99
		4.5.2	Use of Ru-Supported Catalysts for the	
			Hydrotreatment of Waste Cooking Oil	100
		4.5.3	Production of Hydrogenated Lubricants from Biomass	101

	4.5.4	Factors A	Affecting Synthesis of Hydrogenated Lubricants	102	
		4.5.4.1	Feedstock Composition	102	
		4.5.4.2	Hydrogen Source and Pressure	102	
		4.5.4.3	Catalyst Type and Concentration	103	
		4.5.4.4	Temperature and Reaction Time	103	
		4.5.4.5	Posttreatment Processes	103	
	4.5.5	Applicat	tions of Hydrogenated Lubricants	103	
		4.5.5.1	Automotive Industry	103	
		4.5.5.2	Aerospace Industry	104	
		4.5.5.3	Industrial Machinery	104	
		4.5.5.4	Food Industry	104	
		4.5.5.5	Medical Industry	104	
	4.5.6	Industri	al Application	104	
		4.5.6.1	Agriculture and Chemical Industries	105	
		4.5.6.2	Industries of Petroleum Refining	105	
4.6	Lubrie	cants		105	
4.7	Types of Lubricants				
	4.7.1	Mineral	Oil Lubricants	106	
	4.7.2	Syntheti	c Oil Lubricants	107	
	4.7.3	Biodegr	adable Lubricants	107	
	4.7.4	Vegetab	le Oil Lubricants	107	
	4.7.5	Silicone	Lubricants	107	
	4.7.6	Grease l	Lubricants	107	
	4.7.7	Graphit	e Lubricants	108	
	4.7.8	Aqueou	s Lubricants	108	
4.8	Biolubricant				
	4.8.1	Vegetab	le Oil-Based Biolubricants	109	
	4.8.2	Animal	Fat-Based Biolubricants	109	
	4.8.3	Syntheti	c Ester-Based Biolubricants	109	
	4.8.4	Polyalky	vlene Glycol (PAG)-Based Biolubricants	109	
	4.8.5	Water-B	ased Biolubricants	110	
	4.8.6	Biobase	d Hydraulic Fluids	110	
4.9	Physic	cochemic	al Properties of Biolubricant and		
	Refere	ence Lubi	ricant	110	
	4.9.1	Hydroly	rtic Stability	110	
	4.9.2	Viscosit	У	110	
	4.9.3	Thermo	oxidative Stability	111	
	4.9.4	Pour Po	int	111	
	4.9.5	Ecotoxi	city	111	
	4.9.6	Biodegr	adability	112	
	4.9.7	Flash Po	bint	112	

	4.9.8	Friction and Wear Properties	112
4.10	Cataly	rst	112
	4.10.1	Homogeneous Catalysts	113
	4.10.2	Heterogeneous Catalysts	113
4.11	Produ	ction of Biolubricant Using Conventional Catalyst	113
4.12	Transe	esterification of Vegetable Oils or Animal Fats	115
4.13	The U	sed Oil as Biolubricants	116
4.14	Using	Additives to Enhance the Lubricant's Qualities	118
4.15	Applic	cations	118
	4.15.1	Food Processing	118
	4.15.2	Marine Industry	118
	4.15.3	Wind Turbines	119
	4.15.4	Automotive Industry	119
	4.15.5	Aerospace Industry	119
4.16	Use of	Vegetable Oil without Modification	119
4.17	Reacti	on Pathways for Preparation of Biolubricants	120
4.18	Modif	ications	121
4.19	Produ	ction of Biolubricants	124
4.20	Biolub	pricants and the Environment	124
4.21	Nation	nal Policy on Biofuels (2022 Amendment)	126
	4.21.1	The National Policy on Biofuels has Undergone	
		Significant Modifications, which have been Approved	126
	4.21.2	Key Aspects of the Biofuels National Policy	127
	4.21.3	Standards of Excellence and Ongoing Development	
		for Biofuels	127
4.22	COVI	D-19 Impact on Biolubricants	128
	4.22.1	Recent Development	128
	4.22.2	Market Analysis and Size	129
	4.22.3	Insights on the Market for Biolubricants	130
	4.22.4	Segmentation and Market Scope	130
4.23	Concl	usion	132
4.24	Future	e Prospects	132
	Refere	ences	133
Mic	obial-	Based Biolubricants	141
Lovl	ish Gui	pta. Monika Chauhan. Aiay Kumar and	
Diw	akar Ci	hauhan	
	Abbre	viations	142
5.1	Introd	luction	142
5.2	Devel	opmental Methods for Microbial-Based Biolubricants	145
	5.2.1	Microbial Feasibility for Biolubricant Production	146
	~		- 10

5

6

	5.2.2	Biolubricant Production by Esterification and	
		Transesterification Processes	148
	5.2.3	Biolubricant Production by Fermentation Processes	150
	5.2.4	Fermentation of Microbial Biomass	151
5.3	Princ	iple and Purpose of Microbial-Based Biolubricants	152
5.4	Physi	cochemical Properties	155
	5.4.1	Viscosity and Viscosity Index	155
	5.4.2	Lubricity	156
	5.4.3	Pour Point	157
	5.4.4	Stability	157
		5.4.4.1 Oxidative Stability	157
		5.4.4.2 Hydraulic Stability	157
5.5	Appli	cations of SCO and Microbial-Based Biolubricants	158
5.6	Conc	lusion	161
	Refer	ences	161
Nar	nobiolu	lbricants	165
Trir	iath Bi	swal and Prafulla K. Sahoo	
	List o	f Abbreviations	166
6.1	Intro	duction	166
6.2	bricants and Additive Nanoparticles		
	from	Nanobiolubricants	168
	6.2.1	Synthesis of Biolubricants from Plant Oils through	
		Chemical Modification	168
	6.2.2	Impact of Biolubricants on Environment	171
	6.2.3	Benefits and Properties of Biolubricant and	
		Nanoadditives for the Development of	
		Nanobiolubricants	172
	6.2.4	Advantages of Biolubricants/Nanobiolubricants	173
	6.2.5	Disadvantages of Biolubricants/Nanobiolubricants	174
6.3	Impa	ct of Nanoparticles in Biolubricants	174
6.4	Kinds	s of Nanoparticle Additive for Preparation of	
	Nano	biolubricants	175
	6.4.1	Metals	176
	6.4.2	Metal Oxide	177
	6.4.3	Metal Sulphides	177
	6.4.4	Carbon-Based Nanoparticles	178
	6.4.5	Nanocomposites	179
	6.4.6	Kare Earth-Based Materials	180
	6.4.7	The Polyvit Nanoparticle Additive	180

	6.5	Different Metho	ds of Chemical Modification for		
		Nanobiolubricar	nts	181	
		6.5.1 Modificat	tion of Nanobiolubricants through		
		Esterifica	tion of Vegetable Oil	182	
		6.5.2 Chemical	Modification of Vegetable Oils Using		
		Trimethy	lol Propane	182	
		6.5.2.1	Transesterification	182	
		6.5.2.2	Hydrolysis	183	
	6.6	Tribological Pro	perties of the Nanobiolubricants	184	
		6.6.1 Tribologi	cal Mechanisms of Nanobiolubrication	186	
		6.6.2 Factors Ir	offuencing the Tribological Properties of		
		Nanobiol	ubricants	187	
		6.6.2.1	Effect of Nanoparticle Size	187	
		6.6.2.2	Effect of Morphology of the NPs	187	
		6.6.2.3	Effect of Surface Functionalization	188	
		6.6.2.4	Effect of Concentration of the NPs	188	
	6.7	Limitations or D	6.6.2.3 Effect of Surface Functionalization1886.6.2.4 Effect of Concentration of the NPs188mitations or Drawbacks of Nanolubricants189ble of Some Advanced Catalysts during the Production190Nanobiolubricants190onclusion and Further Work191efferences192		
	6.8	Role of Some Ac	lvanced Catalysts during the Production		
		of Nanobiolubri	cants	190	
	6.9	Conclusion and	Further Work	191	
		References		192	
7	Gre	en Nanofluids: R	ecent Advances and Applications	199	
	Abh	ishek Bhardwaj, S	Shashank Sharma, Kuldip Dwivedi		
	and	Kalpana Singh			
	7.1	Introduction		200	
	7.2	Synthesis of Nan	ofluids	201	
		7.2.1 One/Sing	le Step	202	
		7.2.2 Two/Dou	ble Step	202	
	7.3	Stability of GNF	S	202	
	7.4	Thermophysical	Properties	203	
	7.5	Effect of Temper	ature	204	
	7.6	Applications of (Green Nanofluids	205	
		7.6.1 Thermal	Applications	207	
		7.6.2 Machinin	ıg	207	
		7.6.3 Solar Pan	els and Solar Collector	209	
		7.6.4 Safety		211	
		7.6.5 Performa	nce Analysis of Thermal Systems	211	
	7.7	Conclusion		212	
		References		213	

vi Contents

8	Poly	ester-B	Based Biolubricants	221
	Susn	nita S.	Paranjpe and Chandu S. Madankar	
		Abbre	viations	221
	8.1	Introd	luction	222
	8.2	Histor	-V	224
	8.3	Raw N	Aaterials Used for Polyester Biolubricant Production	225
		8.3.1	Alcohols	225
		8.3.2	Acids	227
	8.4	Modif	ications of Neopentyl Polyols to Biolubricant Base Stock	228
	8.5	Chem	ical Synthesis of Polyol Esters	229
		8.5.1	Scale Up Process for Polyester Biolubricants	229
		8.5.2	Unit Operations Involved in Synthesis of	
			Polyester-Based Biolubricants	230
	8.6	Enzyn	natic Synthesis of Polyol Esters	233
		8.6.1	Using Palm Oil Fatty Acids	233
		8.6.2	Using Levulinic Acid	234
		8.6.3	Using Microbial Lipids	235
		8.6.4	Using Rapeseed Oil	236
		8.6.5	Using Castor Oil an Soyabean Oil	236
	8.7	Neope	entyl Polyol Esters for Biolubricants	237
		8.7.1	Modifications with TMP	238
		8.7.2	Modifications with PE	242
	8.8	Chara	cterization of Polyol Esters	242
		8.8.1	Pyrrolysis GC-MS	242
		8.8.2	Thermal Analysis	243
		8.8.3	NMR Spectroscopy	244
		8.8.4	Infrared Spectroscopy	244
	8.9	Prope	rties of Polyol Esters	245
		8.9.1	Viscosity	245
		8.9.2	Volatility	245
		8.9.3	Pour Point and Viscosity Index	245
		8.9.4	Tribological Properties	246
		8.9.5	Thermal and Oxidative Stability	246
	8.10	Applic	cations of Polyester-Based Biolubricants	246
		8.10.1	Aviation Turbine Oils	246
		8.10.2	Fire Resistance	248
		8.10.3	Refrigeration Compressor	248
		8.10.4	Metal Working Fluids	249
	8.11	Concl	usion and Future Scope	249
		Refere	ences	250

9	Estolide-Based Biolubricants				259	
	Pras	ad Sana	p, Deepak Sonawane, Rohan Thakur	•		
	Sant	oshi Agr	awal and Amit Pratap			
		Abbrev	ations	4	259	
	9.1	Introdu	ction	/ 4	260	
	9.2	Synthes	is and Mechanism of Estolides	2	263	
		9.2.1 (Concept of Capping	2	264	
		9.2.2 I	Estolides from Triglycerides	2	265	
		9.2.3 I	Estolides from Unsaturated Fatty Acid	S 2	267	
		9.2.4 I	Estolides from Hydroxy Fatty Acids	4	268	
		9.2.5 I	Estolides from Epoxy Fatty Acids		269	
		9.2.6 I	Enzymatic Catalysis		270	
		9.2.7 I	Purification of Estolides		272	
		9.2.8 I	Esterification of Estolide Fatty Acid		273	
	9.3	Structu	re Elucidation	4	273	
		9.3.1 H	Fourier Transformation Infrared Spect	troscopy 2	274	
		9.3.2	Nuclear Magnetic Resonance	4	274	
	9.4	Basic Pl	nysiochemical and Tribological Prope	rties 2	276	
		9.4.1 I	Pour Point	4	276	
		9.4.2 H	Kinematic Viscosity and Viscosity Ind	ex 2	278	
		9.4.3 (Dxidative Stability	4	280	
		9.4.4 I	Lubricity	2	281	
		9.4.5 I	Flash Point	2	282	
	9.5	Applica	tions and Market Prospects	4	283	
	9.6	Conclu	sion and Future Scope	2	284	
		Referen	ces	2	284	
10	Lubr	icant fr	om Waste Cooking Oil: In-Depth Aı	nalysis 2	291	
	Shar	tanu M	ukherjee, Tishar Chandar, Subhalaxi	ni Pradhan		
	and	Lalit Pro	ısad			
	10.1	Introd	uction	4	291	
	10.2	Petrole	eum-Based Lubricants	4	294	
	10.3	Prospe	ects of Biolubricant	4	295	
	10.4	Need f	or Recycling of Waste Cooking Oil	4	298	
	10.5	Comp	arison of Waste Cooking Oil with Nea	at Oil 2	299	
	10.6	Applic	ation of Waste Cooking Oil		301	
	10.7	Purific	ation of Waste Cooking Oil		302	
	10.9	Relatio	onship between Structure and Physico	chemical		
		Proper	ties		307	
	10.10) Differe	ent Modifications Reaction		307	
		10.10.1	Modification in the Carboxyl Group	os á	310	
			10.10.1.1 Esterification Reaction		310	

			10 10 1 2	Transecterification Peaction	312
			10.10.1.2	Estolide	315
		10 10 2	Modificati	on in Fatty Acid Chain	317
		10.10.2	10 10 2 1	Epoxidation Reaction	317
			10.10.2.1	Ring Opening Reaction	319
			10.10.2.2	Other Reaction	321
	10 11	Additiv	es Used in I	Biolubricants	323
	10,11	10 11 1	Metal Nan	oparticles as Additives	32.4
		10.11.2	Nanocarbo	on Material	326
	10.12	Conclus	sion		327
	10112	Referen	ces		328
11	Mana	ging Wa	ste by Gen	eration of Lubricants from Waste Oils	337
	Adhia	lesh S. K	umawat		
	11.1	Introdu	ction		337
		11.1.1	Backgroun	d and Motivation	337
		11.1.2	Scope of th	ne Chapter	338
		11.1.3	Importanc	e of Waste Oil Management	339
			11.1.3.1	Environmental Impacts	339
			11.1.3.2	Public Health Concerns	339
			11.1.3.3	Resource Conservation	339
			11.1.3.4	Circular Economy and Sustainability	340
	11.2	Waste C)il Generati	on and Collection	340
		11.2.1	Sources of	Waste Oils	340
			11.2.1.1	Automotive Sector	341
			11.2.1.2	Industrial Sector	341
			11.2.1.3	Marine Sector	342
			11.2.1.4	Agriculture Sector	343
			11.2.1.5	Aviation Sector	343
			11.2.1.6	Railway Sector	343
			11.2.1.7	Household and Do-It-Yourself (DIY)	
				Activities	343
			11.2.1.8	Commercial and Institutional Facilities	344
			11.2.1.9	Transformer Oils	344
			11.2.1.10	Food Industry	344
		11.2.2	Collection	Methods and Challenges	344
		11.2.3	Waste Oil	Classification and Characterization	345
	11.3	Waste C	Dil Processi	ng and Regeneration Technologies	346
		11.3.1	Chemical '	l'reatment	346
			11.3.1.1	Acid-Clay Treatment	347
			11.3.1.2	Solvent Extraction	349

			11.3.1.3	Adsorption	350
		11.3.2	Physical T	reatment	351
			11.3.2.1	Filtration	352
			11.3.2.2	Centrifugation	353
			11.3.2.3	Vacuum Distillation	355
		11.3.3	Advanced	Technologies	356
			11.3.3.1	Membrane Filtration	357
			11.3.3.2	Supercritical Fluid Extraction	359
			11.3.3.3	Ionic Liquids	361
		11.3.4	Compariso	on of Regeneration Technologies	362
	11.4	Catalyt	ic Materials	for Waste Oil Conversion to Lubricants	364
		11.4.1	Solid Acid	Catalysts	366
		11.4.2	Transition	Metal Catalysts	367
		11.4.3	Acid-Base	Bifunctional Catalysts	368
		11.4.4	Modified Zeolites and Mesoporous Materials		
		11.4.5	Hybrid an	d Composite Catalysts	370
		11.4.6	Zeolite-Ba	sed Catalysts	371
		11.4.7	Supported Catalysts 3		
		11.4.8	Nonprecio	us Metal Catalysts	373
		11.4.9	Mesoporo	us Silica Catalysts	374
	11.5	Future	Directions a	and Concluding Remarks	375
		11.5.1	Research a	and Development Prospects	375
			11.5.1.1	Advanced Materials for Adsorption	
			11 - 1 0	and Membrane Filtration	375
			11.5.1.2	Optimization of Process Parameters	375
			11.5.1.3	Hybrid and Integrated Processes	3/6
			11.5.1.4	Green Solvents and Technologies	3/6
	116	Comolu	11.5.1.5	Life Cycle Assessment and Sustainability	3/6
	11.0	Doforor	.51011		377
		Referen	1005		577
12	Catal	ysts Use	d in Biolub	ricants Production	381
	Pavar	ı Kuma	r Gupta, De	shal Yadav, Sudipta Datta,	
	Shweta Kumari, Shiva Kumar Saw and Gajanan Sahu				
		Abbrev	riations		381
	12.1	Introdu	iction		382
	12.2	Biolubi	ricants		384
	12.3	Green	Biolubricant	ts	385
		12.3.1	Castor Oil		385
		12.3.2	Single-Cel	I Oils from Oleaginous Microorganisms	386
	12.4	Properties of Biolubricants 3			386

		12.4.1	Viscosity and Viscosity Index	387
		12.4.2	Cloud Point	387
		12.4.3	Pour Point	387
		12.4.4	Flash Point and Fire Point	388
		12.4.5	Oxidative Stability	388
		12.4.6	Iodine Value	388
		12.4.7	Corrosion	388
		12.4.8	Total Acid Number	389
		12.4.9	Biodegradability	389
	12.5	Applica	tion of Biolubricants	389
		12.5.1	Engine Oils	389
		12.5.2	Hydraulic Oils	390
		12.5.3	Compressor Oils	390
		12.5.4	Metalworking Oils	390
		12.5.5	Transmission Oils	391
		12.5.6	Chainsaw Oils	391
		12.5.7	Insulating Oils	391
	12.6	Feedsto	cks for Biolubricants Synthesis	391
		12.6.1	Edible Oils/Vegetable Oils	392
		12.6.2	Nonedible Oils	393
		12.6.3	Waste Cooking Oils	393
	10 7	12.6.4	Microbial-Derived Oils	393
	12./	Chemic	al Modification Methods for Biolubricant Synthesis	394
		12./.1	Esterincation/Iransesterincation	394
		12.7.2	Hydrogenation	396
		12.7.3	Epoxidation Estalida Estruction	39/
	120	12.7.4 Catalwa	Estolide Formation	200
	12.8		Homogeneous Alleali Cetalust	200
		12.0.1	Homogeneous Acid Catalyst	200
		12.0.2	Hatarogeneous Alkali Catalyst	<i>399</i> <i>4</i> 00
		12.0.3	Heterogeneous Acid Catalyst	400
		12.0.4	Enzyme Catalyst	400
	129	Conclu	sion	402
	12.7	Referen		402
		Referen		105
13	Value	Additio	n/Biorefinery Approaches Towards Biolubricants	
	Production 407			
	Praveen Kumar Sharma, Suman Singh, Naziya Syed,			
	Prashant Kumar, Shivani Chaturvedi,			
	Ashween Deepak Nannaware, Sunil Kumar Khare			
	and Prasant Kumar Rout			

13.1	Introduction 4			408
13.2	Sources of Lubricant Production-Oleochemicals as Raw,			
	Natural Materials, Synthetic			410
13.3	3 Production of Biolubricants			413
	13.3.1	Castor		414
	13.3.2	Bitter Aln	nond	414
	13.3.3	Jatropha c	rurcas L.	414
	13.3.4	Camelina		415
	13.3.5	Ailanthus		415
	13.3.6	Waste Oil	/Fats	415
	13.3.7	Waste Fis	h Oil	416
13.4	Import	ant Charac	teristics of Bio Lubricants	416
13.5	Biomass Originated Biolubricants			418
13.6	Alternative Lubricants			420
	13.6.1	Mineral C	Dil-Based Lubricants	420
		13.6.1.1	Utilization of Mineral Oils	422
		13.6.1.2	Mineral Oil Composition and	
			Thermal Stability	422
		13.6.1.3	Health and Environmental Concerns	
			with Mineral Oils	423
		13.6.1.4	Biodegradation and Remediation	424
		13.6.1.5	Synthetic Lubricants	424
	13.6.2	Uses and	Advantages	425
		13.6.2.1	Viscosity Index	426
		13.6.2.2	Oxidation Resistance	426
		13.6.2.3	Internal Fluid Friction or Traction	
			Coefficient	427
		13.6.2.4	High Film Strength	427
	13.6.3	Types		427
		13.6.3.1	Polyalphaolefins	427
		13.6.3.2	Esters	428
		13.6.3.3	Silicones	428
13.7	Additiv	ves Blendin	g to Support Lubrication Quality	428
	13.7.1	Types of I	Lubricants	430
		13.7.1.1	Antioxidants	430
		13.7.1.2	Corrosion and Rust Inhibitor	430
		13.7.1.3	Viscosity Index Improver	430
		13.7.1.4	Anti-Wear Additive (AW)	430
		13.7.1.5	Extreme Pressure Additive (EP)	431
		13.7.1.6	Detergent	431
		13.7.1.7	Dispersants	432

			13.7.1.8 Friction	n Modifiers	432
	13.8	Variou	Bio-Lubricants and	l Their Utility	433
	13.9 Future of Biobased Lubricants and Challenges			nts and Challenges	435
	13.10	Conclu	sion	C	435
		Referen	ces		436
14	Bio-Lubricants: Economic and Environmental Accept			nvironmental Acceptability	445
	Chan	dreyee S	aha and Subhalaxn	ni Pradhan	
	14.1	Introdu	ction		446
	14.2	Base Oils in Environmentally Acceptable Lubricants			447
		14.2.1	Vegetable or Plant	Oil Based EALs:	
			Advantages and Di	sadvantages	448
		14.2.2	Polyalkylene Glyco	l Based EALs:	
			Advantages and Di	sadvantages	449
		14.2.3	Synthetic Ester Bas	ed EALs:	
			Advantages and Di	sadvantages	449
	14.3	Econor	nic Aspect of Using	Bio-Lubricant	451
		14.3.1	Bio-Lubricant Mar	ket Fragmentation	451
	14.4	14.4 Environmental Acceptability of Bio-Lubricants		453	
		14.4.1	Biodegradability		454
			14.4.1.1 Biodeg	radability Testing Methods	455
		14.4.2	Bio-Lubricant Toxi	city	457
		14.4.3	Bioaccumulation		459
	14.5	Labeling Program for Environmentally Acceptable			
		Lubrica	nts (EAL)		461
		14.5.1	National Labeling	Programs	461
			14.5.1.1 Blue An	ngel	461
			14.5.1.2 Swedisl	n Standard	462
		14.5.2	International Labe	lling Programs	462
			14.5.2.1 Nordic	Swan	462
			14.5.2.2 Europe	an Eco-Label	463
			14.5.2.3 OSPAR		464
	14.6	Conclu	sion		466
		Referen	ces		466
Inc	lex				473

Preface

Biolubricants generally derived from bio-natural resources are less toxic, biodegradable, and environmentally sustainable. Different plant oils, both edible and non-edible oil, waste cooking oil and oils produced by microorganisms are utilized to synthesize biolubricants. The application of base oils from bioresources such as castor oil, rapeseed oil, palm oil, soya oil, cod liver oil, pig oil, and other animal oil shows the adequate formulation of biolubricants and provides the required properties for lubrication, such as excellent lubricity, a high viscosity index, good degradability, a high flash point, and a low pour point. Lubricants can be categorized based on their physical state preferably oils or liquid, greases or semi-solid as well as solid lubricants. Different synthesis techniques such as epoxidation, hydrogenation, esterification, transesterification, estolide formation are used for the production of biolubricants from renewable feedstocks.

The present book covers new advancements in the field of bio-based lubricants, epoxide lubricants, hydrogenated lubricants, microbial based biolubricants, nano-biolubricants, polyester based biolubricants, lubricants from waste oils/materials, its economic and environmental acceptability and biorefinery approaches. A total of 14 chapters are included in this book. Chapter 1 is an introductory part which covers prospectus of renewable resources for biolubricant production and comparison of physicochemical properties of biolubricant with petroleum-based lubricants. Chapter 2 and 3 covers synthesis of ester based and epoxide based lubricants from renewable feedstocks and their applications. Chapter 4 and 5 includes synthesis, characterisation of bio-based hydrogenated lubricants and microbial based biolubricants respectively. Chapter 6 and 7 comprises of nanolubricants and green nanofluids, their physico-chemical properties and applications. Chapter 8 and 9 covers synthesis, characterisation and applications of polyester based biolubricants and estolide based biolubricants respectively. Chapter 10 and 11 covers biolubricant synthesis from waste cooking oil and waste management approaches towards biolubricant synthesis. Different catalysts used for synthesis of biolubricant are discussed in Chapter 12. Chapter 13 and 14 covers biorefinery approaches, economic and environmental acceptability.

This book will provide a forum for academicians, scientists, industrialists, and researchers to exchange novel concepts and viewpoints about lubricants derived from renewable feedstocks, as well as the potential for future developments and broad applications.

Prospectus of Renewable Resources for Lubricant Production

Suruchi Damle and Chandu S. Madankar*

Department of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai, India

Abstract

Lubricants aid in decreasing friction between surfaces in proximity, which in turn lowers the heat produced as the surfaces move. They are composed of 80% to 90% of base oils and 10% to 20% of additives that impart properties like antiwear, corrosion inhibition, pour point depression, etc. Petroleum-based lubricants are attributed to low biodegradability and toxicity. Demand for lubricants based on edible and nonedible plant oils or other renewable resources that are good for the environment is rising because of their enhanced lubricity, nontoxicity, and biodegradability. Biolubricants are synthesized by modifying plant oils chemically, by transesterification, estolide formation, epoxidation, etc. This chapter is intended to inform readers about renewable feedstocks for biolubricant production, comparison of physicochemical properties with petroleum-based lubricants, current scope, advantages, and challenges of biolubricant production in the future.

Keywords: Biolubricants, renewable, biodegradable, plant oils, chemical modification

Abbreviations

- RRM Renewable Raw Materials
- EU European Union

^{*}Corresponding author: chandumadankar@gmail.com

Subhalaxmi Pradhan, Lalit Prasad, Chandu Madankar, and S.N. Naik (eds.) Lubricants from Renewable Feedstocks, (1–38) © 2024 Scrivener Publishing LLC

2 LUBRICANTS FROM RENEWABLE FEEDSTOCKS

CO ₂	Carbon dioxide
PAO	Poly alpha olefin
HOSO	High oleic sunflower oil
VI	Viscosity Index
PTSA	Para-toluene sulphonic acid
СОР	Coefficient of performance
FDBO	Farnesene-derived base oil
PFPE	Perfluoro polalkylether
CFC	Chlorofluoro carbon
SAPO	Silicoaluminophosphate
ZDPP	Zinc dialkyldithiophosphate
DDA	Detergent and dispersion additives
PPD	Pour point depressants
GM	Genetically modified
GHG	Greenhouse gases

1.1 Introduction

Lubricants help solid bodies move closer to each other by lowering wear and friction surfaces that interacting [1]. These are majorly used in chain saws, engines, gear boxes, metal rolling mills, etc. Lubricating oils are necessary for a variety of other tasks in addition to their fundamental roles in reducing friction and wear, such as removing heat, preventing corrosion, transferring power, creating a seal for the liquid moving contacts, and suspending, as well as removing worn-out particles [2].

Among the most promising future markets, according to the Lead Market Initiative of the European Commission, is goods made from renewable raw materials. The utilization of renewable raw materials (RRM) by way of a feedstock can help conserve fossil fuels and lessen adverse environmental effects while producing utilities, chemicals, and different bioderived products. Additionally, it could benefit the agriculture, as well as forestry industries and spur developments for manufacturing products, like biolubricants and bioplastics [3].

Vegetable oils have great lubricating performance, are biodegradable, and can be recycled, making them a promising source of ecologically beneficial (green) lubricants [4]. Triglycerides, or tri-esters, have three long-chain fatty acids connected at the –OH groups through ester bond to the glycerol backbone and make up the majority of vegetable oils. These oils contain a tiny percentage of esters with one ester group from long-chain fatty acids and fatty alcohols with various chemistries [5]. Triglycerol esters from vegetable oil contain fatty acids with variable amounts of unsaturation, all of which have a comparable length (14–22 carbons) [6]. A large proportion of vegetable oils consist of various polar and nonpolar groups in the same molecule. These oils have polar groups and are hence amphiphilic, which enables vegetable oil to be incorporated as a boundary and hydrokinetic lubricant [7]. Almost 8% (12.4 million tonnes) of world's manufacturing of renewable raw materials comes from Europe (EU-27), primarily from rape, sunflower, and soya.

The utilization of plant-based oils in lubricants depends on their fatty acid composition. Mainly, long-chain fatty acid-based plant oils are preferred for use in biolubricant manufacture. Palm, soya bean, rapeseed, and sunflower oils are hence majorly used [8]. The second largest category of products made from plant oils is lubricants. Lubricants are intricately manufactured goods of about 90% base oils along with useful additives to change inherent qualities. Vegetable oils are typically utilized for the purpose of base oils in biolubricants; however, only 50% of the oil needs to come from renewable sources to qualify as a biolubricant [9].

Biobased lubricants are used as hydraulic fluids, metal working fluids, grease, concrete mold release agents and chainsaw oils. These are majorly applied in mechanical parts, which is being utilized in ecologically sensitive regions like agriculture and machinery for forestry, jet-skis, snow mobiles, etc. Although it is currently a small portion of the overall lubricant market, the biolubricant sector is continually expanding. Similar to mineral oil alternatives, which are more accessible but still account for a relatively small fraction of the industry. Both bioderived as well as some synthetic lubricants contain biologic components. By 2023, 1.06 million tonnes of bioderived lubricants are anticipated to be consumed [10]. The worldwide lubricant market can be broken down into lubricant-based mineral oil (87.72%, 32.63 million tonnes), synthetic lubricants (9.95%, 3.70 million tonnes), and lubricants based on renewable resources (2.33%, 870000 tonnes), as represented in Figure 1.1.

The industrial reach of green lubricants is anticipated to rise to 15% and perhaps 30% in some regions over the next 15 to 20 years. This market is anticipated to increase significantly because of growing utilization of biobased lubricants in the manufacturing and transportation sectors [11].

The potential future shortage of oil and gas resources (whether in terms of availability or quantity) is a serious issue for everyone in the world.

4 LUBRICANTS FROM RENEWABLE FEEDSTOCKS

Figure 1.1 Distribution of global lubricant market.

Ruling bodies all across the world are attempting to lessen their reliance on foreign sources of energy as a result. In addition, bioderived lubricants have become more popular as alternatives for traditional lubricants based on petroleum sources in a variety of applications, particularly the automobile sector. Despite their advantages, biobased lubricants are still a long way from being a reliable replacement. Biobased lubricants have low cold flow characteristics, poor thermooxidation, and low hydrolytic stability because they are often made from unrefined vegetable oils. However, these flaws could be fixed by chemically altering the oils derived from natural resources or adding additives to the oils [12].

Vegetable oils have been utilized for lubrication needs for a long time. The unearthing of petroleum as well as the availability of inexpensive oils, however, led to the abandonment of this notion. Crude oils derived from fossil fuels are still utilized as primary raw material in the processing of fuels and lubricants. However, because of increased apprehension about ecological effects of lubricants based on nonrenewable resources, there has been a renewed attention to the usage of lubricants made from vegetable oils. Numerous businesses have created and sold biobased lubricants [13].

Because they preserve the mechanical characteristics of traditional lubricants, lubricants based on renewable resources are attractive substitutes for mineral oils. Bioderived lubricants have excellent lubricity, flash point viscosity index, and are biodegradable. They are made from edible and inedible vegetable oils [14].

The current chapter lays emphasis on how modern technological advancement can lead to improved manufacturing of bio lubricants. These technologies are primarily prospective for utilization of renewables as raw source, such as vegetable oils. However, there are certain constraints and impediments for full-scale implementation or commercialization like for example, the economics for development of biolubricants are not fully set or accustomed to manufacture and use of biolubricants as substitute to traditional lubricants based on petroleum sources; development of required technology and its standardization; testing and analysis in real time systems has not yet been performed on a commercial scale, etc. Nonetheless, the current research and findings in these domains can prove to be effective solution.

1.2 History

For hundreds of years, biobased materials have been utilized as efficient lubricants. Even though there has been evidence to show the usage of lubricating agents in the Copper Age, animal as well as vegetable oils had been employed in Roman era for lubricating chariot axles [10]. In the last 50 years, their adoption and use have expanded more widely, primarily due to environmental concerns, albeit in some situations, biobased components may perform better than traditional lubricant chemistry. The requirement of biobased lubricants and the production of lubricants made from biobased crude oil are both rising as there are more and more initiatives promoting sustainable sourcing and use [15]. The Industrial Revolution started in the 18th century, and has led to an increased request for oils from natural sources like olive oil, sperm oil, lard oil, rapeseed oil, and ground-nut oil [16]. With the growth of the Industrial Revolution, more oil was needed to lubricate machinery. Due to its lower price and capabilities, petroleum was exploited at least 100 years after, in the mid-19th century. As a result, oils from renewable resources were not able to contend with nonrenewable resources. The development of the petro-based market at this time was crucial to 19th and 20th century's industrial growth. However, some businesses have been working on the creation of bioderived lubricants for many years because the outcome of an increasing consciousness of the impact of petro-based oil on the natural surroundings. For instance, British Petroleum and Shell worked with French National Railways to develop biodegradable railroad track lubricant [13].

1.3 Background of Biolubricants

Lubricants are utilized in open as well as closed systems. In open systems such as construction, automotives, forestry lubricant such as power

6 LUBRICANTS FROM RENEWABLE FEEDSTOCKS

saw chain oils, switch lubricants, slab oils, etc. are used, are continuously exposed to the environment, and leads to loss of lubrication. In closed systems, leakages, metalworking fluids, etc. lead to environment pollution due to spillages, loss of lubrication and evaporation [17]. Hence, there is a need for lubricants which are environmentally friendly, i.e., non-toxic and biodegradable that are manufactured from raw materials from renewable sources.

When biobased products (oleochemicals) reach the end of their useful lives, they are released via a variety of processes, where the organic molecules break down into CO_2 and water. Since the quantity of CO_2 emitted is equal to the amount that was initially absorbed by the natural plants from the surroundings, the carbon cycle of oleo-based chemicals is closed. As a result, it has no impact on the atmosphere's carbon dioxide balance. On the other side, items made from mineral oils raise atmospheric carbon dioxide levels, which causes global warming and is called indirect environmental contamination. Figure 1.2 represents the series of stages encountered during biolubricant life cycle, right from its production to utilization in for commercial purpose to its waste form and conversion to CO_2 and water.

Figure 1.2 Life cycle assessment of bioderived lubricants.