2

Hands-On
Object-Oriented
Programming

Mastering OOP Features for
Real-World Software Systems
Development

Anil Kumar Rangisetti

ApPress:

Hands-On
Object-Oriented
Programming

Anil Kumar Rangisetti

Apress’

Hands-On Object-Oriented Programming: Mastering OOP Features for
Real-World Software Systems Development

Anil Kumar Rangisetti
Kurnool, Andhra Pradesh, India

ISBN-13 (pbk): 979-8-8688-0523-3 ISBN-13 (electronic): 979-8-8688-0524-0
https://doi.org/10.1007/979-8-8688-0524-0

Copyright © 2024 by Anil Kumar Rangisetti

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Melissa Dufty

Development Editor: Laura Berendson

Coordinating Editor: Gryffin Winkler

Copyeditor: Kim Burton

Cover designed by eStudioCalamar
Cover image by Vinicius “amnx” Amano on Unsplash (unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY
10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub (https://github.com/Apress). For more detailed information,
please visit https://www.apress.com/gp/services/source-code.

If disposing of this product, please recycle the paper

https://doi.org/10.1007/979-8-8688-0524-0

To my teachers, Dr. Bheemarjuna Reddy and
Shri Badrinadh Garu, for identifying my strengths,
giving me wonderful opportunities to work with them,
and guiding me to achieve my goals.

To my lovely wife, Sravani, for being a wonderful partner
and supporting me in all situations. Without her love and
support, I could not accomplish it.

Table of Contents

About the AUthOrc.cccmmmssmmmmssmsmmsssssssss s ssanssssnnss xiii
About the Technical REVIEWETcusesssssmsssssnsssssasssssanssssanssssanssssansnss Xv
Acknowledgments.......ccccuusssssssmmssmmmmsssssssssssssssssesssssssssssnssssssssssssnnnnns Xvii
INtroduction........cccccmssemmmsssmnmsssnnmssssnsssssnnssssnsssssnsssssnsssssnnssssnnnnssnnnnnnns Xix
Chapter 1: The Importance of Object-Oriented Programming.........c.... 1
Algorithms VS. SOFtWATE........ccccvrreeereserreser s 2
Algorithm CharacteriStiCS.......c.ouvurerenrnsesrnisesese s 2
Write an AlgOrithM.......ccccvirrcsere e 3
SOMWAIEevecrerc e 5
Software Development Challenges.........c.cucueererernnesenesesssesssesessesessesesessesenns 6
Introduction t0 O0P CONCEPLSccevvereerrrrersirerenissesse s se e s ssssessessesnes 7
ClASS ..uerreierreeris e e 7
ODJECES v s 13
INNEHTANCEcovreirreser e s 16
POIYMOIPRISM......ccececcere et s 18

How OOP Approaches Simplify the Software Complexityccccvvrveriernserierens 19
Systematically Modeling Real-World Entities into Software...........cccceevvercencnne 21
Hands-on Activity: Online Shoppingcccocevivvrrenenirrr e 23
Hands-on Activity: Simple Adventurous Gameccecvvvvercerversessererienns 33
SUMMANY..c..citiiiicirese e s e s s b e e e b e e e e aenns 39
Practice: Hands-0n ACHIVILIEScccoveererrererenerese s 40

TABLE OF CONTENTS

Chapter 2: Start Learning 00P USing C++ccooccemmrmsssnnnnssssssnnssssssnnnnes 43
L 010] 1 (1T 44
C++ Specific Programming CONStruCts.........cccevevrierrncesnienenesernsesere e 45
Model Real-World Entities USing C++ CIASSESc.veererererrererensererenerresesessesenns 64
Interacting With ODJECES.......c.cvceeeriererrrrrcr s 77
Object Access Control MOUES.........ccvvvernereresernsesrssesssese s srssesenns 87
Hands-on Activity: Smart Applications.........c.ccocvvvvrirnnnsnienie e 100
SUMMAIY.c.veiteirereresessere e se e e sa e e s e s s sa s e s e saesaese e e saesaesae e s e saesaesseenaesaens 109
Practice: Hands-0n ACHIVILIES.........covrrreererererenesesesesess e 110

Chapter 3: Systematically Starting and Stopping

Software ObJEctscccuremmmmissnnnmmmsssnnnmmsssssnmessnsne s ————— 113
Software Objects Startup and Shutdown Sequencesc.ccocevvvrienienenseniennens 114
Starting a Software Application.........c.ccocvvvrrnininnn s 115
Closing a Software Application..........ccccocvrvnvnininnnnnin e 118
Constructors for Handling Startup SEQUENCES.......cccvververierereserrersere s serenaens 120
CONSEIUCTOrS IN CA+ .cvericccre s 120
C++ Supporting CONSIIUCTOrSccecevvererirserserese e se s saeenes 123
C++ Compiler Providing ConStruCtors........ccuevverennrnseriennsenseseseesessesenes 128
Hands-on Activities for Practicing Constructors..........ccevvvvrvrierienenseniennens 130
The Importance of Destructors for Doing Graceful Shutdowns...........ccccveevenee. 139
DESIIUCLOrS iN G+ ..ucuccreririsesseseses s 139
Hands-0n DESIUCIONSccoveernnmreniire s 143
Hands-on Activity 1: CONStrUCTOrS........cocvcerrcerrccr e 150
Hands-on Activity 2: DESTrUCLOrS........cccoererererecrrerer s 162
SUMMANY....ceiieeriresesese s sr s s e se e nenssnenns 166
Practice: Hands-0n ACHIVItIESccccvvererenernsesneses s 167

TABLE OF CONTENTS

Chapter 4: Exploring Important C++ Features........ccuccmnrnsssnnnnnsssanns 169
C++ Friend Classes and FUNCLIONS........c.ccocoerenrennenescsesessessese e sesesennans 170
C++ Friend FUNCHIONS.........cccoevererreceere e 171
C+ Friend Class.......covrrrreerererensnessesesesssssesesesesss s sssesessssssssesesesssssasaes 174
Hands-on Activity: When to Use C++ Friend COncepts........c.ccovveerercererenernnnes 177
Best Practices in Passing Argumentscouovvenernnesnsesessesssssesessessssssessenes 188
Arguments Passing ACHIVItIEScccueerrrernreserssernsese s 190
Sharing Data of Objects Using C++ StatiC........c.ccerivvrinininnsnsnienesessensennens 200
Restricting Accidental Changes Using C++ CONStcccccvvrievnvnvenennsensenaens 208
C++ Const and Pointer Usage ACHIVItIES.......cccveerennverierennsensene e sessenennes 212
SUMMAIY.c.veitertrerereseesere e sse e e s e e s e s s saese s e saesaess e e saesaesae e s e saesaesssensessens 225
Practice: Hands-0n ACHIVILIESccorererercrrrcrerese e 225

Chapter 5: Quickly and Systematically Model Real-World

Problems into Software..........cccoussummmsssnsmsssnsssssnsssssnsssssnsssssnsssssnnsssns 227
Modeling Real-World Problems into Software Designcccocvrvvernvesesenernnnes 228
A Simple Gaming AppliCationc.ccocvvvrinienienn e 229
Modeling Game World Entities Using C++ Classes........ccccvverivrerrerserereesensensenns 235
Game Implementation USiNG C++ ClaSSESccvvrrerererrersereressessessessessssensensens 244
Model Application Entities Using C++ CIaSSEScceverrvererenernserensesessenersnns 255
Basic Tasks Related to a Shopping Application...........ccccvvieennccrnccnenenens 270
Basic Customer Interactions in a Shopping Application............ccccocvecvernnns 274
Basic Shopkeeper Interactions in a Shopping Applicationccccccvvuenene 278
Simulating Shopping Application Tasks.........ccccuverrrerernrernsenenesereserensenenns 282
SUMIMANY.....eieeerereeree e e s e re e e e e 288
Practice: Hands-0n ACHIVIIEScccvverernnmrrnsesesssese s se s sennes 288

vii

TABLE OF CONTENTS

Chapter 6: Quick Software Development Using Q0Pcccnrrssnnns 291
The Importance of INheritance............cccvvecncnn s 292
Inheritance APProaches..........ccveincnrnisnsnse s 294
Issues in Combining Inheritance Approaches..........cccceeveernvcvenveneriesenenne, 299
Access Controls and INheritance..........c.ooeeeeerrnenenesnenneseseseseses e 301
Constructors and Destructors Working Order in Inheritance Context.......... 306
Practicing the Reduce and Reuse PrinCipleccocvoeerreenreneriencrnseneseneseenes 3N
Building New Software Building Blocks Versions Easilyc.ccocvnnenensenerennes 323
Combine or Connect Objects WISElYcccuererenernsesrnesesssessssessssesesesesessesenns 335
Object Composition: Special Gaming Weapon...........ccevvevvrerrerieresensensenas 336
Object Composition and Aggregationccecvevernnesennesesnsesessesessesessnnes 342
Hands-on Activity: Inheritance and Object Associationc.ccccvvverenennns 349
SUMMAIY..c.ueiteitrerere s e e s s e e s s sae s e e e s e e aesae e s e saesaene e e nannnens 359
Practice: Hands-0n ACLIVILIESccovrenerinirnnnn s 359
Chapter 7: Easy-to-Use Software Development Using O0P 361
The Importance of Polymorphism ..o 362
Function Overloading..........cocceeererrnienenesernse s e sesesesese s e sessesessenens 363
FUNCLION OVEITIdING ..c..ccevreeereccrir et 367
Overloading Operators to Deal with Complex Objects Computations 371
How to Overload Operators..........ccccvvvverennsnsnesssissese s sessessessssessessens 372
Practice Operator Overloading USAge..........ccccuveriernnnsenennnnnsensesessnsessensens 374
Generic Functions and Data StrucCturescccevvevnenesrssessseseseses e sesesens 381
Practice with Generic FUNCLIONS.........ccccovvernsernesensse s 383
Generic Data STrUCTUIES ... s 388
Practice Implementing a Generic Data Structure........c.cccovveervrernseseneens 389
Using Dynamic Polymorphism for Offering Common Interfaces...........ccccenu.e. 395

viii

TABLE OF CONTENTS

The Importance of Virtual FUNCHONS........ccccocvvninn e 396
The Importance of Pure Virtual Functions and Abstract Classes...........e.... 401
Practice with Dynamic Polymorphism...........cccccvvvnnininnnnininsenseesenenens 403
31011117 SR 408
Practice: Hands-0n ACHIVILIESccorerererererrcrereser e 409
Chapter 8: Design Patterns........cccuurmmmmmmmmnnmsssssssssssnnsmessssssssssssnnnns 411
Introduction to Design Patternsccovvernnesnneseniene s s 412
Creational Patterns..........ccovevresenenernsssessesese s sese s sessesessssesennes 412
Structural Patternsccovevvnenenesesnsssessesese s s ses s sennes 413
Behavioral PAtternscccovvvrnnnnnesenesesssesesse s sesse s sesessenens 414
Learning Creational Design Patternsccoccevvennnscnnsennesnnssesssesessssensenes 415
The Factory Method...........ccooriincncnnesssere e 418
The Singleton Pattern........c.cccuvecrineninscsnessse e 423
Structural Design Patterns.........cccevvvvrerreriennsnsenese s sessesessssessessessesessessessens 428
The Facade Pattern ... 432
The Proxy Server Pattern..........occcvvereveninsenienenssessessesesessessessessesessessessens 440
Behavioral Design Patterns...........ccocvvvrnininnnninsnnsis e ssesesseas 445
The Chain of Responsibility Pattern..........ccccveevrevvinseriesiensssensessesssessessensens 450
The Template Methodcccvvernininrn s 458
310111117 S 465
Chapter 9: Event-Driven Programming.......ccccusssessssssssssssssssssssssssssnns 467
The Importance of Event-Driven Programming............cooeecereererenerrescsenscseseens 468
KEY CONCEPLS.....ceeeeereecrereere e e e 469
Advantages and USE CaSEScccrererrrrererenmrrenerensesessesessesesessesessesessssesenns 473

633 1T] SR 474
Using C++ for Events and Event Handlersc.ccccovvnrrenennncnensenenenenennes 476
Implementing Application Events and Subscribing to Classes.........c..couu... 480

ix

TABLE OF CONTENTS

QUICK PracCliCecucvevrrrrrrrerirereresesesessssssssssss s ss e e e sesesssssssssssnanas 483
Hands-on Activity: Design a Simulator...........cccccovvririininnninnsncenese e 491
loTSensorsHandler EVENtS..........ccocorrennncsrene e 492
SmartVehiclesHandler Custom EVentsccocoeerrnssescncnennssenenesesennas 497
SmartApplication Simulation ... 501
SUMMANY.....eieeereeereree e s e se s e re e e e e 504
Practice: Hands-0n ACHIVILIESccccvrererenernsesrsssese s s sennes 504
Chapter 10: A Brief Introduction to O0P in Python and Solidity 507
Other Important Q0P LanguUagES.........ccouvevrrermrresesrssessssesesssessssessssesessssessssesenns 508
The Importance of Python Programming..........c.ccooueevemenernsesnsesenesessnsenenns 508
The Importance of Solidity Programming...........cccueevmennnsesnsenenesesensenenns 510
Python Basic Programming Constructs for Q0Pcccccvevivvnnnieniennsensenenns 511
Python Basic Programming CONStructs...........ccccveevnvnvnienenensensenenessensenaens 511
Python O0P CONSIIUCES.......ccvvererrreriereresissereseses s e ssesae e e ssessesessessessens 515
Python O0OP Constructs for INheritanceccccevvvrvnierenensensenesessensennens 519
Python O0OP Constructs for POlymorphismc.ccoceevvneevnnensenienesensensensens 521
Practicing OOP in PYthon ..ot ssesse s e s e sessessessees 526
Using Python for Encapsulation and Data-Hiding Features.............ccccvueue. 526
Using Python to Implement Inheritanceccccvvvvininincnn e 532
Using Python for PolymorphisSmcccecvvnininnn s 538
Solidity Basic Programming Constructs for QO0P............ccccoeerirvnnrevericscrencenenns 541
T 110 T2 O 541
Solidity Inheritance Programming.........c.cccoevvnvenersnennsevensesesesesesesessesenns 546
Solidity Polymorphism Programming........c.cccceoeeevrrenernnerensesesesessesesensesenns 549
Practicing O0P in SOIItYccoveererrermrererncresese e 552

TABLE OF CONTENTS

Using the Remix Editor for Practicing Solidity........ccccerrernrerverieresensenienns 553
Practicing with Smart Contracts..........ccevvevvvrveriennsnsnsenenessersesessssessensens 556
Extending Smart Contracts Using INheritance..........cccocvvevevervrierenensensenens 562
Using Solidity for PolymorphiSmccocevvvnrniennnnsensesesssessesesessessessesees 568
SUMMAIY..c..citiiiire e s a e s b e s R r e e e nne s 573
1T - 575

About the Author

Dr. Anil Kumar Rangisetti received his

PhD in computer science and engineering
from the Indian Institute of Technology (IIT)
Hyderabad. He has nearly 10 years of teaching
and research experience in computer science
and engineering. During his career, he worked
at prestigious Indian institutions such as

IIIT Dharwad, SRM-AP, and GMR, and at
software development and research labs such

as Aricent. Currently, he is an assistant professor in the CSE Department
at IIITDM, Kurnool. He trains students in OOP languages and how to use
advanced simulators (NS-3), Docker, and networking tools for developing
applications, and he has guided many undergraduate and postgraduate
students in their projects.

Broadly, Dr. Rangisetti’s research interests include Wi-Fi technologies,
next-generation mobile networks, software-defined networking (SDN),
network functions virtualization (NFV), and cloud computing. He
also writes and reviews books on computer science technologies and
programming languages, and he is the author of Advanced Network
Simulations Simplified (Packt, 2023).

xiii

About the Technical Reviewer

Saravan Nanduri is a seasoned senior full-
stack web developer with nearly two decades
of experience in the information technology
sector, specializing in developing object-
oriented applications. Having worked with
prestigious companies such as Tech Mahindra
and Accenture, Saravan brings expertise to
every project he undertakes.

After graduating with computer science
and engineering degrees in 2005, Saravan
embarked on a remarkable journey leading him to the United States in
2015, where he worked for government agencies before assuming the role
of senior software engineer at SS&C Innovest in 2019.

With a solid foundation in computer science, Saravan is adept at
architecting and implementing both client and web-based enterprise
applications. His proficiency spans a wide spectrum of technologies,
including C++ and Microsoft .NET frameworks, such as C# and MVC.

Beyond his professional endeavors, Saravan values relationships and
camaraderie.

Acknowledgments

First, I would like to thank Apress for accepting my book idea and giving
me this wonderful opportunity. I would especially like to thank Melissa
Duffy for keenly going through the book proposal and suggesting to me
how to make the book proposal interesting and perfect. Melissa’s support
and encouragement throughout the book-writing process is highly helpful.
Melissa’s simple suggestions improved the quality of the book’s content.

I want to thank Nirmal Selvaraj for his continuous support in the entire
review and the book contents finalization process. His timely help and
support helped me to finish on time.

I thank the book’s technical reviewer, Sarvan Nanduri, for his valuable
time and suggestions in all hands-on activities and technical concepts. His
keen observations helped me correct all kinds of errors and incorporate
necessary topics to improve the book’s quality tremendously.

I would like to thank every member of the Apress for supporting me in
writing this book. I would love to work with the Apress team again.

I give my heartfelt thanks to all my students for their interest in
attending my lectures and working with me. All my students’ curiosity,
comments, and suggestions helped me to write this book.

Finally, I thank all my family members, friends, and colleagues for their
love and support.

xvii

Introduction

Object-oriented programming (OOP) is an essential skill for implementing
extendible, reusable, and easy-to-use software systems. To develop any
application software or system software, learning OOP concepts and
programming is necessary. OOP basic principles help in easily handling a
wide variety of real-world software systems (games, application software,
novel systems) implementations. This book blends OOP concepts and
programming activities for active learning. All hands-on activities and
real-time scenarios are described with step-by-step procedures in terms of
designing, programming, and evaluations.

You will learn OOP features through real-world examples and
practice through C++ programming hands-on activities. You will also
learn advanced design and development skills, such as design patterns
and event-driven programming for handling novel systems design and
development. Finally, you are briefly introduced to OOP features practice
through other important OOP languages: Python and Solidity.

This book is organized into three parts. In Part 1 (Chapters 1-4), you
learn and practice OOP concepts using C++ for solving real-world software
development problems.

Part 2 (Chapters 5-7) explains how to model real-world problems
into reusable, extendible, and easy-to-use software development blocks
using OOP concepts such as inheritance, object associations, and
polymorphism.

Xix

INTRODUCTION

In Part 3 (Chapters 8-10), you learn how to use design patterns and
event-driven programming for handling complex software system object
creation, behavior, and interactions. Finally, you are introduced to OOP
using Python and Solidity.

By the end of this book, you will have learned how to design and
implement a variety of real-world software systems from scratch using
OOP principles, design patterns, and event-driven programming skills.

CHAPTER 1

The Importance
of Object-Oriented
Programming

Object-oriented programming (OOP) is essential for handling challenges
in developing flexible, extendible, reusable, and easy-to-use software
systems. OOP approaches simplify the complexity of modeling real-world
application concepts into software building blocks.

OOP offers powerful programming constructs and principles to deal
with the complexity of software development. OOP constructs such as
classes help you to systematically map real-world entities, and it helps in
hiding the implementation details of the entities, controlling their data
access, and simplifying the software system interactions, activities, and
tasks. Moreover, OOP principles such as inheritance and polymorphism
help you to develop reusable and easy-to-use software systems.

Learning OOP helps you deal with the complexity of any software,
such as e-commerce applications, system software (e.g., device drivers,
compilers, operating systems, databases), next-generation applications
such as IoT, industrial IoT (IIoT), smart applications, and many more. To
appreciate the importance of learning OOP, this chapter discusses the
following topics.

© Anil Kumar Rangisetti 2024
A. K. Rangisetti, Hands-On Object-Oriented Programming,
https://doi.org/10.1007/979-8-8688-0524-0_1

https://doi.org/10.1007/979-8-8688-0524-0_1#DOI

CHAPTER 1 THE IMPORTANCE OF OBJECT-ORIENTED PROGRAMMING

e Algorithms vs. software

e Software development challenges

¢ Introduction to OOP concepts

e How OOP approaches simplify the software complexity

e Systematically modeling real-world entities into
software

Algorithms vs. Software

Before exploring software, you should know how to start writing a program
for solving well-defined problems, such as mathematical, computational,
searching, and sorting problems. Solving these problems through a
program involves considering all necessary inputs and defining a logical
sequence of computational steps to get the desired results. Formally, it is
known as writing an algorithm.

This section briefly introduces the following topics.

e Algorithm characteristics
e Writing an algorithm
o Software characteristics

e Software development challenges

Algorithm Characteristics

An algorithm defines a logical sequence of instructions or commands

to solve a problem. For instance, algorithms are highly suitable for
implementing programs to solve specific problems such as searching,
sorting, data structures accessing problems, computational problems, and

CHAPTER 1 THE IMPORTANCE OF OBJECT-ORIENTED PROGRAMMING

many mathematical problems. Algorithms can be easily converted into

computer programs using basic programming constructs such as data

structures, conditional statements, loops, and functions.

Simple modeling approaches such as flow charts are
helpful to write algorithms.

Algorithms’ logical sequence of steps can be converted
into programs using procedural program languages
such as C.

An algorithm’s success mainly depends on its
performance. Algorithm performance is usually
defined in terms of space and time complexity.

Developing efficient algorithms is all about reducing
space and time complexity. For example, many sorting
algorithms have evolved to reduce time complexity
from bubble sort (O(n”2)) to quick sort (O(logn)). Here,
the time complexity is represented in Big O notation to
represent the upper bounds of algorithms.

Algorithms can be developed into programs with

smaller teams or individuals.

Procedural-oriented programming languages (e.g., C)
are sufficient to convert algorithms into programs.

Next, let’s look at how to write an algorithm and convert it into a

program using procedural programming language constructs.

Write an Algorithm

Let’s solve a problem related to searching for an element from any given

list of elements.

CHAPTER 1 THE IMPORTANCE OF OBJECT-ORIENTED PROGRAMMING

e Input: List of elements (list [0 to n]) and a searching
element (key)

e Output: Element found (True), Element not
found (False)

1. Index=0

2. Traverse through the list of elements until the
list ends.

Check the following conditions:
In case key presents in the list:
return True
otherwise
Goto2:

3. Iflistends:
return False

Now it can be easily converted into any procedural-oriented program
constructs such as if-else, for loop, and functions ().
For example, let’s write a C function to solve the search problem.

int search(int list [], int n, int key)

{
int i=0;
for (i=0;i<n;i++)
{
if (list[i] == key)
return 1;

}

return O;

}

4

CHAPTER 1 THE IMPORTANCE OF OBJECT-ORIENTED PROGRAMMING

You have seen how easy it is to convert a well-defined algorithm into
a program using procedural language programming constructs. Next, let’s
quickly explore software and its characteristics.

Software

Software is evolved to solve a variety of real-world complex problems,
which range from system software (editors, compilers, operating systems,
databases, protocol stacks, etc.) to application software (e-commerce,
online reservations, entertainment software, gaming applications, etc.)
and current trending smart applications such as drone applications, IoT,
and smart cities.

Unlike well-defined problem-solving using algorithm approaches,
software development must follow suitable systematic software
engineering procedures and models (e.g., waterfall model, iterative, spiral,
and DevOps) to ensure the following features.

o Verifying and validating all requirements of
stakeholders

¢ Reliable in terms of fault tolerance and zero downtime

o Scalable software components to meet the dynamic
demands of users

o Flexible software components in terms of making
necessary changes or introducing new features

o Extendible software components for producing new
versions of the software to meet market needs or
introducing innovative features

Besides these features, software success depends on the following.
e How quickly it can be developed and tested

e An easy-to-use interface

CHAPTER 1 THE IMPORTANCE OF OBJECT-ORIENTED PROGRAMMING

o How quickly modifications can be made
e Multiple teams able to work on components in parallel

e Reusable and easily extendible software components

Software Development Challenges

By following suitable software engineering principles and models, it is
possible to get all requirements from users involved in using the software.
However, translating user requirements into software design blocks is not
straightforward. For example, in e-commerce applications, a few basic
requirements are that software users should interact with the system easily
to browse items, select items into their basket, and place an order.

These requirements cannot be easily translated into software
by following algorithm design principles and procedural-oriented
programming constructs. Unlike algorithms, software development
involves a lot of ambiguity to be dealt with. It is very challenging to
completely map all real-world entities, their transactions, and all
requirements into software.

You face the following challenges when you want to develop software
using algorithm and procedural programming approaches.

o Itis highly challenging to model all real-world entities,
requirements, and constraints in a limited number

of phases.

o Itis highly difficult to deal with initial ambiguity
(getting ready with initial designs and models) and
define logical steps.

o Starting points are not evident in implementing the

system components.

CHAPTER 1 THE IMPORTANCE OF OBJECT-ORIENTED PROGRAMMING

It is difficult to connect software components for
integrating the complete system.

It is difficult to develop scalable, flexible, and
extendible software components.

It is unrealistic development and release deadlines.

It is unpredictable software success.

Next, you are introduced to OOP concepts and how OOP features are

helpful for software development.

Introduction to 00P Concepts

OOP offers excellent features to simplify software development by

converting high-level requirements and design processes into software

implementation.

Class

Data abstraction
Encapsulation
Data hiding
Inheritance

Polymorphism

Let’s go over OOP basic programming constructs called classes.

Class

A class is the most important programming construct of the OOP. It

helps you easily model any real-world entity (a customer, a drone, or

any transactions) into a software block. OOP basic construct called class

CHAPTER 1 THE IMPORTANCE OF OBJECT-ORIENTED PROGRAMMING

is defined with its related data (data members or fields) and member
functions for accessing its data members. This book uses “data members”
and “fields” synonymously. The class structure is shown in Figure 1-1.

Data Members

Member Functions

Figure 1-1. Class structure in OOP

For instance, customer entities related to an online shopping context
can be easily modeled, as shown in Figure 1-2.

Name

Phone

City

getName()
setName(name)
getPhone#()
setPhone#(number)

getCity()
setCity(city)

Figure 1-2. Online shopping application example class: Customer

Let’s inspect the Customer class definition carefully. The data
members section includes the customer’s name, phone number, and
address.

Under the member functions section, you define corresponding access
functions for each data member, such as get and set functions. Usually, the
“get” member functions are defined to retrieve data members’ values, and
set member functions are defined to update the values of data members.
For example, the City field of the Customer class, getCity(), is useful for
retrieving a customer entity’s city, and setCity(city) is useful for setting
or updating a customer entity’s city.

CHAPTER 1 THE IMPORTANCE OF OBJECT-ORIENTED PROGRAMMING

Having the necessary set and get member functions defined in the
class, you can later easily include complex online shopping application
tasks. For instance, in online shopping applications, customer phone
verification and update tasks can be easily done using getPhone#() and
setPhone# () member functions. Similarly, other member functions are
useful for accessing the respective data of the Customer class.

Next, let’s look at another example in a gaming application context:
modeling a duck character into software as a class (see Figure 1-3).

Duck

id

X,y
State

getld()
setld(ld)
getX()

setX(X)

getY()

setY(X)
getState()
setState(state)

Figure 1-3. Gaming application example class: Duck

The Duck class includes a duck identifier (id), its location (x, y), and its
state (dead or alive). For accessing these data members corresponding set
and get member functions are defined inside the class.

Now, checking whether a duck is live or dead can be easily done by
accessing the duck state using its getState() member function. Similarly,
you can easily track duck position (x, y) using get and set location
functions.

Another interesting example of class structure is IoT sensor modeling,
as shown in Figure 1-4.

CHAPTER 1 THE IMPORTANCE OF OBJECT-ORIENTED PROGRAMMING

Id

State
Sensing_value
Battery_level

getld()

setld(ld)
getState()
setState(state)
getSensVal()
setSensVal(val)
getBatLevel()
setBatLevel(level)

Figure 1-4. Smart application example class: IoT_Sensor

The IoT_sensor class includes data members related to the sensor
identifier (Id), its State (sensing, sleeping, and dead), Sensing_value, and
Battery level.Under member functions, sections corresponding to set
and get functions are defined for accessing the data members.

Suppose you want to keep a particular sensor in a sleep state in your
IoT application. It can be easily done by accessing the sensor state using
setState(state) member function. Similarly, you can access a sensor’s
battery status using getBatLevel () and setBatLevel(level) functions.

Besides simplifying modeling real-world entities, classes are powerful
programming constructs whose definition captures the following
important OOP principles.

Data Encapsulation

If you are an experienced C programmer, you can easily understand
structure data type helps you to combine related data elements under a
single structure variable. However, you cannot control its data and their
related accessing functions together into a structure.

The following is an example.

struct customer

{

char name[30];

10

CHAPTER 1 THE IMPORTANCE OF OBJECT-ORIENTED PROGRAMMING

int phone;
char address[30];

};

Any function can use struct customer variables to change internal
data of the customer variable as follows.

void functionl (struct customer c1)

{

/* It can access customer data */

}

void function2 (struct customer c1)

{

/* It can access customer data */

}

Passing a c1 variable to any C functions, then those functions can
change the corresponding struct customer variable's data members.
It means you are not able to combine data and their accessing functions. It
can lead to no control over the sensitive data of real-world entities.

Interestingly, OOP classes allow you to combine related data
and its member functions into a Class definition. It is known as data
encapsulation. Then, you can model a specific real-world entity from the
class by creating an object and interacting with the object through class
member functions.

You can observe their data and respective accessing functions from the
example classes—Customer, Duck, and IoT_Sensor. As discussed, tasks
related to the corresponding entities can only be done through their class
member functions. For example, the IoT_Sensor entity’s Sensing_value
access can be changed through its object and class member functions:
setSenseValue() and getSenseValue().

11

CHAPTER 1 THE IMPORTANCE OF OBJECT-ORIENTED PROGRAMMING

Data Abstraction

Having encapsulated data types support such as classes in OOP, accessing
variables of the complex data types also gets simplified. In your program,
you define objects (variables) for the respective Class (complex data type)
and invoke necessary member functions from the objects to access their
details. For example, to set an IoT sensor state to “sleep,” you can easily do
it with the following lines of code.

IoT Sensor ii1;
i1.setState(2); // Example, 0: Dead, 1: Sensing, 2: Sleeping.

Similarly, you can check whether the duck is alive with the following
lines of code.

Duck di1;
int state = di.getState(); //1: Alive 2: Dead
if (state == 2)

cout<<di.getId()<<"is dead";

To access the IoT_sensor or Duck details, focus on their objects and
accessing functions, not their implementation details. You need not know
its internal details to access a complex data type.

By checking these examples, you can understand that OOP classes
greatly simplify accessing complex entities’ data using its related member
functions defined inside the class.

Data Hiding

You have observed how to combine class data and its member functions
to simplify accessing its objects. Besides these features, the OOP class
offers a powerful way to control access to an object’s data.

12

CHAPTER 1 THE IMPORTANCE OF OBJECT-ORIENTED PROGRAMMING

It means controlling objects data members access from the outside
of a class. It can be achieved by attaching access control modes
(access specifiers) with data and member functions of a class. OOP
languages generally offer three access specifiers: public, private, and
protected access.

o Public access: Data and member functions defined
under the public section can be accessed by any
function through the respective class objects.

o Private access: Data and member functions defined
under the private section are allowed to be accessed by
only member functions of the class.

e Protected access: Data and member functions defined
under the protected section are allowed to be accessed
by only member functions of the class and its inherited
classes.

You have just seen how to limit an object’s data access using the OOP
access specifiers. Later chapters discuss an object’s data access control
in detail. Now that you have explored the OOP basic construct class, let’s
discuss instances and variables of the class data type.

Objects

Objects are powerful ways to create software components and implement
tasks, transactions, activities, operations, and functions. For example,
it is easier to model the real-world entities such as customers and their
transactions or related activities as objects to develop an online shopping
application.

Object is an instance of a class, it contains data members and member
functions. Hence, any interactions related to the object are done through
the class member functions.

13

CHAPTER 1 THE IMPORTANCE OF OBJECT-ORIENTED PROGRAMMING

In OOP, for example, having a class defined for customers simplifies
online shopping customer entities as Customer objects. Then, all the
following tasks implementaion gets simplified: registering a customer,
updating customer details, and checking customer details by creating and
interacting with customer objects.

Moreover, an object’s powerful combination with its data and
accessing functions helps you easily realize several identical software
components.

The following are examples.

e ADrone class that creates multiple drones is nothing
but defining multiple drone objects.

e ARobot class that creates multiple robots is nothing but
defining multiple robot objects.

Similarly, think of real-world applications entities modelling such as

e-commerce, gaming, and system software.

Objects Details

To understand an object, you can view it as a variable of a particular
data type. Similarly, an object is a variable of the class data type.

In OOP, objects are instances of classes. During program execution,
objects are created by allocating necessary memory space for their data
member’s access.

For example, to create a variable of int.
int a; // int is data type and a is variable

Similarly, in C++, you can create objects from the Customer class as
follows.

Customer c1, c2;

14

