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Introduction

Object-oriented programming (OOP) is an essential skill for implementing 

extendible, reusable, and easy-to-use software systems. To develop any 

application software or system software, learning OOP concepts and 

programming is necessary. OOP basic principles help in easily handling a 

wide variety of real-world software systems (games, application software, 

novel systems) implementations. This book blends OOP concepts and 

programming activities for active learning. All hands-on activities and 

real-time scenarios are described with step-by-step procedures in terms of 

designing, programming, and evaluations.

You will learn OOP features through real-world examples and 

practice through C++ programming hands-on activities. You will also 

learn advanced design and development skills, such as design patterns 

and event-driven programming for handling novel systems design and 

development. Finally, you are briefly introduced to OOP features practice 

through other important OOP languages: Python and Solidity.

This book is organized into three parts. In Part 1 (Chapters 1–4), you 

learn and practice OOP concepts using C++ for solving real-world software 

development problems.

Part 2 (Chapters 5–7) explains how to model real-world problems 

into reusable, extendible, and easy-to-use software development blocks 

using OOP concepts such as inheritance, object associations, and 

polymorphism.



xx

In Part 3 (Chapters 8–10), you learn how to use design patterns and 

event-driven programming for handling complex software system object 

creation, behavior, and interactions. Finally, you are introduced to OOP 

using Python and Solidity.

By the end of this book, you will have learned how to design and 

implement a variety of real-world software systems from scratch using 

OOP principles, design patterns, and event-driven programming skills.

InTroduCTIon



1© Anil Kumar Rangisetti 2024 
A. K. Rangisetti, Hands-On Object-Oriented Programming,  
https://doi.org/10.1007/979-8-8688-0524-0_1

CHAPTER 1

The Importance 
of Object-Oriented  
Programming
Object-oriented programming (OOP) is essential for handling challenges 

in developing flexible, extendible, reusable, and easy-to-use software 

systems. OOP approaches simplify the complexity of modeling real-world 

application concepts into software building blocks.

OOP offers powerful programming constructs and principles to deal 

with the complexity of software development. OOP constructs such as 

classes help you to systematically map real-world entities, and it helps in 

hiding the implementation details of the entities, controlling their data 

access, and simplifying the software system interactions, activities, and 

tasks. Moreover, OOP principles such as inheritance and polymorphism 

help you to develop reusable and easy-to-use software systems.

Learning OOP helps you deal with the complexity of any software, 

such as e-commerce applications, system software (e.g., device drivers, 

compilers, operating systems, databases), next-generation applications 

such as IoT, industrial IoT (IIoT), smart applications, and many more. To 

appreciate the importance of learning OOP, this chapter discusses the 

following topics.

https://doi.org/10.1007/979-8-8688-0524-0_1#DOI
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• Algorithms vs. software

• Software development challenges

• Introduction to OOP concepts

• How OOP approaches simplify the software complexity

• Systematically modeling real-world entities into 

software

 Algorithms vs. Software
Before exploring software, you should know how to start writing a program 

for solving well-defined problems, such as mathematical, computational, 

searching, and sorting problems. Solving these problems through a 

program involves considering all necessary inputs and defining a logical 

sequence of computational steps to get the desired results. Formally, it is 

known as writing an algorithm.

This section briefly introduces the following topics.

• Algorithm characteristics

• Writing an algorithm

• Software characteristics

• Software development challenges

 Algorithm Characteristics
An algorithm defines a logical sequence of instructions or commands 

to solve a problem. For instance, algorithms are highly suitable for 

implementing programs to solve specific problems such as searching, 

sorting, data structures accessing problems, computational problems, and 

Chapter 1  the ImportanCe of objeCt-orIented programmIng 
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many mathematical problems. Algorithms can be easily converted into 

computer programs using basic programming constructs such as data 

structures, conditional statements, loops, and functions.

• Simple modeling approaches such as flow charts are 

helpful to write algorithms.

• Algorithms’ logical sequence of steps can be converted 

into programs using procedural program languages 

such as C.

• An algorithm’s success mainly depends on its 

performance. Algorithm performance is usually 

defined in terms of space and time complexity.

• Developing efficient algorithms is all about reducing 

space and time complexity. For example, many sorting 

algorithms have evolved to reduce time complexity 

from bubble sort (O(n^2)) to quick sort (O(logn)). Here, 

the time complexity is represented in Big O notation to 

represent the upper bounds of algorithms.

• Algorithms can be developed into programs with 

smaller teams or individuals.

• Procedural-oriented programming languages (e.g., C) 

are sufficient to convert algorithms into programs.

Next, let’s look at how to write an algorithm and convert it into a 

program using procedural programming language constructs.

 Write an Algorithm
Let’s solve a problem related to searching for an element from any given 

list of elements.

Chapter 1  the ImportanCe of objeCt-orIented programmIng 
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• Input: List of elements (list [0 to n]) and a searching 

element (key)

• Output: Element found (True), Element not 

found (False)

 1. Index=0

 2. Traverse through the list of elements until the 

list ends.

Check the following conditions:

In case key presents in the list:

return True

otherwise

Go to 2:

 3. If list ends:

return False

Now it can be easily converted into any procedural-oriented program 

constructs such as if-else, for loop, and functions ().

For example, let’s write a C function to solve the search problem.

int search(int list [], int n, int key)

{

  int i=0;

  for (i=0;i<n;i++)

  {

    if (list[i] == key)

      return 1;

  }

  return 0;

}

Chapter 1  the ImportanCe of objeCt-orIented programmIng 
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You have seen how easy it is to convert a well-defined algorithm into 

a program using procedural language programming constructs. Next, let’s 

quickly explore software and its characteristics.

 Software
Software is evolved to solve a variety of real-world complex problems, 

which range from system software (editors, compilers, operating systems, 

databases, protocol stacks, etc.) to application software (e-commerce, 

online reservations, entertainment software, gaming applications, etc.) 

and current trending smart applications such as drone applications, IoT, 

and smart cities.

Unlike well-defined problem-solving using algorithm approaches, 

software development must follow suitable systematic software 

engineering procedures and models (e.g., waterfall model, iterative, spiral, 

and DevOps) to ensure the following features.

• Verifying and validating all requirements of 

stakeholders

• Reliable in terms of fault tolerance and zero downtime

• Scalable software components to meet the dynamic 

demands of users

• Flexible software components in terms of making 

necessary changes or introducing new features

• Extendible software components for producing new 

versions of the software to meet market needs or 

introducing innovative features

Besides these features, software success depends on the following.

• How quickly it can be developed and tested

• An easy-to-use interface

Chapter 1  the ImportanCe of objeCt-orIented programmIng 
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• How quickly modifications can be made

• Multiple teams able to work on components in parallel

• Reusable and easily extendible software components

 Software Development Challenges
By following suitable software engineering principles and models, it is 

possible to get all requirements from users involved in using the software. 

However, translating user requirements into software design blocks is not 

straightforward. For example, in e-commerce applications, a few basic 

requirements are that software users should interact with the system easily 

to browse items, select items into their basket, and place an order.

These requirements cannot be easily translated into software 

by following algorithm design principles and procedural-oriented 

programming constructs. Unlike algorithms, software development 

involves a lot of ambiguity to be dealt with. It is very challenging to 

completely map all real-world entities, their transactions, and all 

requirements into software.

You face the following challenges when you want to develop software 

using algorithm and procedural programming approaches.

• It is highly challenging to model all real-world entities, 

requirements, and constraints in a limited number 

of phases.

• It is highly difficult to deal with initial ambiguity 

(getting ready with initial designs and models) and 

define logical steps.

• Starting points are not evident in implementing the 

system components.

Chapter 1  the ImportanCe of objeCt-orIented programmIng 
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• It is difficult to connect software components for 

integrating the complete system.

• It is difficult to develop scalable, flexible, and 

extendible software components.

• It is unrealistic development and release deadlines.

• It is unpredictable software success.

Next, you are introduced to OOP concepts and how OOP features are 

helpful for software development.

 Introduction to OOP Concepts
OOP offers excellent features to simplify software development by 

converting high-level requirements and design processes into software 

implementation.

• Class

• Data abstraction

• Encapsulation

• Data hiding

• Inheritance

• Polymorphism

Let’s go over OOP basic programming constructs called classes.

 Class
A class is the most important programming construct of the OOP. It 

helps you easily model any real-world entity (a customer, a drone, or 

any transactions) into a software block. OOP basic construct called class 

Chapter 1  the ImportanCe of objeCt-orIented programmIng 
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is defined with its related data (data members or fields) and member 

functions for accessing its data members. This book uses “data members” 

and “fields” synonymously. The class structure is shown in Figure 1-1.

Figure 1-1. Class structure in OOP

For instance, customer entities related to an online shopping context 

can be easily modeled, as shown in Figure 1-2.

Figure 1-2. Online shopping application example class: Customer

Let’s inspect the Customer class definition carefully. The data 

members section includes the customer’s name, phone number, and 

address.

Under the member functions section, you define corresponding access 

functions for each data member, such as get and set functions. Usually, the 

“get” member functions are defined to retrieve data members’ values, and 

set member functions are defined to update the values of data members. 

For example, the City field of the Customer class, getCity(), is useful for 

retrieving a customer entity’s city, and setCity(city) is useful for setting 

or updating a customer entity’s city.

Chapter 1  the ImportanCe of objeCt-orIented programmIng 
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Having the necessary set and get member functions defined in the 

class, you can later easily include complex online shopping application 

tasks. For instance, in online shopping applications, customer phone 

verification and update tasks can be easily done using getPhone#() and 

setPhone#() member functions. Similarly, other member functions are 

useful for accessing the respective data of the Customer class.

Next, let’s look at another example in a gaming application context: 

modeling a duck character into software as a class (see Figure 1-3).

Figure 1-3. Gaming application example class: Duck

The Duck class includes a duck identifier (id), its location (x,y), and its 

state (dead or alive). For accessing these data members corresponding set 

and get member functions are defined inside the class.

Now, checking whether a duck is live or dead can be easily done by 

accessing the duck state using its getState() member function. Similarly, 

you can easily track duck position (x,y) using get and set location 

functions.

Another interesting example of class structure is IoT sensor modeling, 

as shown in Figure 1-4.

Chapter 1  the ImportanCe of objeCt-orIented programmIng 
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Figure 1-4. Smart application example class: IoT_Sensor

The IoT_sensor class includes data members related to the sensor 

identifier (Id), its State (sensing, sleeping, and dead), Sensing_value, and 

Battery_level. Under member functions, sections corresponding to set 

and get functions are defined for accessing the data members.

Suppose you want to keep a particular sensor in a sleep state in your 

IoT application. It can be easily done by accessing the sensor state using 

setState(state) member function. Similarly, you can access a sensor’s 

battery status using getBatLevel() and setBatLevel(level) functions.

Besides simplifying modeling real-world entities, classes are powerful 

programming constructs whose definition captures the following 

important OOP principles.

 Data Encapsulation

If you are an experienced C programmer, you can easily understand 

structure data type helps you to combine related data elements under a 

single structure variable. However, you cannot control its data and their 

related accessing functions together into a structure.

The following is an example.

struct customer

{

  char  name[30];

Chapter 1  the ImportanCe of objeCt-orIented programmIng 
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  int phone;

  char address[30];

};

Any function can use struct customer variables to change internal 

data of the customer variable as follows.

void function1 (struct customer c1)

{

/* It can access customer data */

}

void function2 (struct customer c1)

{

/* It can access customer data */

}

Passing a c1 variable to any C functions, then those functions can 

change the corresponding struct customer variable's data members. 

It means you are not able to combine data and their accessing functions. It 

can lead to no control over the sensitive data of real-world entities.

Interestingly, OOP classes allow you to combine related data 

and its member functions into a Class definition. It is known as data 

encapsulation. Then, you can model a specific real-world entity from the 

class by creating an object and interacting with the object through class 

member functions.

You can observe their data and respective accessing functions from the 

example classes—Customer, Duck, and IoT_Sensor. As discussed, tasks 

related to the corresponding entities can only be done through their class 

member functions. For example, the IoT_Sensor entity’s Sensing_value 

access can be changed through its object and class member functions: 

setSenseValue() and getSenseValue().
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 Data Abstraction

Having encapsulated data types support such as classes in OOP, accessing 

variables of the complex data types also gets simplified. In your program, 

you define objects (variables) for the respective Class (complex data type) 

and invoke necessary member functions from the objects to access their 

details. For example, to set an IoT sensor state to “sleep,” you can easily do 

it with the following lines of code.

IoT_Sensor i1;

i1.setState(2);   // Example, 0: Dead, 1: Sensing, 2: Sleeping.

Similarly, you can check whether the duck is alive with the following 

lines of code.

Duck d1;

int state = d1.getState(); //1: Alive 2: Dead

if (state == 2)

  cout<<d1.getId()<<"is dead";

To access the IoT_sensor or Duck details, focus on their objects and 

accessing functions, not their implementation details. You need not know 

its internal details to access a complex data type.

By checking these examples, you can understand that OOP classes 

greatly simplify accessing complex entities’ data using its related member 

functions defined inside the class.

 Data Hiding

You have observed how to combine class data and its member functions 

to simplify accessing its objects. Besides these features, the OOP class 

offers a powerful way to control access to an object’s data.
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It means controlling objects data members access from the outside 

of a class. It can be achieved by attaching access control modes 

(access specifiers) with data and member functions of a class. OOP 

languages generally offer three access specifiers: public, private, and 

protected access.

• Public access: Data and member functions defined 

under the public section can be accessed by any 

function through the respective class objects.

• Private access: Data and member functions defined 

under the private section are allowed to be accessed by 

only member functions of the class.

• Protected access: Data and member functions defined 

under the protected section are allowed to be accessed 

by only member functions of the class and its inherited 

classes.

You have just seen how to limit an object’s data access using the OOP 

access specifiers. Later chapters discuss an object’s data access control 

in detail. Now that you have explored the OOP basic construct class, let’s 

discuss instances and variables of the class data type.

 Objects
Objects are powerful ways to create software components and implement 

tasks, transactions, activities, operations, and functions. For example, 

it is easier to model the real-world entities such as customers and their 

transactions or related activities as objects to develop an online shopping 

application.

Object is an instance of a class, it contains data members and member 

functions. Hence, any interactions related to the object are done through 

the class member functions.
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In OOP, for example, having a class defined for customers simplifies 

online shopping customer entities as Customer objects. Then, all the 

following tasks implementaion gets simplified: registering a customer, 

updating customer details, and checking customer details by creating and 

interacting with customer objects.

Moreover, an object’s powerful combination with its data and 

accessing functions helps you easily realize several identical software 

components.

The following are examples.

• A Drone class that creates multiple drones is nothing 

but defining multiple drone objects.

• A Robot class that creates multiple robots is nothing but 

defining multiple robot objects.

Similarly, think of real-world applications entities modelling such as 

e-commerce, gaming, and system software.

 Objects Details

To understand an object, you can view it as a variable of a particular 

data type. Similarly, an object is a variable of the class data type. 

In OOP, objects are instances of classes. During program execution, 

objects are created by allocating necessary memory space for their data 

member’s access.

For example, to create a variable of int.

int a; // int is data type and a is variable

Similarly, in C++, you can create objects from the Customer class as 

follows.

Customer c1, c2;
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