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Preface

Artificial intelligence (AI) is rapidly reshaping our lives due to significant research
advancements and widespread adoption of interactive technologies, giving rise to novel
social phenomena. Countries worldwide are actively seeking to comprehend and tackle
these phenomena, necessitating interdisciplinary approaches and collaboration among
researchers and practitioners.

The MIDI conference’s central objective is to bridge the once-separate realms of AI
andhuman-technology interaction.Commencing in 2020, the conferencewill encompass
AI challenges alongside topics like interface design and user experience. While society
grows increasingly aware of AI-related concerns, the development of AI technology
outpaces the quest for solutions. Addressing these challenges effectively requires a blend
of social research and AI expertise. The expanded conference format aims to foster rich
exchanges among experts in artificial intelligence and human-technology interaction.”

We anticipate that both enthusiasts of emerging trends and those engaged in devel-
oping end-user IT products and services will unearth a wellspring of inspiration and
invaluable theoretical and practical insights within the pages of this book. The ultimate
fate of any newly conceived product hinges on its ability to align with the evolving
needs of individuals in a future where AI-based technological innovations are forged
by human hands for the benefit of humanity. No matter how pioneering a technological
solution may appear, unless it seamlessly integrates with the lifestyle and assorted fac-
tors influencing the social behavior of its intended users, it is bound to face rejection.
Underestimating the significance of technology would be unwise, as evidenced by the
annals of technological progress and the instances of groundbreaking solutions devised
even by the world’s most influential tycoons.

In this year’s conference, two papers were honored with the Best Paper Award, dedi-
cated to thememory of ProfessorKrzysztofMarasek. ProfessorMarasek played a pivotal
role in initiating the inaugural MIDI conference, which delved into computer science
from a user-centric perspective, and remained a driving force in subsequent editions.
His profound expertise encompassed linguistics, voice user interfaces, and voice-based
interactions, underscoring the critical importance of research on technological solutions
approached through the user’s lens. We aspire to see this year’s and future iterations of
the MIDI conference continue the legacy of Professor Krzysztof Marasek.”
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Jakub Możaryn
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Andrzej Romanowski

Marcin Sikorski
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Monika Różańska – Walczuk, Edyta Ładyżyńska-Kozdraś,
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Emerging Trends

Human Factors in Space Exploration: Opportunities for International
and Interdisciplinary Collaboration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
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Maritime Vessel Detection and Classification
in Harbor Environment Using Deep Learning

Khalid Waleed, Muhammad Umar Farooq(B), and Rana Hammad Raza

Pakistan Navy Engineering College (PNEC), National University of Sciences and Technology
(NUST), Karachi, Pakistan

{khalid.waleed2017,umar.farooq,hammad}@pnec.nust.edu.pk

Abstract. Automatic surveillance of docks, harbors, and seaports is considered
crucial for ensuring smooth port operations. The identification and tracking of
maritime vessels in these environments are generally facilitated by Radar and
Automatic Identification System (AIS). However, radar faces challenges in detec-
tion of small non-metallic vessels, as well as there are other issues such as radar
signal clutter, high electromagnetic radiation, and higher costs. Similarly, AIS also
face challenges such as device malfunctioning or illegal manipulation etc. Con-
sequently, cameras have been increasingly used in maritime traffic management
systems. In recent years, Convolutional Neural Networks (CNNs) have shown
significant progress in object detection and classification tasks. Though, obtain-
ing large scale maritime datasets with focus on harbor environment still remains
a challenge. In this study, experimentation with various pre-trained state-of-the-
art CNN models were conducted on images captured from harbor environments
in Karachi and Grand Canal in Venice. The dataset presented several challenges
such as high-density traffic, occlusions, shadows, background infrastructure, wave
motion, boat wakes and reflection on water surface. The pre-trained CNNs were
finetuned using a combination of small datasets to obtain both detector and clas-
sifier which outperformed previously published results on the MarDCT dataset.
Specifically, the proposed model achieved a DR (Detection Rate) of 0.81, FAR
(False Alarm Rate) of 0.07 and an average accuracy of 98.78% on the MarDCT
dataset.

Keywords: Maritime Traffic · Vessel Detection · Vessel Classification ·
Machine Learning · Deep Learning · Convolutional Neural Networks

1 Introduction

The increasing use of harbors for recreational activities at sea, passenger ferry services,
and the significant increase in global maritime trade and economic activities highlight
the need for automatic surveillance systems for docks, harbors, and ships [1]. These
surveillance systems play an important role in addressing various challenges, including
but not limited to identification of unknown vessels/ships and their potential collision
paths, and controlling themaritime traffic in highly congested areas of ports/harbors. The
International Chamber of Shipping also recognizes the importance of safe operations
and recommends to implement advanced surveillance systems [2].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Biele et al. (Eds.): MIDI 2023, LNNS 1076, pp. 3–17, 2024.
https://doi.org/10.1007/978-3-031-66594-3_1
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Traditionally, Vessel Traffic System (VTS) are employed to manage ship traffic,
monitor vessel movement and collision avoidance. These systems rely on input from
two main sources i.e., Radars and Automatic Identification Systems (AIS). Although,
radars provide accurate position information, but they are costly and face limitations
in detection of small vessels with non-metallic bodies. Radar signals are also prone to
clutter, caused by reflections from various objects such as ground, water, buildings and
other ships [3]. Similarly, the radar-based systems are not suitable for populated areas
due to high electromagnetic radiation emissions, and therefore necessitate building of
complex shadow zones to protect humans from exposure. On the other hand, AIS signals
may also encounter issues due to device malfunctioning or illegal manipulation of the
device.

Due to these challenges, there has been an increasing use of cameras for themaritime
traffic systems. These cameras offer advantages such as affordability, flexibility, and
compatibility with various platforms. Some applications rely solely based on camera
inputs [4], while others integrate detection and tracking results from cameras with VTS
information to provide a robust maritime traffic system.

However, visual detection and tracking using cameras in maritime environment has
its own set of challenges. The conventional algorithms for vessel detection and tracking
in standard video settings often fail to produce satisfactory results in maritime environ-
ments, due to the dynamic nature of background [5]. The constantly moving waves, the
presence of shadows, reflections and boat wakes, as well as adverse weather conditions
such as direct sun, rain and fog etc. can cause difficulties in capturing clear images with
cameras. Similarly, tracking ships over large distances causes changes in viewpoint,
which further complicate the scenario. Furthermore, cameras have very limited range of
visibility.

Therefore, in order to address these complexities of the maritime environment,
advanced algorithms are required. In recent years, ConvolutionNeuralNetworks (CNNs)
have shown remarkable advancements for object detection in images/videos. CNNs excel
at automatic feature extraction of the input data, which further improve the detection
performances. However, there are also some associated challenges such as the need for
extensive datasets, longer training times, and the requirement for specialized hardware
such as Graphical Processing Units (GPUs), for high-speed trainings and inferences.

The hardware requirements can be overcome by utilizing online cloud-based
resources such as Google Colaboratory [6] and Kaggle [7], providing affordable access
to GPUs. Although, their free versions have some limitations, but users can always
opt for inexpensive paid versions to access better resources. As for the datasets, large
open datasets specific to maritime traffic in harbors are often unavailable due to secu-
rity concerns. Therefore, researchers must rely on open datasets such as ImageNet [8],
PASCAL [9] or MSCOCO [10] etc., which however, provide limited images/objects
related to vessels. Transfer learning has emerged as a productive approach when dealing
with scenarios of limited datasets and constrained training times. It simply freezes the
feature extraction layers of pre-trained high performing models and then retrains the
output layer to adjust the predictions as per the specific use case.

Existing research on detection and tracking of maritime vessels typically involves
manual feature extraction (such as color and vessel length features etc.) or extraction
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using approaches such as Histogram of Oriented Gradients (HOG) and Scale Invariant
and Feature Transform (SIFT) etc., combined with separate classifiers. Moreover, most
of the research is focused on open sea scenarios, utilizing sensors onboard ships [11],
Unmanned Aerial Vehicles (UAVs) [12], or satellite imagery [13] to detect, classify and
track vessels. While, these conventional techniques demonstrate certain performance
levels, exploring the CNNs which have shown promising performance in object detec-
tion scenarios, could significantly improve the performance. The existing research done
in harbor contexts using CNNs has primarily relied on satellite images [14] or Synthetic
Aperture Radar (SAR) images [15]. However, limited research has been conducted in
this context, using image samples from fixed cameras installed in harbor environments
(which generally exhibit varyingmaritime traffic densities and include backgrounds con-
taining harbor infrastructures). The main contributions of this research are highlighted
as follows:

• Transferred the convolution layers of CNN architectures for fast training and testing
of vessel images, which achieved significant performance improvements compared
to existing methods.

• Demonstrated better performance of the proposed method for maritime vessel detec-
tion and classification, specifically in local harbor environment, even with a limited
data.

The rest of the paper is organized as follows. Section 2 provides an overview of the
related research. Section 3 presents the working methodology of the proposed approach.
Section 4 provides details for implementation of this research work. Section 5 discusses
the results obtained from the experimentation. Finally, Sect. 6 concludes the paper and
provides future research direction.

2 Related Works

Conventional Based Approaches: Several algorithms/techniques are discussed in the
literature, which address the challenges of maritime traffic detection using cameras as
the input source. Some of these algorithms have been tested in real systems at differ-
ent seaports/canals, to monitor and manage maritime traffic. While, others have been
implemented on diverse datasets to explore the efficacy of the proposed algorithms.

A two-step algorithm combining a detector based on HOG with Gaussian Mixture
Model (GMM) and statistical based dynamic texture model was employed for detec-
tion maritime vessels [16]. It also incorporated latent Support Vector Machines (SVM)
classifier. The effectiveness of the algorithm was evaluated on VOC2010 dataset, and
a custom-made dataset captured using a fixed camera (consisting 600 vessel images).
However, it was observed that without spatial and temporal correlations, the model
suffered significant false detections. A WISARD (Wilkie, Stoneham and Aleksander’s
Recognition Device) weightless neural network-based detector along-with Kalman filter
was used to track maritime vessels [4]. Tracking by detection method was employed,
and the results were evaluated on custom-made dataset, consisting of 20 videos captured
using fixed cameras. The videos covered both open sea and coastal areas. Moreover, the
implementation was done with GPU acceleration. A detection approach using a 24-level
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cascade of boosted classifiers was proposed for detection of vessels [1]. The classi-
fiers were based on edge, line and center-surround Haar features, incorporating a Canny
edge detector having specific threshold values. An additional classifier level was also
introduced to filter noise due to waves and boat wakes. For tracking purpose, PTrack-
ing algorithm based on distributed multi-clustered particle filtering was utilized. GMM
estimated positions for all objects in a scene. Further, the noise due to reflections was
filtered using Speed Up Robust Features (SURF) key-points. Multiple sensors including
VTS tracks, Infra-Red (IR) cameras, and Pan-Tilt-Zoom (PTZ) cameras were utilized
during the experimentation. The proposed approach was evaluated on MarDCT dataset
having an open sea environment, and demonstrated high-quality results. A Boolean
Map Saliency (BMS) with connected components as detector, and a Kalman filter as
tracker was utilized for maritime object tracking [11]. The focus was to detect and track
boats around a vessel in an open sea environment, utilizing the onboard fixed cameras.
The performance of this approach was evaluated on PETS (Performance Evaluation
of Tracking and Surveillance) 2016 dataset. SIFT key-points in combination with Bag
of Visual Word (BoW) as a detector, and a modified Sparse Representation Classifi-
cation (SRC) as a classifier was used for vessel detection and classification in satellite
imagery [13]. The study utilized gray-scale satellite images to classify maritime traffic
into barge, cargo, container, tanker, and bulk categories. However, the dataset used to
conduct the research was not made publicly available. In another approach, background
subtraction using unimodal gaussian distribution as a detector and active contours for
tracking were employed for maritime vessels [2]. The model’s performance was eval-
uated on a custom dataset captured using both fixed and PTZ cameras in an open sea
environment. A robust real-time ship detection and tracking approach for visual surveil-
lance of cage aquaculture was introduced [3]. The approach utilized a detector based
on background subtraction (using median of RGB components of pixels) and adaptive
template matching tracker. The model performance was evaluated on a custom dataset
captured using a fixed camera in an ocean environment. HOG feature extraction was
used to detect maritime vessels, and a hierarchical Kanade-Lucas-Tomasi (KLT) feature
point tracker was used to track vessels at a port in Netherlands [17]. In order to reduce
the computational complexity of HOG, it was only run on a small 3x3 pixel window
predicted by the tracker in subsequent frames, after a successful detection. The model
utilized a PTZ camera for vessel tracking. However, it faced challenges when tracked
objects encountered occlusions, since there was no re-detection mechanism. Therefore,
detections were further fused with VTS tracks. Background subtraction based on pixel
color was used for detection, and statistics-based method based on color was used as a
tracker for maritime traffic in a port at Greece [18]. The study utilized both fixed and
PTZ camera as sensors. Model evaluation was carried out on a custom dataset from
the port, achieving a real-time processing of 240x320 pixel videos. However, tracking
was limited to a single object only. A pioneer video surveillance system for boat traffic
monitoring i.e., ARGOS (Automatic Remote Grand Canal Observation System) was
presented [19]. Blob formation was applied to the foreground image, and optical flow
calculations were performed for each blob. To cope with under-segmentation and over-
segmentation, clustering of sparse optical flow points was performed using Rek-means
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algorithm. Ellipse approximation was then employed to estimate the boats for detec-
tion. Kalman filter was used for tracking purposes. The algorithm was implemented in a
grand canal of Venice, Italy, as part of the ARGOS, and aim to detect, track and manage
maritime traffic. The generated dataset is known as MarDCT and resembles to a har-
bor environment, which includes high boat traffic density, surrounding infrastructure,
docked/moored boats and shadows etc. An approach to classify various categories of
boats within ARGOS systemwas presented [20]. The features based on color, number of
edge pixels, boat length, and standard deviation in the horizontal and vertical directions
of the edges were extracted. The classification was performed with weighted major-
ity classification using K-Nearest Neighbor (KNN), Decision Tree (J48) and Random
Forest (RF) approaches. An Independent Multimodal Background Subtraction (IMBS)
was employed for vessel detection [21]. The results were evaluated on MarDCT and
changedetection.net (CDNET) datasets. A novel method i.e., Multi-scale Consistence
of Weighted Edge Radon Transform (MuSCoWERT) was presented [22]. The approach
involved detecting the long linear features consistent over multiple scales using multi-
scale median filtering of the image, followed by Radon transform on a weighted edge
map and computing the histogram of the detected linear features. Model evaluation
showed superior performance against various contemporary methods on 84 challenging
maritime videos.

Deep Learning Based Approaches: In recent years, deep learning techniques have also
been utilized to address the maritime vessel detection challenge. The approaches dis-
cussed below show the ongoing efforts in this field, with traditional methods being
complemented by deep learning approaches to enhance the overall performance:

A large-scale dataset comprising over 30,000 ship images from six different cat-
egories, collected using fixed cameras in a coastal environment was introduced [23].
Variants of Fast R-CNN, Faster R-CNN, SSD MobileNet, SSD VGG-16 and YOLOv2
models were used. Faster R-CNNwith ResNet-101 backbone produced highMeanAver-
age Precision (mAP) of 92% at 7 frames per second (FPS), whereas YOLOv2 produced
mAP of 79% at 91 FPS. The satellite images from Google Maps were used to detect
ships docked in harbors, achieving average precision of 85%, using a Mask R-CNN
based method [24].

A VGG-19 model was used to classify various boats in the residential side of Tokyo
Bay [25]. The dataset comprised of six classes and was collected using a camera. An F1-
score of 0.7 was achieved. A transfer learning approach was utilized to retrain variants of
ResNet and Inception model on ImageNet dataset [26]. These models were then applied
to Maritime Vessels (MARVEL) dataset [27] and achieved 78% accuracy. An improved
version of YOLOv3model was used to detect ships in a sea environment [28]. Themodel
was tested on a combined dataset comprising of MS COCO 2017, PASCAL VOC, and
a custom dataset, achieving a mAP of 75% at 30 FPS.

3 Working Methodology

3.1 Selected Models

The specific details of the selected models are as follows. Different deep learning-based
models were used in this study for comparative analysis:
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Single-Stage Detector (SSD): SSD is a single-stage object detection model which can
perform both object localization and classification in a single forward pass of the net-
work. The research utilizes Inceptionv2 and MobileNetv2 based CNN architectures.
Inceptionv2 is the second generation of Inception CNN architectures which notably
uses batch normalization. While, MobileNetv2 is a CNN architecture which is highly
optimized to run on low computation devices.

You Only Look Once (YOLO): YOLO [29] is a real-time object detection model. It
uses single neural network to predict object locations in input image and classify them.
Due to single network, it can predict at higher speeds compared to other models like
variants of R-CNN [30][30–32]. The research utilizes YOLOv3 [33], as well as different
architectures series including tiny (t), small (s), large (l) and extra-large (x) which vary
on the basis of parameter sizes and provide various optimizations related to particular
image sizes.

The key difference between YOLO and these models is their approach to object
detection tasks. While YOLO can identify objects by using a single forward pass, SSD
makes use of fixed-size anchor boxes and takes into consideration the IoU metrics.

3.2 Dataset

The datasets used to conduct this researchworkwere taken from following three different
sources. Overall distribution of the data is shown in Table 1.

Dataset 1 – MarDCT. The first set, MarDCT [20] is based on maritime traffic in Grand
Canal, Italy. It constitutes 79.65% in terms of images (4,020) and 57.26% in terms of
the total objects (4,029) with objects to image ratio of 1.00. Figure 1 shows sample of
the dataset.

Fig. 1. Image samples from the MarDCT dataset.

Dataset 2 – VOC12. The second set, PASCAL VOC12 dataset is a general-purpose
dataset. The dataset contains total 20 classes. However, there is a large variation in the
number of objects per class throughout the image sets. The boats class is poorly repre-
sented related to other classes. Similarly, the objects of interest are occluded in some
images. Such images may cause performance degradation of the models. Therefore, the
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dataset was refined to remove such images. Similarly, images which were not represen-
tative of harbor environment were also removed. The final dataset constitutes 5.29% in
terms of images (267) and 5.81% in terms of the total objects (409) with objects to image
ratio of 1.53. Figure 2 shows sample of the dataset.

Fig. 2. Image samples from the PASCAL VOC12 dataset.

Dataset 3 – Karachi Port Data. The third set, Karachi Port data was custom-made
from the local harbor environment in Karachi Port area. The dataset was collected from
27 different locations along Karachi beach (as shown in Fig. 3) at morning, afternoon
and evening times with different lighting conditions and zoom levels. All pictures were
captured using high quality cellphone cameras. The datasetwas passed through extensive
cleaning which included orientation correction, zoom adjustment and cropping/removal
of some irrelevant images etc. (as shown in Fig. 4). Therefore, the data was reduced to a
total of 760 images. The data constitutes 15.06% in terms of images (760) and 36.92%
in terms of the total objects (2598) with objects to image ratio of 3.42. Figure 4 shows
sample of the dataset.

Fig. 3. Map locations for local dataset.

It can be seen that theMarDCTdataset has a higher percentage of images and objects,
while the Karachi Port dataset has a higher no. of objects to images ratio.



10 K. Waleed et al.

Fig. 4. Clejaning of local dataset (a) Raw image (b) Rotation adjustment (c) Zoom adjustment

Table 1. Overall distribution of datasets

Dataset Total Images Total Objects % of images % of objects Objects to
images ratio

Dataset 1
(MarDCT)

4,020 4029 79.65% 54.48% 1

Dataset 2
(VOC12)

267 409 5.29% 5.53% 1.53

Dataset 3
(Karachi Port
data)

760 2958 15.06% 39.99% 3.89

Total 5047 7396

3.3 Evaluation Approach

All the experiments were conducted usingGoogle ColaboratoryVirtualMachine, having
12.69 GB RAM and NVIDIA Tesla T4 GPU. The performance of models was evaluated
using Mean Average Precision (mAP). It is a commonly used metric to analyze perfor-
mance of object detection models. It is calculated using Intersection over Union (IoU)
thresholds, from 0.5 to 0.95 (with a step size of 0.05), and is represented as mAP@
[0.5:0.95]. Similarly, for comparison of model performances with that of other works,
Detection Rate (DR) and False Alarm Rate (FAR) are used. DR and FAR are calculated
using following equations.

DR = TP

TP + FN
,FAR = FP

TP + FP

4 Implementation

The experiments were divided into following two different categories:

4.1 Detection Experiments

The detection experiments were conducted to investigate whether the use of general-
purpose datasets could improve performance of the models and prevent overfitting in
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scenarios with limited available dataset. The capabilities of both pre-trained and custom-
trained models was evaluated using different combinations of datasets from the local
harbor environment.

Experiment 1 – MS COCO Dataset: The performance of pre-trained model trained on
MS COCO dataset was tested on the local test dataset. This experiment served as a
baseline comparison.

Experiment 2 – Local Dataset: The deep learning models were fine-tuned on local
dataset, comprising of 660 and 100 images for train and test, respectively.

Experiment 3 – MarDCT Dataset: The models were fine-tuned on MarDCT dataset,
comprising of 2,825 and 1,195 images for train and test, respectively.

Experiment 4 – Local + MarDCT Dataset: To diversify the training dataset, local
dataset was combined with the MarDCT dataset. The overall dataset comprised of 3,485
and 1,295 images for train and test, respectively. The models were fine-tuned on the
augmented dataset using transfer learning.

Experiment 5 – Local+MarDCT+VOC2012Dataset: To diversify the training dataset
even more, local dataset was combined with the MarDCT and VOC2012 dataset. The
overall dataset comprised of 3,672 and 1,375 images for train and test, respectively. The
models were fine-tuned on the augmented dataset using transfer learning.

4.2 Classification Experiments

Three deep learning models, namely Yolov3, Yolov5l and SSDMobileNet v2 were used
to investigate the classification performance on MarDCT dataset. Thirteen different
classes of boats were used to conduct these experiments. Transfer learning approach
was utilized with weights trained on the MSCOCO dataset. Overall distribution of the
data is shown in following Table 2.

5 Results and Discussion

The models obtained from various detection experiments were evaluated on a set of 100
images which were set aside from the local images’ dataset for evaluation purposes.
Table 3 below summarizes the results from each of the detection experiment discussed
in previous Sect. 4.1.

During the training phase, the pre-trained models consistently resulted in low mAP
score compared to other models. This performance was even more noticeable on the test
dataset, indicating that thesemodels are not suitable for direct use in harbor environment.
Interestingly, the Yolov5s model trained on MarDCT dataset was able to achieve the
highest score (i.e., mAP@0.5 = 99.73% and mAP@0.5:0.95 = 89.98%). However, the
score dropped significantly on test dataset indicating that the model might have overfit.
On the other hand, the Yolov5x model trained on Local+MarDCT+VOC2012 dataset
achieved the highest score i.e., mAP@0.5 = 90.10% score. Moreover, the obtained
result was quite close to its performance during training, indicating that the model is
generalizing well to the unseen test data. Based on these observations, following are the
conclusions from overall experimentation:
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Table 2. Overall distribution of classes used in classification experiments

S. No Boat Class Total Images Train Images Test Images

1 Alilaguna 113 80 33

2 Ambulanza 85 60 25

3 Barchino 112 79 33

4 Lanciafino10mBianca 484 339 145

5 Lanciafino10mMarrone 355 249 106

6 Motobarca 215 151 64

7 Mototopo 878 615 263

8 Patanella 279 196 83

9 Polizia 71 50 21

10 Raccoltarifiuti 94 66 28

11 Topa 78 55 23

12 VaporettoACTV 949 665 284

13 Boat 154 108 46

• The pre-trained models are not a great fit for object detection in a maritime
environment, and that they need to be re-trained on specific dataset for desired
performance.

• Training / Finetuning the models by combining both general dataset and local dataset
improves the performance of models due to dataset.

For the classification experiments, all the deep models performed well with average
accuracy of above 95%with an overall best score of 98.78% achieved by Yolov5l model.
Table 4 below summarizes the results obtained from classification experiments on the
MarDCT dataset.

The results were also compared with online published results on MarDCT dataset
to demonstrate the superior performance of deep learning models. Bloisi, Iocchi, and
Pennisi (2013) used custom background subtraction method known as IMBS for vessel
detection on MarDCT dataset [21]. Their approach resulted in DR = 0.54 and FAR
= 0.14. Since, no information about ground truth or frames used for evaluation were
provided, therefore, direct comparison with our model is not possible. However, to
provide a comparison, a set of 16 frames were extracted from different videos having
various boat sizes, pose, shadows, reflections, and boat wakes etc. The YOLOv5x model
improved both the FAR andDR. Table 5 below shows the comparison of detection results
with published work. Figure 5 shows the detection results obtained.

Similarly, for classification, Bloisi, Iocchi, and Pennisi (2015) used classicalmachine
learning algorithms, KNN, J48 and RF to classify various boat categories in MarDCT
dataset using a set of 11 features [20]. These features included color presence, number
of edge pixels, length of boat, and standard deviation in the horizontal and vertical direc-
tion of the edges. Their approach achieved an accuracy of 73.14% by weighted majority
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Table 3. Overall summary of detection results

S No Model Validation dataset Test dataset

mAP@0.5 mAP@0.5:0.95 mAP@0.5 mAP@0.5:0.95

Experiment
1

Yolov3 55.40% – 24.20% 07.76%

Yolov3-tiny 33.00% – 33.80% 07.59%

Yolov5s 55.60% – 51.00% 14.30%

Yolov5x 68.70% – 54.30% 17.70%

SSD_inception_v2 – 24% -1 -1

SSD_mobilenet_v2 – 22% -1 -1

Experiment
2

Yolov3 84.60% – 84.60% –

Yolov3-tiny 65.20% – 65.20% –

Yolov5s 86.20% 44.20% 86.20% 44.20%

Yolov5x 88.80% 44.30% 88.80% 44.30%

SSD_inception_v2 76.90% 34.20% 76.90% 34.20%

SSD_mobilenet_v2 73.30% 28.81% 73.30% 28.81%

Experiment
3

Yolov3 99.68% 88.75% 24.20% 07.76%

Yolov3-tiny 98.72% 81.45% 16.30% 04.05%

Yolov5s 99.73% 89.98% 14.60% 04.59%

Yolov5x 99.70% 89.26% 19.10% 06.38%

SSD Inception v2 99.10% 79.40% 14.00% 05.20%

SSD MobileNet v2 99.10% 77.90% 15.50% 06.20%

Experiment
4

Yolov3 98.44% 80.37% 87.00% 42.40%

Yolov3-tiny 96.08% 71.29% 79.90% 32.60%

Yolov5s 98.63% 82.35% 85.70% 42.90%

Yolov5x 98.52% 82.78% 87.90% 45.70%

SSD Inception v2 96.70% 74.30% 76.30% 34.50%

SSD MobileNet v2 96.30% 73.20% 73.20% 31.40%

Experiment
5

Yolov3 97.02% 77.33% 86.80% 43.60%

Yolov3-tiny 94.71% 68.77% 78.70% 32.20%

Yolov5s 97.84% 79.44% 86.10% 43.20%

Yolov5x 97.60% 80.04% 90.10% 44.20%

SSD Inception v2 96.10% 72.40% 77.10% 35.20%

SSD MobileNet v2 94.90% 71.00% 71.70% 32.20%

Note:– Metric unavailable due to the model and evaluation script incompatibility-1 Low metric
score ~ 0
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Fig. 5. Detection on MarDCT dataset using Yolov5x model.

Table 4. Overall summary of classification results

Model Average Accuracy

Yolov3 97.48%

Yolov5l 98.78%

SSD MobileNet v2 96.36%

Table 5. Comparison of detection results with published results

Metrics IMBS –
Bloisi, Iocchi and Pennisi (2013)

Our Score

DR 0.54 0.81

FR 0.14 0.07

classification. As highlighted in Table 4, the YOLOv5l model achieved an average accu-
racy of 98.78%. This indicates superior capabilities of deep learning models to classify
various boat classes. Table 6 below shows comparison of the proposed classification
model with the published work.
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Table 6. Comparison of classification results with published results

Metric KNN + J48 + RF –
Bloisi, Iocchi and Pennisi (2015)

Proposed approach using Yolov5l

Average accuracy 73.14% 98.78%

6 Conclusion and Future Work

This research used deep learning-based CNN models to detect and classify maritime
vessels in a local harbor environment. The pre-trained YOLO and SSD models were
used. The models were then re-trained with transfer learning using a combination of
local, MarDCT and VOC12 datasets. The local data was manually collected at morning,
afternoon and evening times with different lighting conditions and zoom levels, for a
better representation of local harbor environment. The best performing object detection
model, YOLOv5x achieved mAP of 90.10%. Similarly, the YOLOv5l model achieved
the highest average accuracy score of 98.78% in classification experiments. The models
outperformed previously published results on MarDCT dataset. The DR of 0.81, FAR
of 0.07 and an average accuracy of 98.78% was obtained on the MarDCT dataset. The
results suggest that the deep learning-based CNNmodels can be used to develop efficient
maritime object detection and classification systems.

Further improvements can be made by collecting larger and more diverse datasets,
which represent a wider range of maritime traffic and environmental conditions. Envi-
ronment conditions such as fog, direct sunlight, reflections etc. introduce complexities
in the detection stage. Therefore, a dataset collected at different times of the day and dur-
ing different seasons of the year, would also improve the performance of deep learning
models. Moreover, in harbor context, background often contains harbor area which may
have buildings and trees etc. Trainingmodels to recognize these varying background ele-
ments can help to reduce false negatives. Similarly, potential methodologies for dataset
expansion could also be explored for further improvements.
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Abstract. The proliferation of credit card payments has led to increased
convenience but also an uptick in transaction fraud. This necessitates
data-mining approaches to detect and prevent fraudulent activities.
Transaction fraud detection involves multiple steps, including data anal-
ysis, preprocessing, feature selection, and hyperparameter optimization.
Given the prevalence of anonymized features in transaction datasets, we
focused on enhancing model performance through feature selection using
nature-inspired algorithms. Our experiments revealed that this approach,
when combined with machine learning models, holds promise for fraud
prevention. Among the tested nature-inspired algorithms, the Grey Wolf
Optimizer stood out, improving the model’s ROC AUC score by 1.4%
while selecting only half of the features compared to recursive feature
elimination.

Keywords: Fraud Detection · Nature-Inspired Algorithms · Feature
Selection · Credit Card Transactions · Machine Learning · Data Mining

1 Introduction

Payments through credit cards have become increasingly prevalent, offering users
a secure and convenient alternative to cash transactions. As this trend grows,
the incidence of transaction frauds has proportionally escalated, highlighting an
urgent need for robust automatic detection mechanisms. Credit card transac-
tional data, inherently gathered by financial institutions for analytics and fraud
investigation, is rich with features and attributes. This extensive data can be
framed within the machine learning paradigm as a binary classification chal-
lenge, where transactions are labeled as either genuine or fraudulent.

However, one of the core challenges in dealing with such datasets is the pres-
ence of numerous, often anonymized, features which makes the feature selection
process pivotal to the success of any predictive model. Inaccurate or redun-
dant features can degrade model performance, making it imperative to employ
advanced techniques for feature engineering. To this end, nature-inspired algo-
rithms (NIAs), which are metaheuristic search methods inspired by natural pro-
cesses, present a promising approach.
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This paper aims to introduce a groundbreaking technique for transaction
fraud detection by synergizing the capabilities of machine learning and NIAs.
At its core, our method trains machine learning models on an optimized subset of
features, meticulously handpicked by the NIAs. By conducting comparative anal-
yses across various NIAs, we endeavor to determine the most effective algorithm
tailored for this specific challenge. Through this confluence of data analytics,
machine learning, and NIAs, we aspire to elevate the accuracy and efficiency of
fraud detection systems in the credit card industry.

2 Related Works

With the surge in credit card transactions, the occurrence of transaction frauds
has witnessed a parallel escalation. While data-mining techniques present them-
selves as a conventional defense against frauds, their efficacy is contingent upon
the specificities of the data at hand, underscoring the absence of a universally
effective solution. To bridge this gap, a detailed assessment of machine learn-
ing methodologies, predominantly focusing on neural network architectures, for
addressing credit card fraud detection was undertaken [6]. Classical machine
learning algorithms such as Support Vector Machines [10] and Random For-
est [11] have been thoroughly evaluated in this context.

Interestingly, Genetic programming, a unique domain-specific approach,
emerges as a potent tool, registering a noteworthy enhancement of almost 17

An intricate view of transactions reveals two analytical paradigms: treat-
ing each transaction as an isolated entity or analyzing a consolidated transac-
tional history. For models to remain resilient to evolving transactional patterns,
the incorporation of time series models, notably the Long-Short Term Memory
(LSTM) recurrent neural networks, has been advocated [10].

Invariably, public datasets pertinent to transaction fraud detection are
feature-rich, necessitating rigorous feature engineering and selection phases. His-
torically, NIAs have demonstrated superior prowess in addressing these fea-
ture selection challenges. Such problems, under the purview of metaheuristic
approaches, particularly NIAs, align closely with combinatorial optimization
paradigms [8].

Within the arena of nature-inspired algorithms for feature selection, the rel-
evance of rough sets is undeniable, further elaborated in the context of data
mining in [7]. Empirical studies have amalgamated rough sets with algorithms
like the Firefly Algorithm [1], Particle Swarm Optimization [9], and the Bat
Algorithm [2], drawing from diverse datasets to validate the efficacy of NIAs.

A series of comprehensive surveys have honed in on the application of NIAs in
feature selection, presenting a plethora of algorithms including, but not limited
to, Artificial Bees Colony, Cuckoo Search, Ant Colony Optimization, and Genetic
Algorithms [5,8,15].

Generative AI models, by leveraging their capability to generate data that
mirrors real-world patterns, can be instrumental in fraud detection by enrich-
ing datasets, especially when genuine anomalies are scarce. This enhancement



20 M. Dugar and A. Asesh

aids in training more robust models, capable of discerning intricate fraudulent
behaviors. However, challenges arise when these generative models inadvertently
produce data that blurs the distinction between legitimate and fraudulent trans-
actions, potentially leading to increased false positives. Additionally, the compu-
tational intensity of generative models and their inherent opacity can hinder their
real-time applicability and interpretability, crucial for actionable fraud detection.

3 Problem Definition and Dataset Characteristics

Datasets tailored for transaction fraud detection in data science research com-
monly present specific challenges: they are often highly imbalanced, feature-rich,
and predominated by anonymized attributes.

Our proposed approach leverages a dataset sourced from the Kaggle EEE-
CIS Fraud Detection competition1. Characteristic of transaction fraud datasets,
this compilation is abundant with diverse attributes, totaling 434 features, span-
ning demographics, credit card particulars, transaction details, and more. A sig-
nificant portion of these features remain anonymized or ambiguously defined.
Consequently, caution is imperative to prevent inadvertent label leakage and to
ensure meaningful interpretation of data analyses or model outcomes tied to
these anonymous attributes. With nearly 600k instances, the dataset is aptly
suited for machine learning. Yet, the inherent class imbalance, as visualized in
Fig. 1, necessitates meticulous handling during model training and evaluation.

Given the anonymity of the data, domain expertise can’t guide feature selec-
tion. Manually curating from such an extensive feature set is not only arduous
but nearly unfeasible. Implementing feature selection methodologies becomes
paramount, not only for manageability but to enhance model simplicity and
interpretability.

Fig. 1. Class Distribution Analysis:
Evidence of High Data Imbalance.

Fig. 2. Projection of float vector opti-
mized by NIAs to a binary feature
selection vector.

1 https://www.kaggle.com/c/ieee-fraud-detection/data.

https://www.kaggle.com/c/ieee-fraud-detection/data

