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Introduction

Object-oriented programming (OOP) is an essential skill for implementing
extendible, reusable, and easy-to-use software systems. To develop any
application software or system software, learning OOP concepts and
programming is necessary. OOP basic principles help in easily handling a
wide variety of real-world software systems (games, application software,
novel systems) implementations. This book blends OOP concepts and
programming activities for active learning. All hands-on activities and
real-time scenarios are described with step-by-step procedures in terms of
designing, programming, and evaluations.

You will learn OOP features through real-world examples and
practice through C++ programming hands-on activities. You will also
learn advanced design and development skills, such as design patterns
and event-driven programming for handling novel systems design and
development. Finally, you are briefly introduced to OOP features practice
through other important OOP languages: Python and Solidity.

This book is organized into three parts. In Part 1 (Chapters 1-4), you
learn and practice OOP concepts using C++ for solving real-world software
development problems.

Part 2 (Chapters 5-7) explains how to model real-world problems
into reusable, extendible, and easy-to-use software development blocks
using OOP concepts such as inheritance, object associations, and
polymorphism.

Xix
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In Part 3 (Chapters 8-10), you learn how to use design patterns and
event-driven programming for handling complex software system object
creation, behavior, and interactions. Finally, you are introduced to OOP
using Python and Solidity.

By the end of this book, you will have learned how to design and
implement a variety of real-world software systems from scratch using
OOP principles, design patterns, and event-driven programming skills.



CHAPTER 1

The Importance
of Object-Oriented
Programming

Object-oriented programming (OOP) is essential for handling challenges
in developing flexible, extendible, reusable, and easy-to-use software
systems. OOP approaches simplify the complexity of modeling real-world
application concepts into software building blocks.

OOP offers powerful programming constructs and principles to deal
with the complexity of software development. OOP constructs such as
classes help you to systematically map real-world entities, and it helps in
hiding the implementation details of the entities, controlling their data
access, and simplifying the software system interactions, activities, and
tasks. Moreover, OOP principles such as inheritance and polymorphism
help you to develop reusable and easy-to-use software systems.

Learning OOP helps you deal with the complexity of any software,
such as e-commerce applications, system software (e.g., device drivers,
compilers, operating systems, databases), next-generation applications
such as IoT, industrial IoT (IIoT), smart applications, and many more. To
appreciate the importance of learning OOP, this chapter discusses the
following topics.

© Anil Kumar Rangisetti 2024
A. K. Rangisetti, Hands-On Object-Oriented Programming,
https://doi.org/10.1007/979-8-8688-0524-0_1
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CHAPTER 1  THE IMPORTANCE OF OBJECT-ORIENTED PROGRAMMING

e Algorithms vs. software

e Software development challenges

¢ Introduction to OOP concepts

e How OOP approaches simplify the software complexity

e Systematically modeling real-world entities into
software

Algorithms vs. Software

Before exploring software, you should know how to start writing a program
for solving well-defined problems, such as mathematical, computational,
searching, and sorting problems. Solving these problems through a
program involves considering all necessary inputs and defining a logical
sequence of computational steps to get the desired results. Formally, it is
known as writing an algorithm.

This section briefly introduces the following topics.

e Algorithm characteristics
e Writing an algorithm
o Software characteristics

e Software development challenges

Algorithm Characteristics

An algorithm defines a logical sequence of instructions or commands

to solve a problem. For instance, algorithms are highly suitable for
implementing programs to solve specific problems such as searching,
sorting, data structures accessing problems, computational problems, and
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many mathematical problems. Algorithms can be easily converted into

computer programs using basic programming constructs such as data

structures, conditional statements, loops, and functions.

Simple modeling approaches such as flow charts are
helpful to write algorithms.

Algorithms’ logical sequence of steps can be converted
into programs using procedural program languages
such as C.

An algorithm’s success mainly depends on its
performance. Algorithm performance is usually
defined in terms of space and time complexity.

Developing efficient algorithms is all about reducing
space and time complexity. For example, many sorting
algorithms have evolved to reduce time complexity
from bubble sort (O(n”2)) to quick sort (O(logn)). Here,
the time complexity is represented in Big O notation to
represent the upper bounds of algorithms.

Algorithms can be developed into programs with

smaller teams or individuals.

Procedural-oriented programming languages (e.g., C)
are sufficient to convert algorithms into programs.

Next, let’s look at how to write an algorithm and convert it into a

program using procedural programming language constructs.

Write an Algorithm

Let’s solve a problem related to searching for an element from any given

list of elements.
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e Input: List of elements (list [0 to n]) and a searching
element (key)

e Output: Element found (True), Element not
found (False)

1. Index=0

2. Traverse through the list of elements until the
list ends.

Check the following conditions:
In case key presents in the list:
return True
otherwise
Goto2:

3. Iflistends:
return False

Now it can be easily converted into any procedural-oriented program
constructs such as if-else, for loop, and functions ().
For example, let’s write a C function to solve the search problem.

int search(int list [], int n, int key)

{
int i=0;
for (i=0;i<n;i++)
{
if (list[i] == key)
return 1;

}

return O;

}

4
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You have seen how easy it is to convert a well-defined algorithm into
a program using procedural language programming constructs. Next, let’s
quickly explore software and its characteristics.

Software

Software is evolved to solve a variety of real-world complex problems,
which range from system software (editors, compilers, operating systems,
databases, protocol stacks, etc.) to application software (e-commerce,
online reservations, entertainment software, gaming applications, etc.)
and current trending smart applications such as drone applications, IoT,
and smart cities.

Unlike well-defined problem-solving using algorithm approaches,
software development must follow suitable systematic software
engineering procedures and models (e.g., waterfall model, iterative, spiral,
and DevOps) to ensure the following features.

o Verifying and validating all requirements of
stakeholders

¢ Reliable in terms of fault tolerance and zero downtime

o Scalable software components to meet the dynamic
demands of users

o Flexible software components in terms of making
necessary changes or introducing new features

o Extendible software components for producing new
versions of the software to meet market needs or
introducing innovative features

Besides these features, software success depends on the following.
e How quickly it can be developed and tested

e An easy-to-use interface
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o How quickly modifications can be made
e Multiple teams able to work on components in parallel

e Reusable and easily extendible software components

Software Development Challenges

By following suitable software engineering principles and models, it is
possible to get all requirements from users involved in using the software.
However, translating user requirements into software design blocks is not
straightforward. For example, in e-commerce applications, a few basic
requirements are that software users should interact with the system easily
to browse items, select items into their basket, and place an order.

These requirements cannot be easily translated into software
by following algorithm design principles and procedural-oriented
programming constructs. Unlike algorithms, software development
involves a lot of ambiguity to be dealt with. It is very challenging to
completely map all real-world entities, their transactions, and all
requirements into software.

You face the following challenges when you want to develop software
using algorithm and procedural programming approaches.

o Itis highly challenging to model all real-world entities,
requirements, and constraints in a limited number

of phases.

o Itis highly difficult to deal with initial ambiguity
(getting ready with initial designs and models) and
define logical steps.

o Starting points are not evident in implementing the

system components.
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It is difficult to connect software components for
integrating the complete system.

It is difficult to develop scalable, flexible, and
extendible software components.

It is unrealistic development and release deadlines.

It is unpredictable software success.

Next, you are introduced to OOP concepts and how OOP features are

helpful for software development.

Introduction to 00P Concepts

OOP offers excellent features to simplify software development by

converting high-level requirements and design processes into software

implementation.

Class

Data abstraction
Encapsulation
Data hiding
Inheritance

Polymorphism

Let’s go over OOP basic programming constructs called classes.

Class

A class is the most important programming construct of the OOP. It

helps you easily model any real-world entity (a customer, a drone, or

any transactions) into a software block. OOP basic construct called class
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is defined with its related data (data members or fields) and member
functions for accessing its data members. This book uses “data members”
and “fields” synonymously. The class structure is shown in Figure 1-1.

Data Members

Member Functions

Figure 1-1. Class structure in OOP

For instance, customer entities related to an online shopping context
can be easily modeled, as shown in Figure 1-2.

Name

Phone

City

getName()
setName(name)
getPhone#()
setPhone#(number)

getCity()
setCity(city)

Figure 1-2. Online shopping application example class: Customer

Let’s inspect the Customer class definition carefully. The data
members section includes the customer’s name, phone number, and
address.

Under the member functions section, you define corresponding access
functions for each data member, such as get and set functions. Usually, the
“get” member functions are defined to retrieve data members’ values, and
set member functions are defined to update the values of data members.
For example, the City field of the Customer class, getCity(), is useful for
retrieving a customer entity’s city, and setCity(city) is useful for setting
or updating a customer entity’s city.
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Having the necessary set and get member functions defined in the
class, you can later easily include complex online shopping application
tasks. For instance, in online shopping applications, customer phone
verification and update tasks can be easily done using getPhone#() and
setPhone# () member functions. Similarly, other member functions are
useful for accessing the respective data of the Customer class.

Next, let’s look at another example in a gaming application context:
modeling a duck character into software as a class (see Figure 1-3).

Duck

id

X,y
State

getld()
setld(ld)
getX()

setX(X)

getY()

setY(X)
getState()
setState(state)

Figure 1-3. Gaming application example class: Duck

The Duck class includes a duck identifier (id), its location (x, y), and its
state (dead or alive). For accessing these data members corresponding set
and get member functions are defined inside the class.

Now, checking whether a duck is live or dead can be easily done by
accessing the duck state using its getState() member function. Similarly,
you can easily track duck position (x, y) using get and set location
functions.

Another interesting example of class structure is IoT sensor modeling,
as shown in Figure 1-4.
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Id

State
Sensing_value
Battery_level

getld()

setld(ld)
getState()
setState(state)
getSensVal()
setSensVal(val)
getBatLevel()
setBatLevel(level)

Figure 1-4. Smart application example class: IoT_Sensor

The IoT_sensor class includes data members related to the sensor
identifier (Id), its State (sensing, sleeping, and dead), Sensing_value, and
Battery level.Under member functions, sections corresponding to set
and get functions are defined for accessing the data members.

Suppose you want to keep a particular sensor in a sleep state in your
IoT application. It can be easily done by accessing the sensor state using
setState(state) member function. Similarly, you can access a sensor’s
battery status using getBatLevel () and setBatLevel(level) functions.

Besides simplifying modeling real-world entities, classes are powerful
programming constructs whose definition captures the following
important OOP principles.

Data Encapsulation

If you are an experienced C programmer, you can easily understand
structure data type helps you to combine related data elements under a
single structure variable. However, you cannot control its data and their
related accessing functions together into a structure.

The following is an example.

struct customer

{

char name[30];

10
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int phone;
char address[30];

};

Any function can use struct customer variables to change internal
data of the customer variable as follows.

void functionl (struct customer c1)

{

/* It can access customer data */

}

void function2 (struct customer c1)

{

/* It can access customer data */

}

Passing a c1 variable to any C functions, then those functions can
change the corresponding struct customer variable's data members.
It means you are not able to combine data and their accessing functions. It
can lead to no control over the sensitive data of real-world entities.

Interestingly, OOP classes allow you to combine related data
and its member functions into a Class definition. It is known as data
encapsulation. Then, you can model a specific real-world entity from the
class by creating an object and interacting with the object through class
member functions.

You can observe their data and respective accessing functions from the
example classes—Customer, Duck, and IoT_Sensor. As discussed, tasks
related to the corresponding entities can only be done through their class
member functions. For example, the IoT_Sensor entity’s Sensing_value
access can be changed through its object and class member functions:
setSenseValue() and getSenseValue().

11
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Data Abstraction

Having encapsulated data types support such as classes in OOP, accessing
variables of the complex data types also gets simplified. In your program,
you define objects (variables) for the respective Class (complex data type)
and invoke necessary member functions from the objects to access their
details. For example, to set an IoT sensor state to “sleep,” you can easily do
it with the following lines of code.

IoT Sensor ii1;
i1.setState(2); // Example, 0: Dead, 1: Sensing, 2: Sleeping.

Similarly, you can check whether the duck is alive with the following
lines of code.

Duck di1;
int state = di.getState(); //1: Alive 2: Dead
if (state == 2)

cout<<di.getId()<<"is dead";

To access the IoT_sensor or Duck details, focus on their objects and
accessing functions, not their implementation details. You need not know
its internal details to access a complex data type.

By checking these examples, you can understand that OOP classes
greatly simplify accessing complex entities’ data using its related member
functions defined inside the class.

Data Hiding

You have observed how to combine class data and its member functions
to simplify accessing its objects. Besides these features, the OOP class
offers a powerful way to control access to an object’s data.

12
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It means controlling objects data members access from the outside
of a class. It can be achieved by attaching access control modes
(access specifiers) with data and member functions of a class. OOP
languages generally offer three access specifiers: public, private, and
protected access.

o Public access: Data and member functions defined
under the public section can be accessed by any
function through the respective class objects.

o Private access: Data and member functions defined
under the private section are allowed to be accessed by
only member functions of the class.

e Protected access: Data and member functions defined
under the protected section are allowed to be accessed
by only member functions of the class and its inherited
classes.

You have just seen how to limit an object’s data access using the OOP
access specifiers. Later chapters discuss an object’s data access control
in detail. Now that you have explored the OOP basic construct class, let’s
discuss instances and variables of the class data type.

Objects

Objects are powerful ways to create software components and implement
tasks, transactions, activities, operations, and functions. For example,
it is easier to model the real-world entities such as customers and their
transactions or related activities as objects to develop an online shopping
application.

Object is an instance of a class, it contains data members and member
functions. Hence, any interactions related to the object are done through
the class member functions.

13
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In OOP, for example, having a class defined for customers simplifies
online shopping customer entities as Customer objects. Then, all the
following tasks implementaion gets simplified: registering a customer,
updating customer details, and checking customer details by creating and
interacting with customer objects.

Moreover, an object’s powerful combination with its data and
accessing functions helps you easily realize several identical software
components.

The following are examples.

e ADrone class that creates multiple drones is nothing
but defining multiple drone objects.

e ARobot class that creates multiple robots is nothing but
defining multiple robot objects.

Similarly, think of real-world applications entities modelling such as

e-commerce, gaming, and system software.

Objects Details

To understand an object, you can view it as a variable of a particular
data type. Similarly, an object is a variable of the class data type.

In OOP, objects are instances of classes. During program execution,
objects are created by allocating necessary memory space for their data
member’s access.

For example, to create a variable of int.
int a; // int is data type and a is variable

Similarly, in C++, you can create objects from the Customer class as
follows.

Customer c1, c2;
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