
Hands-On
Object-Oriented
Programming

Mastering OOP Features for
Real-World Software Systems
Development
—
Anil Kumar Rangisetti

Hands-On
Object-Oriented
Programming

Mastering OOP Features
for Real-World Software
Systems Development

Anil Kumar Rangisetti

Hands-On Object-Oriented Programming: Mastering OOP Features for

Real-World Software Systems Development

ISBN-13 (pbk): 979-8-8688-0523-3 ISBN-13 (electronic): 979-8-8688-0524-0
https://doi.org/10.1007/979-8-8688-0524-0

Copyright © 2024 by Anil Kumar Rangisetti

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Melissa Duffy
Development Editor: Laura Berendson
Coordinating Editor: Gryffin Winkler
Copyeditor: Kim Burton

Cover designed by eStudioCalamar

Cover image by Vinicius “amnx” Amano on Unsplash (unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY
10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub (https://github.com/Apress). For more detailed information,
please visit https://www.apress.com/gp/services/source-code.

If disposing of this product, please recycle the paper

Anil Kumar Rangisetti
Kurnool, Andhra Pradesh, India

https://doi.org/10.1007/979-8-8688-0524-0

To my teachers, Dr. Bheemarjuna Reddy and
Shri Badrinadh Garu, for identifying my strengths,

giving me wonderful opportunities to work with them,
and guiding me to achieve my goals.

To my lovely wife, Sravani, for being a wonderful partner
and supporting me in all situations. Without her love and

support, I could not accomplish it.

v

About the Author ���xiii

About the Technical Reviewer ��xv

Acknowledgments ��xvii

Introduction ���xix

Chapter 1: The Importance of Object-Oriented Programming ��������������1

Algorithms vs. Software ..2

Algorithm Characteristics ..2

Write an Algorithm ...3

Software ..5

Software Development Challenges..6

Introduction to OOP Concepts ...7

Class ..7

Objects ..13

Inheritance ..16

Polymorphism ..18

How OOP Approaches Simplify the Software Complexity19

Systematically Modeling Real-World Entities into Software21

Hands-on Activity: Online Shopping ..23

Hands-on Activity: Simple Adventurous Game ..33

Summary...39

Practice: Hands-on Activities ..40

Table of Contents

vi

Chapter 2: Start Learning OOP Using C++ ��43

C++ OOP Constructs ...44

C++ Specific Programming Constructs ...45

Model Real-World Entities Using C++ Classes ...64

Interacting with Objects ..77

Object Access Control Modes..87

Hands-on Activity: Smart Applications ..100

Summary...109

Practice: Hands-On Activities ..110

Chapter 3: Systematically Starting and Stopping
Software Objects ��113

Software Objects Startup and Shutdown Sequences114

Starting a Software Application ...115

Closing a Software Application ..118

Constructors for Handling Startup Sequences ..120

Constructors in C++ ..120

C++ Supporting Constructors ...123

C++ Compiler Providing Constructors ...128

Hands-on Activities for Practicing Constructors ..130

The Importance of Destructors for Doing Graceful Shutdowns139

Destructors in C++ ..139

Hands-on Destructors ...143

Hands-on Activity 1: Constructors ...150

Hands-on Activity 2: Destructors ...162

Summary...166

Practice: Hands-on Activities ..167

Table of ConTenTs

vii

Chapter 4: Exploring Important C++ Features ����������������������������������169

C++ Friend Classes and Functions ...170

C++ Friend Functions ..171

C++ Friend Class ...174

Hands-on Activity: When to Use C++ Friend Concepts177

Best Practices in Passing Arguments ...188

Arguments Passing Activities ..190

Sharing Data of Objects Using C++ Static ..200

Restricting Accidental Changes Using C++ const ..208

C++ Const and Pointer Usage Activities ..212

Summary...225

Practice: Hands-on Activities ..225

Chapter 5: Quickly and Systematically Model Real-World
Problems into Software ��227

Modeling Real-World Problems into Software Design228

A Simple Gaming Application ..229

Modeling Game World Entities Using C++ Classes ...235

Game Implementation Using C++ Classes ...244

Model Application Entities Using C++ Classes ...255

Basic Tasks Related to a Shopping Application ...270

Basic Customer Interactions in a Shopping Application274

Basic Shopkeeper Interactions in a Shopping Application278

Simulating Shopping Application Tasks ...282

Summary...288

Practice: Hands-on Activities ..288

Table of ConTenTs

viii

Chapter 6: Quick Software Development Using OOP ������������������������291

The Importance of Inheritance ..292

Inheritance Approaches ...294

Issues in Combining Inheritance Approaches ..299

Access Controls and Inheritance ...301

Constructors and Destructors Working Order in Inheritance Context306

Practicing the Reduce and Reuse Principle ..311

Building New Software Building Blocks Versions Easily323

Combine or Connect Objects Wisely ...335

Object Composition: Special Gaming Weapon ...336

Object Composition and Aggregation ..342

Hands-on Activity: Inheritance and Object Association349

Summary...359

Practice: Hands-on Activities ..359

Chapter 7: Easy-to-Use Software Development Using OOP ��������������361

The Importance of Polymorphism ...362

Function Overloading ...363

Function Overriding ...367

Overloading Operators to Deal with Complex Objects Computations371

How to Overload Operators..372

Practice Operator Overloading Usage ..374

Generic Functions and Data Structures ..381

Practice with Generic Functions ..383

Generic Data Structures ..388

Practice Implementing a Generic Data Structure ..389

Using Dynamic Polymorphism for Offering Common Interfaces395

Table of ConTenTs

ix

The Importance of Virtual Functions ..396

The Importance of Pure Virtual Functions and Abstract Classes401

Practice with Dynamic Polymorphism ...403

Summary...408

Practice: Hands-on Activities ..409

Chapter 8: Design Patterns ���411

Introduction to Design Patterns ..412

Creational Patterns ..412

Structural Patterns ..413

Behavioral Patterns ...414

Learning Creational Design Patterns ..415

The Factory Method ...418

The Singleton Pattern ..423

Structural Design Patterns ..428

The Facade Pattern ...432

The Proxy Server Pattern ...440

Behavioral Design Patterns ...445

The Chain of Responsibility Pattern ...450

The Template Method ..458

Summary...465

Chapter 9: Event-Driven Programming ���467

The Importance of Event-Driven Programming ...468

Key Concepts ...469

Advantages and Use Cases ...473

Structure ...474

Using C++ for Events and Event Handlers ..476

Implementing Application Events and Subscribing to Classes480

Table of ConTenTs

x

Quick Practice ...483

Hands-on Activity: Design a Simulator ..491

IoTSensorsHandler Events ...492

SmartVehiclesHandler Custom Events ..497

SmartApplication Simulation ...501

Summary...504

Practice: Hands-on Activities ..504

Chapter 10: A Brief Introduction to OOP in Python and Solidity �������507

Other Important OOP Languages ...508

The Importance of Python Programming ...508

The Importance of Solidity Programming ..510

Python Basic Programming Constructs for OOP ...511

Python Basic Programming Constructs ...511

Python OOP Constructs ..515

Python OOP Constructs for Inheritance ...519

Python OOP Constructs for Polymorphism ..521

Practicing OOP in Python ..526

Using Python for Encapsulation and Data- Hiding Features526

Using Python to Implement Inheritance ..532

Using Python for Polymorphism ..538

Solidity Basic Programming Constructs for OOP...541

Solidity Basics ...541

Solidity Inheritance Programming ...546

Solidity Polymorphism Programming ..549

Practicing OOP in Solidity ...552

Table of ConTenTs

xi

Using the Remix Editor for Practicing Solidity ...553

Practicing with Smart Contracts ..556

Extending Smart Contracts Using Inheritance ...562

Using Solidity for Polymorphism ...568

Summary...573

 Index ���575

Table of ConTenTs

xiii

About the Author

Dr. Anil Kumar Rangisetti received his

PhD in computer science and engineering

from the Indian Institute of Technology (IIT)

Hyderabad. He has nearly 10 years of teaching

and research experience in computer science

and engineering. During his career, he worked

at prestigious Indian institutions such as

IIIT Dharwad, SRM-AP, and GMR, and at

software development and research labs such

as Aricent. Currently, he is an assistant professor in the CSE Department

at IIITDM, Kurnool. He trains students in OOP languages and how to use

advanced simulators (NS-3), Docker, and networking tools for developing

applications, and he has guided many undergraduate and postgraduate

students in their projects.

Broadly, Dr. Rangisetti’s research interests include Wi-Fi technologies,

next-generation mobile networks, software-defined networking (SDN),

network functions virtualization (NFV), and cloud computing. He

also writes and reviews books on computer science technologies and

programming languages, and he is the author of Advanced Network

Simulations Simplified (Packt, 2023).

xv

Saravan Nanduri is a seasoned senior full-

stack web developer with nearly two decades

of experience in the information technology

sector, specializing in developing object-

oriented applications. Having worked with

prestigious companies such as Tech Mahindra

and Accenture, Saravan brings expertise to

every project he undertakes.

After graduating with computer science

and engineering degrees in 2005, Saravan

embarked on a remarkable journey leading him to the United States in

2015, where he worked for government agencies before assuming the role

of senior software engineer at SS&C Innovest in 2019.

With a solid foundation in computer science, Saravan is adept at

architecting and implementing both client and web-based enterprise

applications. His proficiency spans a wide spectrum of technologies,

including C++ and Microsoft .NET frameworks, such as C# and MVC.

Beyond his professional endeavors, Saravan values relationships and

camaraderie.

About the Technical Reviewer

xvii

Acknowledgments

First, I would like to thank Apress for accepting my book idea and giving

me this wonderful opportunity. I would especially like to thank Melissa

Duffy for keenly going through the book proposal and suggesting to me

how to make the book proposal interesting and perfect. Melissa’s support

and encouragement throughout the book-writing process is highly helpful.

Melissa’s simple suggestions improved the quality of the book’s content.

I want to thank Nirmal Selvaraj for his continuous support in the entire

review and the book contents finalization process. His timely help and

support helped me to finish on time.

I thank the book’s technical reviewer, Sarvan Nanduri, for his valuable

time and suggestions in all hands-on activities and technical concepts. His

keen observations helped me correct all kinds of errors and incorporate

necessary topics to improve the book’s quality tremendously.

I would like to thank every member of the Apress for supporting me in

writing this book. I would love to work with the Apress team again.

I give my heartfelt thanks to all my students for their interest in

attending my lectures and working with me. All my students’ curiosity,

comments, and suggestions helped me to write this book.

Finally, I thank all my family members, friends, and colleagues for their

love and support.

xix

Introduction

Object-oriented programming (OOP) is an essential skill for implementing

extendible, reusable, and easy-to-use software systems. To develop any

application software or system software, learning OOP concepts and

programming is necessary. OOP basic principles help in easily handling a

wide variety of real-world software systems (games, application software,

novel systems) implementations. This book blends OOP concepts and

programming activities for active learning. All hands-on activities and

real-time scenarios are described with step-by-step procedures in terms of

designing, programming, and evaluations.

You will learn OOP features through real-world examples and

practice through C++ programming hands-on activities. You will also

learn advanced design and development skills, such as design patterns

and event-driven programming for handling novel systems design and

development. Finally, you are briefly introduced to OOP features practice

through other important OOP languages: Python and Solidity.

This book is organized into three parts. In Part 1 (Chapters 1–4), you

learn and practice OOP concepts using C++ for solving real-world software

development problems.

Part 2 (Chapters 5–7) explains how to model real-world problems

into reusable, extendible, and easy-to-use software development blocks

using OOP concepts such as inheritance, object associations, and

polymorphism.

xx

In Part 3 (Chapters 8–10), you learn how to use design patterns and

event-driven programming for handling complex software system object

creation, behavior, and interactions. Finally, you are introduced to OOP

using Python and Solidity.

By the end of this book, you will have learned how to design and

implement a variety of real-world software systems from scratch using

OOP principles, design patterns, and event-driven programming skills.

InTroduCTIon

1© Anil Kumar Rangisetti 2024
A. K. Rangisetti, Hands-On Object-Oriented Programming,
https://doi.org/10.1007/979-8-8688-0524-0_1

CHAPTER 1

The Importance
of Object-Oriented
Programming
Object-oriented programming (OOP) is essential for handling challenges

in developing flexible, extendible, reusable, and easy-to-use software

systems. OOP approaches simplify the complexity of modeling real-world

application concepts into software building blocks.

OOP offers powerful programming constructs and principles to deal

with the complexity of software development. OOP constructs such as

classes help you to systematically map real-world entities, and it helps in

hiding the implementation details of the entities, controlling their data

access, and simplifying the software system interactions, activities, and

tasks. Moreover, OOP principles such as inheritance and polymorphism

help you to develop reusable and easy-to-use software systems.

Learning OOP helps you deal with the complexity of any software,

such as e-commerce applications, system software (e.g., device drivers,

compilers, operating systems, databases), next-generation applications

such as IoT, industrial IoT (IIoT), smart applications, and many more. To

appreciate the importance of learning OOP, this chapter discusses the

following topics.

https://doi.org/10.1007/979-8-8688-0524-0_1#DOI

2

• Algorithms vs. software

• Software development challenges

• Introduction to OOP concepts

• How OOP approaches simplify the software complexity

• Systematically modeling real-world entities into

software

 Algorithms vs. Software
Before exploring software, you should know how to start writing a program

for solving well-defined problems, such as mathematical, computational,

searching, and sorting problems. Solving these problems through a

program involves considering all necessary inputs and defining a logical

sequence of computational steps to get the desired results. Formally, it is

known as writing an algorithm.

This section briefly introduces the following topics.

• Algorithm characteristics

• Writing an algorithm

• Software characteristics

• Software development challenges

 Algorithm Characteristics
An algorithm defines a logical sequence of instructions or commands

to solve a problem. For instance, algorithms are highly suitable for

implementing programs to solve specific problems such as searching,

sorting, data structures accessing problems, computational problems, and

Chapter 1 the ImportanCe of objeCt-orIented programmIng

3

many mathematical problems. Algorithms can be easily converted into

computer programs using basic programming constructs such as data

structures, conditional statements, loops, and functions.

• Simple modeling approaches such as flow charts are

helpful to write algorithms.

• Algorithms’ logical sequence of steps can be converted

into programs using procedural program languages

such as C.

• An algorithm’s success mainly depends on its

performance. Algorithm performance is usually

defined in terms of space and time complexity.

• Developing efficient algorithms is all about reducing

space and time complexity. For example, many sorting

algorithms have evolved to reduce time complexity

from bubble sort (O(n^2)) to quick sort (O(logn)). Here,

the time complexity is represented in Big O notation to

represent the upper bounds of algorithms.

• Algorithms can be developed into programs with

smaller teams or individuals.

• Procedural-oriented programming languages (e.g., C)

are sufficient to convert algorithms into programs.

Next, let’s look at how to write an algorithm and convert it into a

program using procedural programming language constructs.

 Write an Algorithm
Let’s solve a problem related to searching for an element from any given

list of elements.

Chapter 1 the ImportanCe of objeCt-orIented programmIng

4

• Input: List of elements (list [0 to n]) and a searching

element (key)

• Output: Element found (True), Element not

found (False)

 1. Index=0

 2. Traverse through the list of elements until the

list ends.

Check the following conditions:

In case key presents in the list:

return True

otherwise

Go to 2:

 3. If list ends:

return False

Now it can be easily converted into any procedural-oriented program

constructs such as if-else, for loop, and functions ().

For example, let’s write a C function to solve the search problem.

int search(int list [], int n, int key)

{

 int i=0;

 for (i=0;i<n;i++)

 {

 if (list[i] == key)

 return 1;

 }

 return 0;

}

Chapter 1 the ImportanCe of objeCt-orIented programmIng

5

You have seen how easy it is to convert a well-defined algorithm into

a program using procedural language programming constructs. Next, let’s

quickly explore software and its characteristics.

 Software
Software is evolved to solve a variety of real-world complex problems,

which range from system software (editors, compilers, operating systems,

databases, protocol stacks, etc.) to application software (e-commerce,

online reservations, entertainment software, gaming applications, etc.)

and current trending smart applications such as drone applications, IoT,

and smart cities.

Unlike well-defined problem-solving using algorithm approaches,

software development must follow suitable systematic software

engineering procedures and models (e.g., waterfall model, iterative, spiral,

and DevOps) to ensure the following features.

• Verifying and validating all requirements of

stakeholders

• Reliable in terms of fault tolerance and zero downtime

• Scalable software components to meet the dynamic

demands of users

• Flexible software components in terms of making

necessary changes or introducing new features

• Extendible software components for producing new

versions of the software to meet market needs or

introducing innovative features

Besides these features, software success depends on the following.

• How quickly it can be developed and tested

• An easy-to-use interface

Chapter 1 the ImportanCe of objeCt-orIented programmIng

6

• How quickly modifications can be made

• Multiple teams able to work on components in parallel

• Reusable and easily extendible software components

 Software Development Challenges
By following suitable software engineering principles and models, it is

possible to get all requirements from users involved in using the software.

However, translating user requirements into software design blocks is not

straightforward. For example, in e-commerce applications, a few basic

requirements are that software users should interact with the system easily

to browse items, select items into their basket, and place an order.

These requirements cannot be easily translated into software

by following algorithm design principles and procedural-oriented

programming constructs. Unlike algorithms, software development

involves a lot of ambiguity to be dealt with. It is very challenging to

completely map all real-world entities, their transactions, and all

requirements into software.

You face the following challenges when you want to develop software

using algorithm and procedural programming approaches.

• It is highly challenging to model all real-world entities,

requirements, and constraints in a limited number

of phases.

• It is highly difficult to deal with initial ambiguity

(getting ready with initial designs and models) and

define logical steps.

• Starting points are not evident in implementing the

system components.

Chapter 1 the ImportanCe of objeCt-orIented programmIng

7

• It is difficult to connect software components for

integrating the complete system.

• It is difficult to develop scalable, flexible, and

extendible software components.

• It is unrealistic development and release deadlines.

• It is unpredictable software success.

Next, you are introduced to OOP concepts and how OOP features are

helpful for software development.

 Introduction to OOP Concepts
OOP offers excellent features to simplify software development by

converting high-level requirements and design processes into software

implementation.

• Class

• Data abstraction

• Encapsulation

• Data hiding

• Inheritance

• Polymorphism

Let’s go over OOP basic programming constructs called classes.

 Class
A class is the most important programming construct of the OOP. It

helps you easily model any real-world entity (a customer, a drone, or

any transactions) into a software block. OOP basic construct called class

Chapter 1 the ImportanCe of objeCt-orIented programmIng

8

is defined with its related data (data members or fields) and member

functions for accessing its data members. This book uses “data members”

and “fields” synonymously. The class structure is shown in Figure 1-1.

Figure 1-1. Class structure in OOP

For instance, customer entities related to an online shopping context

can be easily modeled, as shown in Figure 1-2.

Figure 1-2. Online shopping application example class: Customer

Let’s inspect the Customer class definition carefully. The data

members section includes the customer’s name, phone number, and

address.

Under the member functions section, you define corresponding access

functions for each data member, such as get and set functions. Usually, the

“get” member functions are defined to retrieve data members’ values, and

set member functions are defined to update the values of data members.

For example, the City field of the Customer class, getCity(), is useful for

retrieving a customer entity’s city, and setCity(city) is useful for setting

or updating a customer entity’s city.

Chapter 1 the ImportanCe of objeCt-orIented programmIng

9

Having the necessary set and get member functions defined in the

class, you can later easily include complex online shopping application

tasks. For instance, in online shopping applications, customer phone

verification and update tasks can be easily done using getPhone#() and

setPhone#() member functions. Similarly, other member functions are

useful for accessing the respective data of the Customer class.

Next, let’s look at another example in a gaming application context:

modeling a duck character into software as a class (see Figure 1-3).

Figure 1-3. Gaming application example class: Duck

The Duck class includes a duck identifier (id), its location (x,y), and its

state (dead or alive). For accessing these data members corresponding set

and get member functions are defined inside the class.

Now, checking whether a duck is live or dead can be easily done by

accessing the duck state using its getState() member function. Similarly,

you can easily track duck position (x,y) using get and set location

functions.

Another interesting example of class structure is IoT sensor modeling,

as shown in Figure 1-4.

Chapter 1 the ImportanCe of objeCt-orIented programmIng

10

Figure 1-4. Smart application example class: IoT_Sensor

The IoT_sensor class includes data members related to the sensor

identifier (Id), its State (sensing, sleeping, and dead), Sensing_value, and

Battery_level. Under member functions, sections corresponding to set

and get functions are defined for accessing the data members.

Suppose you want to keep a particular sensor in a sleep state in your

IoT application. It can be easily done by accessing the sensor state using

setState(state) member function. Similarly, you can access a sensor’s

battery status using getBatLevel() and setBatLevel(level) functions.

Besides simplifying modeling real-world entities, classes are powerful

programming constructs whose definition captures the following

important OOP principles.

 Data Encapsulation

If you are an experienced C programmer, you can easily understand

structure data type helps you to combine related data elements under a

single structure variable. However, you cannot control its data and their

related accessing functions together into a structure.

The following is an example.

struct customer

{

 char name[30];

Chapter 1 the ImportanCe of objeCt-orIented programmIng

11

 int phone;

 char address[30];

};

Any function can use struct customer variables to change internal

data of the customer variable as follows.

void function1 (struct customer c1)

{

/* It can access customer data */

}

void function2 (struct customer c1)

{

/* It can access customer data */

}

Passing a c1 variable to any C functions, then those functions can

change the corresponding struct customer variable's data members.

It means you are not able to combine data and their accessing functions. It

can lead to no control over the sensitive data of real-world entities.

Interestingly, OOP classes allow you to combine related data

and its member functions into a Class definition. It is known as data

encapsulation. Then, you can model a specific real-world entity from the

class by creating an object and interacting with the object through class

member functions.

You can observe their data and respective accessing functions from the

example classes—Customer, Duck, and IoT_Sensor. As discussed, tasks

related to the corresponding entities can only be done through their class

member functions. For example, the IoT_Sensor entity’s Sensing_value

access can be changed through its object and class member functions:

setSenseValue() and getSenseValue().

Chapter 1 the ImportanCe of objeCt-orIented programmIng

12

 Data Abstraction

Having encapsulated data types support such as classes in OOP, accessing

variables of the complex data types also gets simplified. In your program,

you define objects (variables) for the respective Class (complex data type)

and invoke necessary member functions from the objects to access their

details. For example, to set an IoT sensor state to “sleep,” you can easily do

it with the following lines of code.

IoT_Sensor i1;

i1.setState(2); // Example, 0: Dead, 1: Sensing, 2: Sleeping.

Similarly, you can check whether the duck is alive with the following

lines of code.

Duck d1;

int state = d1.getState(); //1: Alive 2: Dead

if (state == 2)

 cout<<d1.getId()<<"is dead";

To access the IoT_sensor or Duck details, focus on their objects and

accessing functions, not their implementation details. You need not know

its internal details to access a complex data type.

By checking these examples, you can understand that OOP classes

greatly simplify accessing complex entities’ data using its related member

functions defined inside the class.

 Data Hiding

You have observed how to combine class data and its member functions

to simplify accessing its objects. Besides these features, the OOP class

offers a powerful way to control access to an object’s data.

Chapter 1 the ImportanCe of objeCt-orIented programmIng

13

It means controlling objects data members access from the outside

of a class. It can be achieved by attaching access control modes

(access specifiers) with data and member functions of a class. OOP

languages generally offer three access specifiers: public, private, and

protected access.

• Public access: Data and member functions defined

under the public section can be accessed by any

function through the respective class objects.

• Private access: Data and member functions defined

under the private section are allowed to be accessed by

only member functions of the class.

• Protected access: Data and member functions defined

under the protected section are allowed to be accessed

by only member functions of the class and its inherited

classes.

You have just seen how to limit an object’s data access using the OOP

access specifiers. Later chapters discuss an object’s data access control

in detail. Now that you have explored the OOP basic construct class, let’s

discuss instances and variables of the class data type.

 Objects
Objects are powerful ways to create software components and implement

tasks, transactions, activities, operations, and functions. For example,

it is easier to model the real-world entities such as customers and their

transactions or related activities as objects to develop an online shopping

application.

Object is an instance of a class, it contains data members and member

functions. Hence, any interactions related to the object are done through

the class member functions.

Chapter 1 the ImportanCe of objeCt-orIented programmIng

14

In OOP, for example, having a class defined for customers simplifies

online shopping customer entities as Customer objects. Then, all the

following tasks implementaion gets simplified: registering a customer,

updating customer details, and checking customer details by creating and

interacting with customer objects.

Moreover, an object’s powerful combination with its data and

accessing functions helps you easily realize several identical software

components.

The following are examples.

• A Drone class that creates multiple drones is nothing

but defining multiple drone objects.

• A Robot class that creates multiple robots is nothing but

defining multiple robot objects.

Similarly, think of real-world applications entities modelling such as

e-commerce, gaming, and system software.

 Objects Details

To understand an object, you can view it as a variable of a particular

data type. Similarly, an object is a variable of the class data type.

In OOP, objects are instances of classes. During program execution,

objects are created by allocating necessary memory space for their data

member’s access.

For example, to create a variable of int.

int a; // int is data type and a is variable

Similarly, in C++, you can create objects from the Customer class as

follows.

Customer c1, c2;

Chapter 1 the ImportanCe of objeCt-orIented programmIng

